
ar
X

iv
:1

40
5.

53
65

v1
 [

cs
.N

I]
 2

1
M

ay
 2

01
4

EUROPEAN TRANSACTIONS ON TELECOMMUNICATIONS
Euro. Trans. Telecomms.22: 1–11 (2011)
Published online in Wiley InterScience
(www.interscience.wiley.com) DOI: 10.1002/ett.1485

Common Problems in Delay-Based Congestion Control Algorithms:
A Gallery of Solutions

M. Rodrı́guez-Pérez∗ , S. Herrerı́a-Alonso, M. Fernández-Veiga, C. López-Garcı́a

Dept. Telematics Engineering, E.I. Telecomunicación, Campus Universitario Lagoas-Marcosende s/n, 36310 Vigo, Spain

SUMMARY

Although delay-based congestion control protocols such asFAST promise to deliver better performance
than traditional TCP Reno, they have not yet been widely incorporated to the Internet. Several factors
have contributed to their lack of deployment. Probably, themain contributing factor is that they are not
able to compete fairly against loss-based congestion control protocols. In fact, the transmission rate in
equilibrium of delay-based approaches is always less than their fair share when they share the network with
traditional TCP-Reno derivatives, that employ packet losses as their congestion signal. There are also other
performance impairments caused by the sensitivity to errors in the measurement of the congestion signal
(queuing delay) that reduce the efficiency and the intra-protocol fairness of the algorithms. In this paper we
report, analyze and discuss some recent proposals in the literature to improve the dynamic behavior of delay-
based congestion control algorithms, and FAST in particular. Coexistence of sources reacting differently to
congestion, identifying congestion appearance in the reverse path and thepersistent congestionproblem are
the issues specifically addressed. Copyrightc© 2011 John Wiley & Sons, Ltd.

1. Introduction

Since its early first introduction [1, 2], congestion control
has been essential in guaranteeing the stability of the
Internet and in enabling its unprecedented growth rate.
The original implementation of the control algorithm
used packet loss as the triggering signal that sources
are aware of to dynamically update the size of their
transmission window. More precisely, the absence of an
acknowledgement (ACK) or the arrival of several duplicate
ACKs are regarded as genuine symptoms of congestion,
and the source reacts by shrinking its current window
size by half, at least [3]. Over the years, the algorithm
has undergone several refinements and modifications in
order to control finely the dynamics of end-to-end flows,
but the fundamental principle of detecting congestion
through packet losses remains untouched in TCP Reno,
the most widely deployed TCP version. It is common
knowledge, however, that using packet drops to drive the

∗Correspondence to: Email address: Miguel.Rodriguez@det.uvigo.es.

congestion control actions exhibits some limitations in
wireless networks [4] —where discarding packets due to
transmission errors is not a rare event— and in networks
with a large bandwidth× delay product where sharply
halving the window size may be an overreaction. This
is the motivation behind a plethora of protocol proposals
that either propose the use of more feedback information
about congestion, like XCP variants [5, 6, 7, 8], or directly
advocate the use of congestion signals of a different kind.
The class of delay-based congestion avoidance algorithms
(DCA) includes, for instance, CARD [9], DUAL [10],
Vegas [11], FAST [12] and LEDBAT [13], in chronological
order. The premise of DCA schemes is thatqueuing
delay variationis a more robust way to detect incipient
congestion. Consequently, the senders measure end-to-end
queuing delay of data packets and adapt accordingly the
transmission rate, an idea that has also been tried for traffic
engineering, as pointed out by [14]. There are also recent
examples of mixed DCA and loss-based protocols, such as
TCP Illinois [15] and compound TCP (CTCP) [16], i.e.,
solutions using a multiplicity of congestion signals. The

Copyright c© 2011 John Wiley & Sons, Ltd.
Prepared usingettauth.cls [Version: 2007/01/05 v1.00]

http://arxiv.org/abs/1405.5365v1

2 M. RODŔIGUEZ PÉREZ ET AL.

latter has been commercially deployed in the Windows
7 and Vista operating systems TCP stacks, although it is
turned off by default.

Generally, DCAs present several appealing character-
istics to support them as an alternative to the traditional
loss-based congestion control protocols. First, in a
homogeneous network environment, one where all sources
adapt their rates to the same congestion signal (queuing
delay), the bandwidth in the bottleneck links is fully
utilized, even ifdifferentsource algorithms are used. The
reason is that all DCAs carefully avoid packet losses, so
the instantaneous transmission rate shows less oscillations
than in conventional TCP and TCP-friendly [17] sources.
Second, the bandwidth is fairly shared among the
competing flows. In fact, DCA sources only react to the
average queuing delay, which is common to every flow
in a given route,† but not on the propagation delay or the
buffer sizes. In contrast, recall that, in equilibrium, TCP
senders with shorter round-trip times (RTT) attain greater
throughput [18, 19]. Third, some DCAs, notably FAST,
show fast convergence times and very small variations in
the instantaneous rate, thus arising as ideally suited for
long-fat pipes. Moreover, with the tools of the network
utility maximization theory [12, 20, 21, 22, 23, 24, 25],
the equilibrium, fairness and convergence properties of
DCAs are now well characterized and can be carefully
engineered.

Despite these clear advantages, researches have also
discovered that DCAs can give rise to a number of
anomalous behaviors leading to inefficient or unfair use
of the network resources which, ultimately, have hindered
their practical adoption. Probably, the most dangerous
problem is the coexistence of DCAs with other congestion
control protocols. In a heterogeneous network, one where
the flows are responsive to different congestion indications,
there may exist multiple equilibrium points, depending on
the network parameters (e.g., buffer sizes) and the ordering
of the flow arrival times [22, 26, 27, 28]. This means
that the bandwidth share is, in general, unpredictable and
cannot be controllable. Thus, throughput and fairness may
seem chaotic in heterogeneous networks. In many cases,
when confronted to TCP Reno, DCAs receive far less
bandwidth than expected, as loss-based protocols seize
the greater part of the bottleneck queue, see [21, 29, 30]
for an account. Later, in this paper, we will describe
proposed solutions for controlling inter-protocol fairness
between DCA flows and loss based flows. Note that

†Clearly, we are not considering the possibility of differentiated services
in the network.

LEDBAT escapes from this typical behavior, its main
design purpose being able to saturate the bottleneck, while
yielding to standard TCP. A unique network equilibrium
point, optimum in the sense of maximizing a weighted
aggregate utility function, can be enforced by imposing on
all the flows two conditions, the access to a common price
and the adoption of a common slow-timescale adaptation
rule [31]. The use of a weighted utility function implies that
there is some efficiency loss and inter-protocol unfairness,
though.

