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Abstract

Motivated by computer networks and machine-to-machinemsamnication applications, a bidirec-
tional link is studied in which two nodes, Node 1 and Node Znownicate to fulfill generally conflicting
informational requirements. Node 2 is able to acquire imi@tion from the environment, e.g., via access
to a remote data base or via sensing. Information acquisi@xpensive in terms of system resources,
e.g., time, bandwidth and energy and thus should be donéeetfic by adapting the acquisition process
to the needs of the application. As a result of the forward rmomication from Node 1 to Node 2,
the latter wishes to compute some function, such as a seitl@rage, of the data available at Node
1 and of the data obtained from the environment. The forwiukl is also used by Node 1 to query
Node 2 with the aim of retrieving suitable information frohretenvironment on the backward link. The
problem is formulated in the context of multi-terminal ralistortion theory and the optimal trade-off
between communication rates, distortions of the inforamapiroduced at the two nodes and costs for
information acquisition at Node 2 is derived. The issue dfusiness to possible malfunctioning of the
data acquisition process at Node 2 is also investigated.réfdts are illustrated via an example that
demonstrates the different roles played by the forward canication, namely data exchange, query

and control.

Index Terms

Source coding, side information, interactive communarati
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I. INTRODUCTION

In computer networks and machine-to-machine links, comaoation is often interactive and
serves a number of integrated functions, such as data eyeha@uery and control. As an
exemplifying example, consider the set-up in Fig. 1 in whtble terminals labeled Node 1
and Node 2 communicate on bidirectional links. Node 2 hagsssdo a data base or, more
generally, is able to acquire information from the enviremt e.g., through sensors. As a result
of the communication on the forward link, Node 2 wishes to pate some function, e.g., a
suitable average, of the data available at Node 1 and of tleenmation retrievable from the
environment. Instead, Node 1 queries Node 2 on the forwaitd with the aim of retreiving

some information from the environment through the backwaukl

Data base
server

Node 1

Figure 1. Two-way communication with adaptive data acqoisi

Information acquisition from the environment is generadlypensive in terms of system
resources, e.g., time, bandwidth or energy. For instarm®saing a remote data base requires
interfacing with a server by following the appropriate jwil, and activating sensors entails
some energy expenditure. Therefore, data acquisition lideNoshould be performed efficiently
by adapting to the informational requirements of Node 1 aode\N2.

To summarize the discussion above, in the system of Fig. fotlneard communication from
Node 1 to Node 2 serves three integrated purpa3d3ata exchangeNode 1 provides Node 2
with the information necessary for the latter to computedasired quantitiesj) Query. Node
1 informs Node 2 about its own informational requirementsbé met via the backward link;

iii) Control: Node 1 instructs Node 2 on the most effective way to perfoata égcquisition from
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the environment in order to satisfy Node 1's query and tovaldode 2 to perform the desired
computation.

This work sets out to analyze the setting in Fig. 1 from a funeatal theoretical standpoint
via information theory. Specifically, the problem is forratdd within the context of network
rate-distortion theory, and the optimal communicatiomtstyy, involving the elements of data
exchange, query and control, is identified. Examples ard&e&ebout to illustrate the relevance of
the developed theory. Finally, the issue of robustnesscidad by assuming that, unbeknownst
to Node 1, Node 2 may be unable to acquire information fromeimnaronment, due, e.g., to
energy shortages or malfunctioning. The optimal robusitetyy is derived and the examples

extended to account for this generalized model.

A. Related Work

The work in this paper builds on the long line of research iithetwork information
theory that deals with source coding with side informatisae| e.g.,[[1] for an introduction).
More specifically, we adopt the model of a side informatioeriging machine” that has been
introduced inl[2]. This model accounts for source codinghaces in which acquiring informa-
tion at the receiver entails some cost and thus should be dfficeently. Specifically, in this
model, the quality of the side informatiori can be controlled at the decoder by selecting an
action A that affects the effective channel between the soufcand the side information
through a conditional distributiopy| x4 (y|x, a). The distributionpy x 4(y|z, a) defines the side
information “vending machine” as per the nomenclature df Each actionA is associated with
a cost, and the problem is that of characterizing the aJeilabde-offs among rate, distortion
and action cost. We emphasize the conventional formulaifdhe source coding problem with
side information instead assumes that the relationshiwdst source and side information is
determined by a given conditional distributipg x (y|z) that cannot be controlled.