Another impairment is thepersistent congestion
problem[12, 32, 33], which is a side effect of the procedure
employed for detecting congestion. For proper operation,
DCAs need to measure queuing delay, and they do this
indirectly, usually estimating the round-trip time and the
propagation delay (some newer protocols, like LEDBAT,
estimate directly the one-way delay (OWD)). The queuing
delay is the difference between both, and the propagation
delay estimation is simply the minimum of the observed
RTTs. Note that these measurements are a purely local
procedure. As DCA flows maintain a constant amount
of traffic (the precise value is a protocol configuration
parameter) queued in the network, newly established flows
are very likely to overestimate the propagation delay and
assume a false available bandwidth. The consequence is
a severe unfairness among the flows. More importantly,
this situation tends to persist in time as long as the mean
number of active flows does not vary much.

Finally, a third practical limitation of most DCAs comes
from their inability to distinguish between congestion in
the forward path from congestion in the reverse path. More
precisely, when there appears congestion in the return path
from receiver to sender, DCAs wrongly assume that the
queuing delay has increased, and react diminishing their
sending rate [34, 35, 36, 37].‡ The reduction in efficiency
can be large even if the delay of the ACKs grows only
moderately, but is especially harmful in paths with large
bandwidth× delay product.

In this paper we will separately analyze each of the three
phenomena and comment several solutions proposed in the
literature in the last few years. The material is not new, but
it has appeared scattered in a number of papers up to now
and may not be well known. We hope that the review can
help to clarify the role of DCAs as well as their potential
benefits, and ease the way for their deployment as general
purpose congestion control mechanisms. Rather than a
replacement of current practice in the field of congestion

‡Obviously, protocols that just employ OWD, like LEDBAT, areimmune
to this problem.

Copyright c© 2011 John Wiley & Sons, Ltd.
Prepared usingettauth.cls

Euro. Trans. Telecomms.22: 1–11 (2011)
DOI: 10.1002/ett

PROBLEMS IN DELAY-BASED CONGESTION CONTROL: A GALLERY OF SOLUTIONS 3

control, congestion based on delay must be considered as a
solution to coexist for a long time with the binary-feedback
loss-based approach.

The rest of this paper is organized as follows. Section 2
presents a comprehensive description of FAST as a
representative of the current paradigm of DCA algorithms.
In section 3 we present an analysis of the reverse-path
congestion problem and several solutions to it. Section 4
deals with the causes of the persistent congestion problem
and explains how to solve it. The inter-protocol fairness
problem is discussed in Section 5 and, like with the two
previous problems, a solution is described. Finally, the
conclusions are summarized in Section 6.

2. FAST: throughput, fairness, stability and optimality

DCAs turn out to be better than TCP Reno and its
variants for data transmission over large bandwidth× delay
paths, where packet losses are too scarce to allow the
timely adjustment of the sending rate. They also offer
better performance to those applications impaired by
sudden changes in the transmission rate. Their basic
assumption is that it is possible to gain insight into network
status observing the variations in the RTT, because the
difference between the RTT and the propagation delay is
directly related to the amount of data enqueued. So, larger
differences imply nearness to congestion. By adjusting the
window size based on these variations, DCA-controlled
flows are able to keep a high transmission rate without
inducing congestion. In comparison, TCP Reno (and other
protocols with similar reactions) operate slowly pushing
the network to congestion in order to find out the largest
possible window size, namely until a packet loss occurs.
The current window size is then reduced by a multiplicative
factor and the increment phase starts over again.

Since both Vegas and FAST have a similarmodus
operandi (the latter can actually be modelled as a
generalized version of the former [12]), and all DCAs
display strong similarities among them, we shall describe
in this Section a basic model for FAST, taken as a
representative of the entire class of algorithms. Most of the
remarks in the following can also be applied to other cases
with no or only minor adjustments related to the specific
utility function of the protocol.

Like TCP Reno, FAST regulates the window sizew(t) in
order to adjust the transmission rate. At the flow level, the
window size varies dynamically as dictated by the equation

ẇ(t) = γα

(

1− q(t)x(t)

α

)

, γ ∈ (0, 1] andα > 0 (1)

where γ and α are configuration parameters,q(t) is
the instantaneous queuing delay andx(t) = w(t)

d+q(t) is
the transmission rate, whered denotes the flow’s round
trip propagation delay. This equation is just a form of
proportional control law, in that the rate of change in the
window size is (multiplied by a scale factor) equal to
the distance to equilibriumx⋆q⋆ = α. Hereafter, starred
symbols refer to quantities in equilibrium. Proportional
control usually yields very fast convergence times to a
stable point, when it exists.

The above dynamic flow level behavior is implemented
at the packet level with the following rule. Every update
interval, defined to be a constant time or some number of
RTTs, depending on the specific FAST version, the window
size is updated as

wi+1 = γ

(

d̂wi

r̂
+ α

)

+ (1− γ)wi, i = 0, 1, 2, . . . (2)

where d̂ is the current estimation of the round-trip
propagation delay,̂r = d̂+ q̂ is an estimation of the RTT,
andw0 is the selected initial window size. The accurate
estimation ofd is a bit tricky, as it can only be correctly
measured in the absence of interfering or background
traffic. In practice,d̂ is set to the minimum RTT observed
during the whole transmission. In the end, this is only
a problem when different FAST flows have different
overestimations. As long as all FAST flows make the same
error, the fairness properties are not affected. Later in
this paper, we will study this problem and explain some
solutions for it. Eq. (2) brings light to the meaning of the
constantγ. Actually, it works as asmoothing factoror
gain that controls the speed of convergence. Its value its
taken freely from the interval(0, 1], althoughγ = 0.5 is a
common choice.

The equilibrium properties of FAST are well established
in the literature [12, 38] and coincide with those of
Vegas [29, 39]. Fixingẇ(t) = 0 in (1), it is immediate
to see that, under equilibrium, each flow achieves a
throughput

x⋆ =
α

q⋆
=

α

r̂⋆ − d̂
. (3)

Note first that, if a set of FAST flows are equally configured
(they have the sameα) and share a bottleneck link, they
all have the same equilibrium ratex⋆

i = x⋆ because the
queuing delayr⋆ − d̂ is the same, irrespective of their
propagation delays. Secondly, the physical meaning ofα
is easily revealed: the product of the queuing delay by the
aggregate transmission rates equals the total amount of data

Copyright c© 2011 John Wiley & Sons, Ltd.
Prepared usingettauth.cls

Euro. Trans. Telecomms.22: 1–11 (2011)
DOI: 10.1002/ett

4 M. RODŔIGUEZ PÉREZ ET AL.

in transit. Assuming that there is a unique bottleneck link
along the path with bandwidthC

(r̂∗ − d̂)

n
∑

i=1

x∗
i = (r̂∗ − d̂)C = nα, (4)

for n flows, it follows from (4) that each flow contributes
α packets to the bottleneck queue backlog.

There is a trade-off for selecting the proper value
of α. On the one hand, we would prefer a small
value, to minimize overall latency and buffering needs
in the network. However, this makes it more difficult to
accurately measure the queuing delays, since those will be
small too. On the other hand, large values forα provide
faster convergence times.

Considered as a distributed algorithm, the marginal
utility function of a FAST source is the queuing
delay α/x⋆, whereas it isκ/(w⋆)β for the family of
loss-based congestion control protocols, withκ > 0 an
implementation-dependent constant. For instance,β = 2
for the classical TCP Reno,β = 1 for SCTP [40] and
β = 1.2 for HighSpeed TCP [41]. The equilibrium point
in a homogeneous network of FAST sources with arbitrary
topology is unique and optimal, i.e., it optimizes aggregate
utility. The fairness properties are immediate from (3) and
the global stability of the algorithm has been proved in [25]
for the case of homogeneous flows. As expected, not every
(α, γ) combination produces stable configurations and
several other papers deal with the mathematical conditions
to reach a stable equilibrium, see [23, 24, 42]. For
conditions about stability and optimality in heterogeneous
networks we refer the reader to [31].

3. The reverse-path congestion problem

Like TCP Reno, FAST assumes that all the congestion it
is measuring happens in the data forward path. However,
this assumption is not always true. Congestion could very
well occur in the return path, rendering any reaction
to this congestion futile. In the last years, the number
of asymmetric links installed in the Internet has grown
substantially, mainly from residential access lines (xDSL),
increasing the likelihood of congestion in the return path.
We will show that the onset of reverse path congestion
can severely degrade the performance of DCAs. Indeed,
the appearance of reverse path congestion has two direct
consequences.

Firstly, it causes some acknowledgement packets to get
dropped. TCP sources will treat these losses like ordinary
data packet losses, namely slowing down their sending

rates. The problem affects all TCP variants and is not just a
drawback in FAST. However, it is not particularly harmful
unless many consecutive ACKs are dropped, since TCP
ACKs are cumulative and the loss of one ACK is repaired
by the reception of a subsequent one [34]. The standardized
TCP SACK [43] allows selective acknowledgements just
for recovering from multiple lost segments within a
RTT. The second consequence only affects protocols that
directly use the variations of the round-trip time to estimate
congestion, like FAST or Vegas. Recall from Section 2 that
the equilibrium throughput is inversely proportional to the
total queuing delay, cf. (3). If we expandr⋆ = q⋆f + q⋆b + d̂,
whereq⋆f is the (equilibrium) forward queuing delay andq⋆b
is the (equilibrium) reverse path delay, we get

x⋆ =
α

q⋆f + q⋆b
. (5)

From (5) it is clear that backward queuing delay has as
much weight as the forward queuing delay to establish
the final operating point, when really only the forward
queuing delay should have been taken into account. At last,
this is the one that can be reduced after diminishing the
transmission rate.

It is possible to quantify the effect of backward queuing
delay in the throughput when the propagation delay isd.
Let us maked = kq⋆f andρ = q⋆b/r

⋆, wherek is a suitable
factor. We can solve forq⋆b to obtain

q⋆b = (k + 1)
ρ q⋆f
1− ρ

. (6)

Substituting (6) into (5) we find that

x∗ =
α

q⋆f

1− ρ

1 + kρ
. (7)

In Fig. 1 we have represented the decay in the
equilibrium throughput of a FAST connection as the
backward to total queuing delay increases, for different
round-trip propagation delays. Obviously, the best case is
when the propagation delay is negligible compared to the
queuing delay. Also, the impact on throughput is large for
backward queuing delays greater than around10% of the
total delay.

3.1. Network-assisted solution

Solutions to the significant fall in performance due to
the contribution of reverse path delay came in two ways,
network-assisted and pure end-to-end approaches.

Copyright c© 2011 John Wiley & Sons, Ltd.
Prepared usingettauth.cls

Euro. Trans. Telecomms.22: 1–11 (2011)
DOI: 10.1002/ett

PROBLEMS IN DELAY-BASED CONGESTION CONTROL: A GALLERY OF SOLUTIONS 5PSfrag replacements

N
o
rm

a
li
ze
d
E
q
u
il
ib
ri
u
m

T
h
ro
u
g
h
p
u
t

0.9

0.8

0.7

0.6

0.5

0.3

0.2

0.1

0
0.001 0.01 0.1

Backward to Round-Trip Delay Ratio (qb/r)
1

0.4

1

d = 0
d = qf

d = 10qf

Figure 1. Effect of the backward delay queuingqb on FAST
throughput for different values of the propagation delayd and
a fixed forward queuing delayq∗f > 0.

The most useful technique of the first type is
probably [36]. At least, it requires the smallest number
of changes to the existing network architecture. Though
designed with Vegas in mind, it may be used without
modification in FAST. The authors argue thatr⋆ − d
is not a correct way to measure queuing delay, since
that difference counts the return path queuing delay
too. But, if the delay in the reverse pathr∗b could
be measured separately, subtracting it fromr⋆, a more
accurate estimationr′ = r⋆ − r⋆b allows the source to adapt
its rate correctly.

The idea used in [36] to calculater⋆b is to install modified
RED [44] queues in the return path that mark the packets
with probability

pECN =

(

b/C −minth
)+

maxth −minth
, (8)

whereb is the average queue length,C the link bandwidth
and maxth, minth the usual RED thresholds. Now, the
change inpECN is found to beproportional to the change
of r⋆b, so trackingpECN is a way of inferring how much
delay contributes the reverse path.

Despite its simplicity, the method has some shortcom-
ings. One is that it depends on the deployment of modified
RED queues on the return path. The second, and more
serious, is that it fails when RED queues are also used
in the forward path. Any other router that also did mark
packets would alter the amount of change inr⋆b calculation,
effectively making its value useless. A last drawback is that
the new estimationr′ does not eliminate the return path
congestion problem in every possible scenario.

3.2. End-to-end solutions

Enhanced Vegas [35] and LEDBAT [13] present alternative
proposals to correct the overestimation of the round-trip
time due to the return path congestion. Unlike other
approaches, they are pure end-to-end solutions requiring no
explicit support in the network. Both Enhanced Vegas and
LEDBAT exploit the TCP timestamp options to accomplish
their goal. Their use for LEDBAT is trivial, as it only
requires to measure changes in one-way delay to infer
congestion. So, simply adding a timestamp to the data
segments and a measurement result field in the ack packets
is sufficient for it.