Various works have extended the resultslih [2]. Extensionstilti-terminal models can be
found in [3]. Specifically, references![3]¢[9] considereded-up analogous to the Heegard-Berger
problem [10], [11], in which the side information may or magtrbe available at the decoder.
In [5], a distributed source coding setting that generalifg?] to the case of a decoder with a
side information “vending machine” is investigated. Miitbp models were studied in!/[5][6].

In [7], a related problem is considered in which the sequencke compressed is dependent
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Figure 2. Two-way source coding with a side information vagdmachine at Node 2.

on the actions taken by a separate encoder. Other exterinude [8], [9] where the model
of [2] is revisited under the additional constraints of coamreconstruction [13] or of secrecy
with respect to an "eavesdropping” node.

In this paper, the model of a side information “vending maehiis used to model the
information acquisition process at Node 2 in Fig. 1. UnliRg gnd the previous work discussed
above, communication between Node 1 and Node 2 is assumexbidikectional The problem
of characterizing the rate-distortion region for a two-vgayirce coding models, with conventional
action-independent side information sequences at Nodes héen addressed in [14], [15], [18]

and references therein.

B. Contributions and Organization of the Paper

This work studies the model in Fig. 1, which is detailed inrterof a block diagram in Fig.
2. The system model is introduced in SB¢. Il. The optimaldraff between the rates of the
bidirectional communication, the distortions of the restoactions of the desired quantities at
the two nodes, and the budget for information acquisitioNade 2 is derived in Se€._]Jll. An
example that illustrates the application of the develogemty is discussed in S€c.]IV. Finally,
in Sec[V, the results are extended to the scenario in[Fig.\Bhich, unbeknownst to Node 1,
Node 2 may be unable to perform information acquisition.

Notation Throughout the paper, a random variable is denoted by aeruggse letter (e.qg.,
X, Y, 7Z) and its realization is denoted by a lower case letter (,g.,z). Moreover, the shorthand
notationX™ is used to denote the tuple (or the column vector) of randamabigs( X, ..., X,,),
andz" is used to denote a realization. We defijagh] = [a,a+ 1, ...,b] for a < b and[a, b] = (),

otherwise. We say that —Y —~ forms a Markov chain ifp(z,y, z) = p(z)p(y|z)p(z|y), that
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is, if X andZ are conditionally independent of each other giwén

[l. SYSTEM MODEL

The two-way source coding problem of interest, sketchediin [B, is formally defined by
the probability mass functions (pmfg)k (z) and py ax(y|a, z), and by the discrete alphabets
X, Y, A, X, X, along with distortion and cost metrics to be discussed helbhe source
sequenceX™ = (X3, ..., X,,) € X" consists ofn independent and identically distributed (i.i.d.)
entries X; for i € [1,n] with pmf px(z). Node 1 measures sequen&® and encodes it in a
messagel/; of nR; bits, which is delivered to Node 2. Node 2 wishes to estimatequence
X’;‘ € )32" within given distortion requirements. To this end, Node 2erees messagé/; and
based on this, it selects an action sequeAtewhere A™ € A".

The action sequence affects the quality of the measureierdf sequenceX™ obtained at
the Node 2. Specifically, gived™ and X", the sequenc&™ is distributed ag(y"|a", 2™) =
117, pva,x(vila;, z;). The cost of the action sequence is defined by a cost fundtioh— [0, Ay ax]
With 0 < Ay < 00, asA(a”) = 3.1, Aa,). The estimated sequencgy with X3 € Xy is
then obtained as a function aff; andY™.

Upon reception on the forward link, Node 2 maps the messdgeeceived from Node 1
and the locally available sequeng& in a messagél/; of nR, bits, which is delivered back
to Node 1. Node 1 estimates a sequentec X7 as a function ofM, and X™ within given
distortion requirements.