However both FAST and Vegas employ the queuing
delay, and not just its variations, so the LEDBAT method
can not be used. Enhanced Vegas uses the TCP timestamp
options so as to compute an accurate estimation of
the backward queuing delay of the ACK segments.
Specifically, the measurement algorithm estimates the
backward trip timerb and then deduces the backward
queuing delay from that value. Synchronizing the system
clocks of the TCP sender and receiver is not a requirement
for sampling rb, but unfortunately aligning both clock
speeds is necessary. Otherwise, if the clocks drift, the
measured values become erroneous. The problem may be
solved by resorting to an external (i.e., not part of the
transport entities) procedure to quantify the clock skew
itself and compensate for its value [45, 46]. Provided this
is the case, the backward trip time is then subtracted from
the total RTTr′ = r − rb exactly as in [36], so that it only
includes the term for the forward queuing delay and the
round-trip propagation delay.

While suppressing the backward delay removes the
effect of congested reverse paths, or similarly that of
delayed ACKs or asymmetric forward and backward
routes, in most cases, it is not a complete fix, as reported
in [37] whose analysis is briefly reproduced here.

Recall (2), the congestion window update in FAST.
Consider for simplicity, but without loss of generality, the
caseγ = 1. In equilibrium it must hold that

w⋆ =
d̂w⋆

r̂′
+ α, (9)

where r̂′ = r̂⋆ − q̂⋆b = q̂⋆f + d̂. Reordering the terms, we
have

w⋆

(

1− d̂

r̂′

)

= α, (10)

Copyright c© 2011 John Wiley & Sons, Ltd.
Prepared usingettauth.cls

Euro. Trans. Telecomms.22: 1–11 (2011)
DOI: 10.1002/ett

6 M. RODŔIGUEZ PÉREZ ET AL.

but 1− d̂/r̂′ = q⋆f /r̂
′. Using this identity and (10) we

obtain the equilibrium value of the window size as

w⋆ = α
r̂′

q̂⋆f
. (11)

Finally, from (11) and the well-known relationw⋆ = x⋆ r⋆,

x∗ =
α

q̂⋆f

(

1− q̂⋆b
r̂⋆

)

. (12)

Consequently, the term1− q̂⋆b/r̂
⋆ still introduces a bias on

the throughput as the backward congestion increases. This
situation corresponds exactly with the cased = 0 depicted
previously in Fig. 1. So, either the network-assisted or
the end-to-end solutions discussed above might help to
improve throughput in case of backward congestion, but
are effective only if the accumulated queuing delay in the
return path is a small fraction of the total round-trip time.

A simple fix for removing completely the deviation
caused byq⋆b was presented in [37]. Letr∗ stay as is and
modify d′ asd′ = d̂+ q̂⋆b. It is elementary to plugd′ and
r⋆ in (9) and find that now

x⋆ =
α

q⋆f
(13)

which is the exact equilibrium rate. In conclusion,DCAs
can be made robust against the delay in the reverse path
only if the queuing delay of ACKs is regarded as part of the
propagation delay.

4. The persistent congestion problem

DCAs are very sensitive to measurement errors in the
round-trip time and the propagation delay. FAST is no
exception to this rule. The problem lies in the way the
queuing delay is computed. While the RTT estimation
r̂ can be easily computed by the sender, for each data
segment, the value of the propagation delay is not directly
available and has to be inferred somehow. Most DCA
protocols use the same simple heuristic to getd, consisting
on identifying d̂ to the minimumr observed throughout
a connection lifetime. This works correctly as long as the
intermediate buffers eventually empty, at all the routers
traversed by the packets, and the network path they follow
does not change. In any other case, the propagation delay
is incorrectly measured, and the differencer̂ − d̂ does not
truly represent the queuing delay.

If the network changes the route between sender and
receiver, and particularly when the new path is longer,

DCA-controlled flows overestimate the queuing delay
because they record an outdated estimation ofd. However,
it is fair to say that rerouting does not represent much of
a concern in practice, and that there exist simple ways
that most DCA implementations can follow to ignore the
issue. For instance,̂d can be periodically replaced with the
minimum observedr in the last monitored period. This, at
least, limits the duration of the effects due to rerouting.

On the other hand, ensuring that network buffers get
eventually empty and there are chances for a DCA flow
to find outd is more difficult.§ Every time a connection
is unable to get the real propagation delay, because
intermediate buffers have some backlogged data, the
queuing delay is underestimated. As a result, the network
path falls into a state ofpersistent congestion, which is the
direct cause of two different problems.

For instance, taking FAST as an example, overestimat-
ing the propagation delay makes FAST flows try to buffer
more data in the network than they are allowed to do.
Let d̂ = k d, with k > 1, whered is the real round-trip
propagation delay and̂d is the measured one, and consider
for simplicity a single FAST flow offering traffic to a
bottleneck link with capacityC. From (3) we derive

α = C
(

r∗ − d̂
)

. (14)

Becausek > 1, r∗ − d̂ < r∗ − d, and since the queue
length isl = C(r∗ − d) it is easy to see thatl > C(r∗ −
d̂) = α.

The second problem caused by persistent congestion is
worse, in that it leads to intra-protocol unfairness. Consider
n FAST flows arriving consecutively to a bottleneck link.
It is fairly obvious that the latest flow to arrive at the
bottleneck will overestimate its propagation delay, as it
will have to account for the traffic queued by the previous
flows. As shown in [33], in that case the ratio of throughput
between the last and the first flows is, in equilibrium, at
worst,O(n).

Although it is arguably not the common pattern that
flows arrive consecutively with the older flows never
leaving, the above equation helps to understand the
magnitude of the relative unfairness caused by persistent
congestion when a handful of flows arrive to a shared
bottleneck. We will describe next how the unfairness can
be solved.

§This possibility should not be overlooked. Consider, for example, a
homogeneous network with several long-lasting FAST flows. In such a
scenario, the buffers will not empty, since the flows do always maintainα
packets queued in the network.

Copyright c© 2011 John Wiley & Sons, Ltd.
Prepared usingettauth.cls

Euro. Trans. Telecomms.22: 1–11 (2011)
DOI: 10.1002/ett

PROBLEMS IN DELAY-BASED CONGESTION CONTROL: A GALLERY OF SOLUTIONS 7

4.1. Solving persistent congestion with active queue
management

Similarly to the case of the return path congestion,
solutions to persistent congestion fall in two classes:
network-assisted, usually in the form of active queue
management algorithms (AQM), and pure end-to-end
approaches. We will start analyzing AQM proposals first.