The quality of the estimated sequené(ql is assessed in terms of the distortion metrics
dj(z,y,2;): X x Y x X — R, U{oo} for j = 1,2, respectively. Note that this implies that”
is allowed to be a lossy version of any function of the sourwe side information sequences. A
sex, BI(X,Y, X))] <
oo for 7 = 1,2. A formal description of the operations at encoder and decéallows.

more general model is studied in Sec.Tll-A. It is assumed ha= min

Definition 1. An (n, Ry, Rs, D1, Do, T, €) code for the set-up of Fid.l2 consists of a source
encoder for Node 1
grr X" — [1,2", (1)

which maps the sequence” into a messag@é/;; an “action” function
01,2 x YT A, (2)

February 26, 2018 DRAFT



which maps the messadd; and the previously observed into an action sequetitea source
encoder for Node 2
g2: yn X [172NR1] — [1’2TLR2]7 (3)

which maps the sequend&” and messageé/; into a messagé/,; two decoders, namely
hy: [1,277] x xm — P, (4)
which maps the messagé, and the sequenc&™ into the estimated sequené%{l;
h: [1,2771] x Y™ — A, (5)

which maps the messagd; and the sequencg™ into the estimated sequenéég; such that

the action cost constrairt and distortion constraint®; for j = 1,2 are satisfied, i.e.,

~S B <T ©
i=1
1 A |
andg;E [dj(Xthani)] <D, forj=1,2. 7)

Definition 2. Given a distortion-cost tupléD;, D,,T"), a rate tuple(R;, R,) is said to be
achievable if, for any > 0, and sufficiently large:, there exists &n, Ry, Ry, D1+¢€, Do+¢,T'+¢)
code.

Definition 3. The rate-distortion-cost regioriR (D, D, I') is defined as the closure of all rate
tuples(R;, R,) that are achievable given the distortion-cost tu@lg, D, T').

Remarkl. For the special case in which the side informatidrindependent of the actiod
given X, i.e., for p(yla,z) = p(y|z), the rate-distortion regioR (D, D,,I') has been derived

in [14]. Instead, ifDy; = Ds .4, the set of all achievable ratds, was characterized in|[2].

Remark2. The definition [[2) of an action encoder allows for adaptatdrthe actions to the
previously observed values of the side informationThis possibility was studied in_[16] for
the point-to-point one-way model, which is obtained byisgti?, = 0 in the setting of Figl 2.

In the following sections, for simplicity of notation, weagr the subscripts from the definition
of the pmfs, thus identifying a pmf by its argument.
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[Il. RATE-DISTORTION-COST REGION

In this section, a single-letter characterization of the-distortion-cost region is derived.

Proposition 1. The rate-distortion-cost regiorR(Dy, D5, I') for the two-way source coding
problem illustrated in Fig[ R is given by the union of all rapairs (R;, R,) that satisfy the

conditions

Ry

v

I(X;A)+I(X;U|AY) (8a)
and Ry > I(Y;V|A X, U), (8b)

where the mutual information terms are evaluated with respe the joint pmf

p(x,y, a,u,v) = p(z)p(a, u|z)p(y|a, v)p(vla, u,y), (9)

for some pmf®(a, u|x) and p(v|a, u,y) such that the inequalities

E[d1<X7KfI<V7X))] < Dl; (10a)
E[do(X,Y, £2(U,Y))] < D, (10b)
and E[A(4)] < T, (10c)

are satisfied for some functiofp: V x X — X, andfo: U x Y — Xs. Finally, U and V' are
auxiliary random variables whose alphabet cardinality da@ constrained ag/| < |X||A| + 4
and [V| < |U||YV|]A| + 1 without loss of optimality.

Remark3. For the special case in which the side informatiéns independent of the actioA
given X, i.e., for p(yla,z) = p(y|z), the rate-distortion regioiR(D;, D>, I") in Proposition L
reduces to that derived in [14], [15]. Instead,[if, = D ..., the result reduces to that inl [2].

The proof of the converse is provided in Appendix A. The achitdlity follows as a combi-
nation of the techniques proposed lin [2] ahd|[14], and reguihe forward link to be used, in
an integrated manner, for data exchange, query and copelifically, for the forward link,
similar to [2], Node 1 uses a successive refinement codebdodordingly, the base layer is
used by Node 1 to instruct Node 2 on which actions are besir¢ailto fulfill the informational
requirements of both Node 1 and Node 2. This base layer thpresents control information

that also serves the purpose of querying Node 2 in view of #ekward communication. We
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observe that Node 1 selects this base layer as a functioredatrceX™”, thus allowing Node
2 to adapt its actions for information acquisition to thereut realization of the sourc&™.
The refinement layer of the code used by Node 1 is leveragstead, to provide additional
information to Node 2 in order to meet Node 2’s distortionuiegment. Node 2 then employs
standard Wyner-Ziv coding (i.e., binning) [1] for the backw link to satisfy Node 1’s distortion
requirement.

We now briefly outline the main technical aspects of the aetigity proof, since the details
follow from standard arguments and do not require furthabetation here. To be more precise,
Node 1 first maps sequenc€” into the action sequencé™ using the standard joint typicality
criterion. This mapping requires a codebook of rit&’; A) (see, e.g.,[1, pp. 62-63]Biven the
sequenced™, the description of sequence” is further refined through mapping to a sequence
U™. This requires a codebook of sizéX; U|A,Y") for each action sequenc€ using Wyner-Ziv
binning with respect to side informatidni™ [1, pp. 62-63]. In the reverse link, Node 2 employs
Wyner-Ziv coding for the sequendé” by leveraging the side informatiak™ available at Node
1 and conditioned on the sequené&sand A™, which are known to both Node 1 and Node 2 as a
result of the communication on the forward link. This regsia rate equal to the right-hand side
of (8H). Finally, Node 1 and Node 2 produce the estimaf¢sand X7 as the symbol-by-symbol
functions Xy; = f,(V;, X;) and Xy; = f,(U;, ;) for i € [1,n], respectively.

Remark4. The achievability scheme discussed above uses actionddhait adapt to the previ-
ous values of the side informatidn. The fact that this scheme attains the optimal performance
characterized in Proposition 1 shows that, as demonstmatf®] for the one-way model with

R, = 0, adaptive actions do not improve the rate-distortion perénce.

A. Indirect Rate-Distortion-Cost Region

In this section, we consider a more general model in whicheNbdbserves only a noisy
version of the sourc&™, as depicted in Fid.l3. Following [17], we refer to this s&jtias posing
an indirect source coding problem. The example studied m [B&illustrates the relevance of
this generalization. The system model is as defined in Sewith the following differences.

The source encoder for Node 1

gr 2" — [1,2M4], (11)
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Figure 3. Indirect two-way source coding with a side infotioa vending machine at Node 2.

maps the sequencg” into a messagé/;; the decoder for Node 1
hy: [1,27F2] x 2" — AT, (12)
maps the messagd, and the sequencg™ into the estimated sequené’ql; given(X™ A" Z™),

the side informatiort™ is distributed agp(y"|a”, 2", 2") =[]}, Pvia,x,z(yi|as:, x;, z;) and the

distortion constraints are given as
1< .
Y E [dj(XZ-,Yi,Zi,in) <D forj=1,2, (13)
n
i=1

for some distortion metricg;(z,y, z,7;) :X x ¥ x Z x X; — R, U {oo}, for j = 1,2. The

next proposition derives a single-letter characteriratib the rate-distortion-cost region.

Proposition 2. The rate-distortion-cost regiofR(D;, Dy, T") for the indirect two-way source
coding problem illustrated in Fid.13 is given by the union dfrate pairs (R;, Rs) that satisfy

the conditions
Ry > I(Z;A)+1(Z,U|A)Y) (14a)
and Ry > I(Y;V|A,Z,U), (14b)

where the mutual information terms are evaluated with respe the joint pmf

p(x,y, 2, a,u,0)=p(z, 2)p(aul2)p(yla.r.z)p(v]auy), (15)

for some pmf®(a, u|x) and p(v|a, u,y) such that the inequalities

Bldy(X,Y, Z,£(V,2))] < D, (16a)
Elds(X.Y. Z,5(U.Y))] < D, (16b)
and E[A(4)] < T, (16¢)
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10

are satisfied for some functio: V x Z — X; andfy: U x YV — X,. Finally, U and V are
auxiliary random variables whose alphabet cardinality dae constrained af/| < |Z||A| + 3

and|V| < [U]|Y]|A] + 1 without loss of optimality.

The proof of the achievability and converse follows withgkli modifications from that of
Propositiori 1. Specifically, in the achievability the seageX" is replaced by its noisy version,
i.e., the sequencg&™, and the rest of the proof remains essentially unchangeel.pftof of the

converse is provided in Appendix A.

V. EXAMPLE

In this section, we consider a binary example for the setrupig.[3 to illustrate the main
aspects of the problem and the relevance of the theoreéisalts derived above. Specifically, we
assume binary alphabets &s= A = {0, 1} and a source distributioN ~ Bern(0.5). Moreover,
the sourceZ™ measured by Node 1 is an erased version of the soXifceith erasure probability
€. This means tha¥;, = e, where e represents an erasure, with probahilaynd Z;, = X; with
probability 1 — ¢, for i € [1,n].