In [47] routers with RED are proposed in order
to allocate bandwidth more evenly among the flows,
regardless of their starting times. However, finding the
appropriate threshold values for the RED gateways is
not easy and remains an open issue [48]. Also, this
approach does not tackle the root problem, the incorrect
estimation of the propagation delay by the late-coming
flows, but merely address its consequences. Conceptually,
RED breaks the basic assumption of DCAs that packets
will not be dropped, since congestion will not build up.
Contrarily, RED drops packets before congestion. In the
end, one could argue that mixing RED and DCA is useless,
because one of the purposes in RED is to warn loss-
based congestion controlled sources early by randomly
discarding some packets. DCAs are oblivious to these
indications.

The same argument applies to [29], where the authors
suggest a way to eliminate persistent congestion using
REM at the routers. REM [49] is an active queue
management scheme that keeps buffer low while sustaining
high link utilization. Certainly, with small queues, the
minimum of all measured RTTs is a good approximation
to propagation delay, but the problem now is that there is
not enough information in the queuing delay to enable the
detection of congestion. In fact, the price information with
REM is only carried in packet losses, a signal that pure
DCAs dismiss. The necessary modifications in the window
adjustment policy of Vegas so that it interacts adequately
with REM are also presented in [29]. Overall, one could
consider this as a mixed DCA- and loss-based protocol,
more in the spirit of CTCP.

In [50] a new IP option called AQT (Accumulate
Queuing Time) is defined. It is used to collect the queuing
time experienced by FAST packets along a path. With this
scheme, FAST sources must send some probing packets
with the AQT option active, and the routers must compute
the queuing time for each received probing packet and add
it to the actual AQT field. As a result, each connection is
able to obtain a good estimate of the propagation delay,
sorting out the queuing time from the RTT measurement.
However, the disadvantages (and complexities) are clear:
cooperation from all the routers, explicit information
exchange and modifications of the IP header.

A similar proposal is [26], which solves the persistent
congestion problem by marking the ToS field in the IP
header with the highest priority for the first packet of
each flow. With priority queuing at the routers, the highest
priority packets will be dispatched immediately even if the
router buffer is not empty and, therefore, FAST will obtain
an accurate estimate of the propagation delay. Despite
being simpler than AQT (the ToS field is standardized), it
forces the routers to use priority scheduling or recognize
the packets from FAST flows.

4.2. End-to-end solutions to persistent congestion

The need for end-to-end solutions to the persistent
congestion problem is debatable. On the one hand, users
can not trust that adequate AQM schemes are to be widely
installed throughout all the Internet as an aid to the use
of DCAs. On the other hand, bottlenecks on the Internet
are not very likely to be monopolized only by DCA flows,
instead of containing a mix of both DCA and TCP Reno
data flows. In this latter case, the probability of persistent
congestion is low, given that the bottleneck queues will
eventually empty. It is due to the inherent dynamics of
TCP Reno, and it means that DCA-controlled flows will
be able to read the correct round-trip propagation delay. In
any case, a source can find a bottleneck link occupied only
by DCA flows, the likeliness increasing with the proximity
of this router to a DCA traffic sender. There are end-to-
end solutions to the persistent congestion problem in those
cases too.

It is also questionable whether a given DCA flow has
any interest in helping to make persistent congestion
vanish. After all, late-coming flows greedily benefit from it,
attaining a higher throughput than older flows. We argue,
however, that it is in the interest of flows to collaborate
in the avoidance of persistent congestion. First, persistent
congestion causes larger queues at the bottleneck links,
thus larger delays. Secondly, a flow is favoured by the
persistent congestion state as long as it is the latest to
become active. This is a condition that cannot last forever,
so a source is likely to take some actions to counteract the
persistent congestion. This gives other flows an incentive
to behave similarly.

The key idea of the end-to-end solutions to the
persistent congestion problem is giving a chance tonew
connectionsso that the true round-trip propagation delay
can be sampled, without perturbing the flows already

Copyright c© 2011 John Wiley & Sons, Ltd.
Prepared usingettauth.cls

Euro. Trans. Telecomms.22: 1–11 (2011)
DOI: 10.1002/ett

8 M. RODŔIGUEZ PÉREZ ET AL.

established.¶ Hence, consider as a starting point an ideal
situation wheren flows have measured the propagation
delay and look for a method whereby a new flow is able
to pinpoint the propagation delay.

The first proposal of such a method appeared in [51].
Here, the key idea is to let the new flow pause its
transmission sometime after reaching equilibrium, so as to
let the bottleneck queue drain its backlog. It is assumed
that, if the pause is long enough, when the transmission
is resumed the first packet will find an empty queue
and will see directly the path’s propagation delay, hence
eliminating the persistent congestion bias. However, the
pause length must have an upper bound. The queue only
drains until the rest of the competing flows discover that
there is room for more packets, and then increase their
transmission rates. So the queue has to drain completely in
at most one RTT, reducing the generality of this approach.
It has been found [52] that there is a lower bound to the
propagation delay below which the pause is not effective.
For a simplified scenario in which all existing flows have
the same propagation delayd, the minimumd needed to
empty the queue in just one RTT is

d >
nα

√
1 + 4n

2C
= O

(

n
3

2

)

, (15)

whereC denotes the bottleneck link’s bandwidth. Given
the scaling with the number of flows, pausing transiently
would only work in networks with large propagation delays
and a small number of flows.

To overcome these problems, [52] proposes a different
behavior for the new flows. The goal now is obtaining
the error in the estimation of the round-trip propagation
delay. This error is just the queuing delay due to the
amount of traffic already queued by all the older flows
at the bottleneck. If those older flows all are configured
with the sameα parameter, which they should if fairness is
desired, this delay amounts toǫ = αn

C
. The method in [52]

estimates indirectly botĥn and Ĉ to evaluate this error
(note thatα is already known). For this it takes advantage
of a direct relation between the change in transmission
rate, the measured change in the round-trip time andn if
two conditions hold [33]: i) the variation lasts a time short
enough so that the rest of the flows keep their transmission
rates unchanged; ii) the bottleneck queue does not empty
during this time. So, provided the two are met, the last
arriving flow can get knowledge of̂n. Oncen̂ is known,

¶Another possibility would be that old flows detect the arrival of a new
flow and react somehow to let the new one seek the right propagation
delay. As far as we know, this possibility has not been explored, however.

0.5

1.0

1.5

2.0

2.5

3.0

3.5

 10 30 50 70 90 110

R
at

io

Round-trip propagation delay (ms)

FAST
Rate Reduction
Error Estimation

Figure 2. Last arriving flow throughput to previous ones average
throughput ratio for different persistent congestion avoidance
methods withn = 8. Taken from [52].

the flow can obtain̂C using (3) and the relation betweenn
and the queue backlog under persistent congestion, that is
also known [33]. Finally, when botĥn andĈ are known,
the new round-trip propagation delayd′ can be set to

d′ = d̂− αn̂

Ĉ
. (16)

The key issue is how to modify the transmission rate.
If it increases, there is a risk to cause packet drops at the
bottleneck, which would make the estimation meaningless.
Fortunately, it is very easy to detect such a case. But if the
transmission rate is lowered, the queue can empty all its
backlog and, as discussed before, the measurement fails
too. As this second possibility is much more difficult to
ascertain, the authors suggest to modify the transmission
rate only by a small increment. In most situations, there
should be enough room in the bottleneck buffer to hold
some more data for just an RTT, and the failure to do so
is not catastrophic.

Just to illustrate the effectiveness of the above solutions,
Fig. 2 compares the fairness of original FAST against the
solution in [51], labeled in the figure asRate Reduction,
and the third approach, labeledError Estimation (EE),
for a network withn = 8 flows and different propagation
delays. It is clear from the plot that the EE method
works no matter what the real propagation delay is. FAST
shows a strong deviation against old connections, and the
rate reduction approach only works for large propagation
delays. Had more flows been set up, fairness among them
would have been achieved only for larger propagation
delays∼ 200ms.

Copyright c© 2011 John Wiley & Sons, Ltd.
Prepared usingettauth.cls

Euro. Trans. Telecomms.22: 1–11 (2011)
DOI: 10.1002/ett

PROBLEMS IN DELAY-BASED CONGESTION CONTROL: A GALLERY OF SOLUTIONS 9

 0.1

 1

 10

 100

 10 20 30 40 50

R
en

o
vs

 V
eg

as
 T

hr
ou

gh
pu

t

Buffer Size (packets)

Measured
Predicted

Figure 3. Inter-protocol fairness between TCP-Reno and TCP-
Vegas. Original data from [53].

5. The inter-protocol fairness problem or the case of
FAST against Reno

Probably, the best well known problem of DCAs is that
they are generally unable to share the network fairly against
the usual TCP variants. This is also the major problem
that prevents the wide-scale deployment of general purpose
DCA algorithms in the Internet, as other advantages, like
fewer packet losses and lower jitter, do not usually pay
off receiving less bandwidth. The description of this inter-
protocol unfairness problem is found in several papers [30,
32, 53, 54], although usually only in an empirical fashion.

A first informal explanation of the root causes of
this unfairness appears in [53], referred to Vegas. The
translation to FAST is straightforward, however. Consider
the ideal long-run behavior of both FAST and loss-based
protocols, in which the former strive to maintain justk = α
packets (orα ≤ k ≤ β in Vegas), while the latter utilize
the full bottleneck sizeB. The immediate conclusion is
that, at any given time, a FAST flow would havek packets
in the bottleneck, while a TCP Reno flow, as a gross
simplification, will have a number in the interval[0, B −
k] or, in average,(B − k)/2 packets. So, for two flows
sharing a bottleneck, one running FAST and the other using
a Reno-like protocol, their relative bandwidth share should
be

x⋆
Reno

x⋆
FAST

=
B − k

2k
. (17)

Notwithstanding its simplicity, the above formula pro-
vides acceptable approximations to the actual performance
of TCP Reno when contending with a DCA. Fig. 3 shows
simulations results from [53] where a Vegas flow with

α = 1 and β = 3 shares a bottleneck of variable buffer
size with a TCP Reno flow. Since the exact value ofk
cannot be predicted with Vegas, the figure shows both the
measured results and the bound (17) withk = α andk =
β. The results also show that the inter-protocol fairness
of FAST versus TCP Reno depends at least on the buffer
size and the parameterα. As expected, larger buffer sizes
give more advantage to TCP Reno flows, which react more
aggressively upon a surplus of bandwidth.

A deeper account of the problem appears in [22]. In this
work the authors employ a flow model of both TCP Reno
and FAST to study the behavior of a general network where
links are potentially shared by both kinds of flows. The
problem is formulated as the maximization of the aggregate
utility functions of the sources. As the marginal utilities
of FAST and TCP Reno are different, and they react to
different congestion measures (modeled as link prices),
they can not converge to the same operating point. This
is expected, as it is in full accordance with (17). Given that
the congestion measures, or link prices, are not the same
for FAST and TCP Reno, in [22] the authors introduce a
price mapping functionto feed the same link prices to all
sources. This allows to reach two important conclusions:
i) the intra-protocol fairness properties of TCP Reno
and FAST are not affected by the presence of different
congestion control protocols; ii) the inter-protocol fairness
properties can be adjusted bysimply multiplying the
corresponding utility functions by a constant factorµ . This
clearly opens the door to new Internet congestion control,
as no network changes are needed, not even changes in
current congestion control protocols. Only newly deployed
protocols have to be adjusted, by a constant factor, to be
fair against any other in use.

In the case of FAST, whose utility function is

U(x) = α log(x), (18)

the modification needed to make it compatible against TCP
Reno is trivial. MultiplyingU(x) by a constant factor is
directly equivalent to use a newα′ = µα. The difficulty
lies in obtaining this newα′ value in a scalable and
decentralized fashion.

A first attempt was presented in [27]. The long-term
average value of the loss rate is used here to drive the
adaption ofα to a value such that FAST competes fairly
against TCP Reno. It is then proved that the equilibrium
value ofα is given by

α⋆ =
q⋆

λ⋆
, (19)

Copyright c© 2011 John Wiley & Sons, Ltd.
Prepared usingettauth.cls

Euro. Trans. Telecomms.22: 1–11 (2011)
DOI: 10.1002/ett

10 M. RODŔIGUEZ PÉREZ ET AL.

whereq∗ is the queuing delay at equilibrium andλ∗ the
corresponding loss rate. It is important to note that the
above equation implies that in a homogeneous network
with DCA-controlled flows and with well dimensioned
buffers,α⋆ → ∞ by the lack of packet losses. The method
includes a guard against this risk:α is not modified at all if
there are no packet losses.

Clearly, there will be cases whereα is increased from its
original value to attain a fair share of bandwidth against
TCP Reno. We could be tempted to conclude that this
means sacrificing the low latency properties of FAST,
as a largerα means more data queued in the network.
However, this is not the case. The total latency remains
unaffected, because the largerα is a consequence of the
presence of TCP Reno flows, so the bottleneck queue
was already full beforeα was increased. Thus, the only
effect is that the buffer share used by each flow at the
bottlenecks is modified, but not its total size. The main
penalty of the algorithm is that it only works in a slow
timescale, providing solution to stable scenarios with long-
lived FAST flows and a stable amount of TCP Reno flows.
More work is needed to devise new end-to-end algorithms
than can updateα in smaller timescales.