The vending machine at Node 2 operates as follows:

v X forA:17 (17)
¢ forA=0

with cost constraint\(a) = a, for a € {0, 1}, where¢ is a dummy symbol representing the case
in which no useful information is acquired by Node 2. This mloidhplies that a cost budget of
I limits the average number of samples of the sequéndbat can be measured by Node 2 to
aroundnI’ given the constrain{{6).

Node 1 wishes to reconstruct a lossy version of the soMrgevhile Node 2 is interested iA™.
The distortion functions are the Hamming metritgz, 1) = 1(,25,3 andda(z, Z2) = Lz,
To obtain analytical insight into the rate-distortion-tosgion, in the following we focus on a

number of special cases.

A. D = Dl,maa: and Dy, =0

Consider the distortion requirementy = D, .., and D, = 0. As a result, Node 1 requires

no backward communication from Node 2, while Node 2 wishesetmver”Z" losslessly. For
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11

the given distortions, the rate-cost region in Proposifocan be evaluated as
R > Ho(e)+(1—e-D)* (18a)

and Ry > 0, (18b)

for any cost budgel' > 0, where Hy(a) = —alog,a — (1 — a)log,(1 — «) is the binary entropy
function.

A formal proof of this result can be found in Appendix B. Theaeraegion [(18) shows that,
as the cost budgdt for information acquisition increases, the required r&tedecreases down
to the rateH,(e) that is required to describe only the erasures prodgssvith E; = 1;5,_,

1 =1,...,n, losslessly to Node 2. This can be explained by noting thafdhowing time-sharing
strategy achieves regioh (18) and is thus optimal.

Node 1 describes the proceg® losslessly to Node 2 wittH;(e) bits per symbol. In order
to obtain a lossless reconstruction 4f, Node 2 needs to be informed abadt = X; for all
i in which E; = 0. This information can be interpreted as control data thatsisd by Node 2
to adapt its information acquisition process. Note that \areeharound:(1 — €) such samples
of Z;. Node 1 describes; = X; for n(l1 — e — I')* of these samples, while the remaining
nmin(I",1 — ¢) are measured by Node 2 through the vending machine. An atteenstrategy
based directly on Propositidn 2 can be found in Appendix B.

Fig.[4 illustrates the raté; in (18a) versus the cost budgétfor ¢ = 0.2. We observe that
if ' > 1— €= 0.8 no further improvement of the rate is possible as per](18a).

B. Dl =0 and D2 = D2,ma:c

Here we consider the dual case in which Node 1 wishes to recohsequenc&™ losslessly
(D = 0), while Node 2 does not have any distortion requiremems= D5 ,,,,,). AS shown in
Appendix B, if I" > ¢, the rate-cost region is given by the union of all rate pakis, R,) such
that

Ry

v

Ha(e) — FH(—) (19a)

and Ry > e (19b)

Moreover, forl’ < ¢, the region is empty as the lossless reconstructioX cdt Node 1 is not

feasible.
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A proof of this result based on Propositibh 2 can be found ipeékmlix B. In the following,
we argue that a natural time-sharing strategy, akin to teetl Gor the cas®; = D1 42, D2 = 0
above, would be suboptimal, implying that the optimal &gt requires a more sophisticated
approach based on the successive refinement code preserged/ill.

A natural time-sharing strategy would be the following. Madb describes., samples of the
erasure procesg™, for some0 < n < 1, losslessly to Node 2, using rafe, = nH,(¢). This
information is used by Node 1 to query Node 2 about the degifedmation. Specifically, Node
2 setsA; = 1 if E; =1, thus observing arounane samplesy; = X; from the vending machine.
These samples are needed to fulfill the distortion requirgsnef Node 1. For all the remaining
n(1 — n) samples, for which Node 2 does not have control informafiom Node 1, Node 2
setsA; = 1, thus acquiring all the side information samples. Agairs th necessary given Node
1's requirements. Node 2 conveys losslessly iitye samplesy; = X; obtained whent; = 1,
which requirese bits per sample, along with the(1 — ) samplesY; in the second set, which
amount instead to1 — n) H (X |Z) bits per sample. Note that we have the rateX|Z) by the
Slepian-Wolf theorem_[1, Chapter 10], since Node 1 has siftamationZ; for the second set
of samples. Overall, we havB, = ne + (1 — n)e = € bits/source symbol. This entails a cost
budget ofl" = ne + 1 — i, and thusy = 1-1)/(1—).