Another new approach for improving the coexistence
between loss based and DCA algorithms is presented
in [55, 56]. The respective authors propose methods for
the DCA flows to react differently to queuing delay when
there are loss-based flows in the network. For this they
define two operating scenarios: one when the queuing
delay is below a certain threshold and another one when
the queuing delay is higher. In the first scenario, with low
queuing delay, they behave like normal DCA flows, trying
to maintain the queuing delay low. However, the more the
queuing delay surpasses the threshold, the less they behave
like DCA flows as they begin to progressively ignore the
queuing delay feedback. This lets DCA flows compete
fairly against loss-based flows. The loss-based flows drive
the queuing delay high and DCA flows progressively
revert also to loss-based flows. When the loss-based flows
abandon the network, the residual reaction to queuing
delay drive the operating scenario progressively to lower
queuing delay points. The lower the queuing delay, the
more the DCA flows respond to queuing delay, finally
putting the operating scenario below the threshold where
they behave like normal DCA flows.

6. Conclusions

Although delay based congestion algorithms, like those
present in Vegas or FAST have long promised better

performance that TCP Reno, they have not been deployed
in the Internet for several reasons: overreaction to
congestion in the return path, intra-protocol fairness
problems in networks with persistent congestion and inter-
protocol fairness among heterogeneous flows.

In this paper we have reviewed state-of-the-art solutions
to all these problems, some requiring changes in the
network routers and others consisting purely in end-to-end
approaches. We have presented, at least, one end-to-end
solution to each of the aforementioned problems.

Our overall consideration is that improved versions of
DCAs are ready to be used in the Internet and coexist
with the classic loss-based congestion control algorithms.
For instance, the fix to the persistent congestion problem
produces some variations in the sending rate of the
aggregate FAST traffic, but these variations are much
smaller than typical rate variations of TCP Reno traffic.
Also, the fix for the inter-protocol fairness increases the
amount of traffic that FAST sources queue at routers,
but only when confronted with TCP Reno and recall that
even in that case the end-to-end delay does not get larger
because the total queue length does not change.

ACKNOWLEDGEMENTS

This work was supported by the “Ministerio de Ciencia e
Innovación” through the project TEC2009-12135 of the “Plan
Nacional de I+D+I” (partially financed with FEDER funds).

References

1. Jacobson V. Congestion avoidance and control.Proc. ACM
SIGCOMM, 1996.

2. Allman M, Paxson V, Stevens R. TCP Congestion Control. RFC
2581 apr 1991.

3. Allman M, Paxson V, Blanton E. TCP Congestion Control. RFC
5681 sep 2009.

4. Lassila P, Kuusela P. Performance of TCP on low-bandwidth
wireless links with delay spikes.European Transactions on
Telecommunicationsoct 2008;19(6):653–667.

5. Katabi D, Handley M, Rohrs C. Congestion control for high
bandwidth-delay product networks.SIGCOMM Comput. Commun.
Rev.2002;32(4):89–102, doi:10.1145/964725.633035.

6. Xia Y, Subramanian L, Stoica I, Kalyanaraman S. One more bit
is enough.Proceedings of the ACM SiGCOMM, Philadelphia, PA
(USA), 2005; 37–48.

7. Wu H, Ren F, Mu D, Gong X. An efficient and fair explicit
congestion control protocol for high bandwidth-delay product
networks.Computer Communications2009;32:1138–1147.

8. Almeida A, Belo C. Explicit congestion control based on 1-bit
probabilistic marking.Computer Communications2010; 33:S30–
S40.

9. Jain R. A delay-based approach for congestion avoidance in inter-
connected heterogeneous computer networks.SIGCOMM Comput.
Commun. Rev.Oct 1989;19(5):56–71, doi:10.1145/74681.74686.

Copyright c© 2011 John Wiley & Sons, Ltd.
Prepared usingettauth.cls

Euro. Trans. Telecomms.22: 1–11 (2011)
DOI: 10.1002/ett

PROBLEMS IN DELAY-BASED CONGESTION CONTROL: A GALLERY OF SOLUTIONS 11

10. Wang Z, Crowcroft J. Eliminating periodic packet lossesin the
4.3-Tahoe BSD TCP congestion control algorithm.ACM Computer
Communications Review1992; .

11. Brakmo LS, O’Malley SW, Peterson LL. TCP Vegas: New tech-
niques for congestion detection and avoidance.SIGCOMM Comput.
Commun. Rev.1994;24(4):24–35, doi:10.1145/190809.190317.

12. Wei DX, Jin C, Low SH, Hegde S. FAST TCP: Motivation,
architecture, algorithms, performance.IEEE/ACM Transactions on
NetworkingDec 2006;14(6):1246–1259.

13. Shalunov S, Hazel G, Iyengar J. Low extra delay background
transport (LEDBAT). Internet Draft Oct 2010. URL
https://tools.ietf.org/id/draft-ietf-ledbat-congestion-03.txt.

14. Alparslan O, Akar N, Karasan E. TCP flow aware adaptive
path switching in Diffserv enabled MPLS networks.European
Transactions on Telecommunications2011; In press.

15. Liu S, Basar T, Srikant R. A loss and delay-based congestion
control algorithm for high-speed networks.Proc. First Intl. conf. on
Performance Evaluation Methodology Tools (VALUETOOLS’06),
2006.

16. Tan K, Song J, Zhang Q, Sridharan M. A compound TCP approach
for high-speed and long distance networks.Proceedings of the IEEE
INFOCOM, Barcelona, Spain, 2006; 1–12.

17. Floyd S, Handley M, Padhye J, Widmer J. Equation-based
congestion control for unicast applications.SIGCOMM Comput.
Commun. Rev.2000;30(4):43–56, doi:10.1145/347057.347397.

18. Padhye J, Firoiu V, Towsley D, Kurose J. Modeling TCP throughput:
A simple model and its empirical validation”.SIGCOMM Comput.
Commun. Rev.1998;28(4):303–314, doi:10.1145/285243.285291.

19. Shakkotai S, Kumar A, Karnik A, Avenkar A. TCP performance
over end-to-end rate control and stochastic available capacity.
IEEE/ACM Transactions on NetworkingAug 2001;9(4):377–391.

20. Low SH, Peterson L, Wang L. Understanding TCP Vegas: a duality
model.SIGMETRICS Perform. Eval. Rev.2001;29(1):226–235.

21. Kunniyur S, Srikant R. End-to-end congestion control: utility
functions, random losses and ECN marks.IEEE/ACM Transactions
on NetworkingOct 2003;11(5):689–702.

22. Tang A, Wang J, Hegde S, Low SH. Equilibrium and fairness of
networks shared by TCP Reno and Vegas/FAST.Telecommunication
SystemsDec 2005;30(4):417–439.

23. Wang J, Wei DX, H Low S. Modelling and stability of FAST TCP.
Proceedings of the IEEE INFOCOM, vol. 2, Pasadena, CA, USA,
2005; 938–948.

24. Choi JY, Koo K, Lee JS, Low SH. Global stability of FAST TCP
in single-link single-source network.44th IEEE Conference on
Decision and Control, Seville, Spain, 2005; 1837–1841.

25. Choi JY, Koo K, Wei DX, Lee JS, Low SH. Global exponential
stability of FAST TCP.45th IEEE Conference on Decision and
Control, San Diego, CA, USA, 2006; 639–643.

26. Tan L, Yuan C, Zukerman M. FAST TCP: Fairness and queuing
issues.IEEE Communications LettersAug 2005;9(8):762–764.

27. Tang A, Wei D, Low SH. Heterogeneous congestion control:
Efficiency, fairness and design.IEEE International Conference on
Network Protocols, Santa Barbara, CA, USA, 2006; 127–136.

28. Tang A, Wang J, Low S, Chiang M. Equillibrium of heterogeneous
congestion control: existence and uniqueness.IEEE/ACM Transac-
tions on NetworkingAug 2007;15(4):824–837.

29. Low SH, Peterson L, Wang L. Understanding Vegas: a duality
model.J. ACMMar 2002;49(2):207–235.

30. Bonal T. Comparison of TCP Reno and TCP Vegas: Efficiency and
fairness.Performance EvaluationAug 1999;36–37:307–332.

31. Tang A, Wei X, Low S, Chiang M. Heterogeneous congestion
control: optimality and stability. IEEE/ACM Transactions on
NetworkingJun 2010;18(3):844–857.

32. Hengartner U, Bolliger J, Gross T. TCP Vegas revisited.Proceedings
of the IEEE INFOCOM, vol. 3, Zurich, Switzerland, 2000; 1546–
1555.

33. Rodrı́guez Pérez M, Herrerı́a Alonso S, Fernández Veiga
M, López Garcı́a C. The persistent congestion problem of
FAST-TCP: Analysis and solutions.European Transactions on
TelecommunicationsOct 2010;21:504–518.

34. Fu C, Liew S. A remedy for performance degradation of TCP Vegas
in asymmetric networks.IEEE Communications LettersJan 2003;
7(1):42–44.

35. Chan YC, Chan CT, Chen YC. An enhanced congestion avoidance
mechanism for TCP Vegas.IEEE Communications LettersJul 2003;
7(7):343–345.

36. Liu J, Chen F, Wei G. Enhanced TCP Vegas for asymmetric
networks. Wireless Communications, Networking and Mobile
Computing, vol. 2, 2005; 1095–1098.

37. Herrerı́a Alonso S, Rodrı́guez Pérez M, Suárez González A,
Fernández Veiga M, López Garcı́a C. Improving TCP Vegas fairness
in presence of backward traffic.IEEE Communications LettersMar
2007;11(3):273–275.

38. Jin C, X Wei D, H Low S. FAST TCP: Motivation, architecture,
algorithms, performance.Technical Report, Caltech CS Dec 2003.

39. Samios CB, Vernon MK. Modeling the throughput of TCP Vegas.
SIGMETRICS Perform. Eval. Rev.Jun 2003;31(1):71–81, doi:
10.1145/885651.781037.

40. Kelly T. Scalable TCP: improving performance in highspeed wide
area networks.Comput. Commun. ReviewApr 2003;32(2).

41. Floyd S. HighSpeed TCP. RFC 3649 Dec 1993.
42. Tan L, Zhang W, Yuan C. On parameter tuning for FAST TCP.IEEE

Communications LettersMay 2007;11(5):458–460.
43. Mathis M, Floyd S, Romanow A. TCP selective Acknowledgment

Options. RFC 2018 Oct 1996.
44. Floyd S, Jacobson V. Random early detection gateways for

congestion avoidance.IEEE/ACM Transactions on NetworkingAug
1993;1(4):397–413.

45. Moon SB, Skelly P, Towsley D. Estimation and removal of clock
skew from network delay measurements.Proceedings of the IEEE
INFOCOM, vol. 1, 1999; 227–234.

46. Zhang L, Liu Z, Honghui Xia C. Clock synchronization algorithms
for network measurements.Proceedings of the IEEE INFOCOM,
vol. 1, 2002; 160–169.

47. La RJ, Walrand J, Anantharam V. Issues in TCP Vegas Jan 1999.
http://www.eecs.berkeley.edu/ ananth/1999-2001/Richard/.

48. Alemu T, Jean-Marie A. Dynamic configuration of RED parameters.
Proceedings of the IEEE GLOBECOM, 2004; 1600–1604.

49. Athuraliya S, Li VH, Low SH, Yin Q. REM: Ative queue
management.IEEE NetworkMay 2001;15(3):48–53.

50. Chan YC, Chan CT, Chen YC, Ho CY. Performance improvementof
congestion avoidance mechanism for TCP Vegas.Proc. ICPADS’04,
2004; 605–612.

51. Cui T, Andrew L, Zukerman M, Tan L. Improving the fairnessof
FAST TCP to new flows.IEEE Communications LettersMay 2006;
10(5):414–416.

52. Rodrı́guez Pérez M, Herrerı́a Alonso S, Fernández Veiga M,
López Garcı́a C. Achieving fair network equilibria with delay-based
congestion control algorithms.IEEE Communications LettersJul
2008;12(7):535–537.

53. Mo J, La RJ, Anantharam V, Walrand J. Analysis and comparison of
TCP Reno and Vegas.Proceedings of the IEEE INFOCOM, vol. 3,
New York, NY, USA, 1999; 1556–1563.

54. Martin J, Nilsson A, Rhee I. Delay-based congestion avoidance for
TCP.IEEE/ACM Transactions on Networking2003;11(3):356–369.

55. Łukasz Budzisz, Stanojević R, Shorten R, Baker F. A strategy
for fair coexistence of loss and delay-based congestion control
algorithms.IEEE Communications LettersJul 2009;13:555–557.

56. Hayes DA, Armitage G. Improved coexistence and loss tolerance for
delay based TCP congestion control.35th Annual IEEE Conference
on Local Computer Networks (LCN 2010), Denver, Colorado
(USA), 2010; 24–31.

Copyright c© 2011 John Wiley & Sons, Ltd.
Prepared usingettauth.cls

Euro. Trans. Telecomms.22: 1–11 (2011)
DOI: 10.1002/ett