Fig.[4 compares the ratg, as in [198) with the corresponding rate obtained via timagisg,

for e = 0.2. As seen, in this second case the time-sharing strategyigyssuboptimal.

We now consider the case in which both nodes wish to achieasldss reconstruction, i.e.,
D; = Dy, = 0. As seen in the previous case, achieving= 0 is not possible ifl" < ¢ and thus

this is a fortiori true forD; = D, = 0. For ' > ¢, the rate-cost region is given by

Ry

v

Hy(e) + (1 —-T) (20a)

and Ry > e, (20Db)

as shown in Appendix B.
A time-sharing strategy that achievés](20) is as followsd&ld describes the proce#s
losslessly to Node 2 witt#l,(¢) bits per symbol. This information serves the functions oérgu

and control for Node 2. In order to satisfy its distortion uggment, Node 2 now needs to be
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Figure 4. RateR; versus cosl for the examples in SeE_]V with = 0.2.

informed aboutZ; = X for all i in which E; = 0. Note that we have:(1 — ¢) such samples of
Z;. Node 1 describeg; = X; for n(1 —T') < n(1 — ¢) of these samples, while the remaining
n(I' — €) are measured by Node 2 through the vending machine. Node Bresses losslessly
the sequence of aroung: samples ofX; with i such thatE; = 1 which requiresR, = ¢ bits
per sample.

Fig.[4 illustrates the rat&; in (204) versus the cost budgeétfor ¢ = 0.2.

V. WHEN THE SIDE INFORMATION MAY BE ABSENT

In this section, we generalize the results of the previoutiae to the scenario in Fid.l 5 in
which, unbeknownst to Node 1, Node 2 may be unable to perfafarmation acquisition due,

e.g., to energy shortage or malfunctioning. This set-ufllustrated in Fig[b.

A. System Model

The formal description of arin, Ry, Ry, D1, Do, D3, T',¢) code for the set-up of Fid.l5 is
given as in Sed_IlI-A (which generalizes the model in Seg.with the addition of Node 3.
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This added node, which has no access to the side informatiodels the situation in which the
recipient of the communication from Node 1 happens to be lenabacquire information from
the environment. Note that the same messagerom Node 1 is received by both Node 2 and
Node 3. This captures the fact that the information abouttiadreor not the recipient is able to
access the side information is not available to Node 1. Thdehim Fig.[5 is a generalization
of the so called Heegard-Berger problem![10],/[11].

Formally, Node 3 is defined by the decoding function
hs: [1,27] — xp, (21)

which maps the messagé; into the the estimated sequenﬁg‘; and the additional distortion

constraint
I .
—ZE [ds(Xin, Zi, X3i)| < Ds. (22)
n
=1
We remark that adding a link between Node 3 and Node 1 cannmiowe the system perfor-

mance given that Node 3 has only available the mesaageeceived from Node 1. Therefore,

this link is not included in the model.

Node 3 [—>X!
R
z" -
p(z] ¥ Node 1 Node 2 |—X;
) R,
X] ALY
n n
X X lpylax 2
Z"—>|

Figure 5. Indirect two-way source coding when the side imi@tion vending machine may be absent at the recipient of the

message from Node 1.

B. Rate-Distortion-Cost Region

In this section, a single-letter characterization of the-distortion-cost region is derived for

the set-up in Fig 5.
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Proposition 3. The rate-distortion-cost regio® (D,, D», D3, I') for the two-way source coding
problem illustrated in Fig[h is given by the union of all rapairs (R;, R) that satisfy the

conditions
Ry > 1(Z; A) + 1(Z; X3|A)
+1(Z,U|A,Y, X3) (23a)
and Ry > I(Y;V|A, Z,U, X;), (23b)
where the mutual information terms are evaluated with respe the joint pmf
p(z,y, z,a,u,v) =p(x, 2)p(a, u, T3|2)p(y|a, x, z)
p(vla, u, y, &3), (24)

for some pmf®(a,u, Z3|z) and p(v|a,w, y) such that the inequalities

Eldy(X,Y, Z,1,(V,Z))] < D, (25a)
Eldy(X,Y, Z,£,(U,Y))] < D, (25b)
E[ds(X,Y, Z, X3)] < Ds, (25c)
and E[A(4)] < T, (25d)

are satisfied for some functio: V x Z — X; andfy: U x YV — X,. Finally, U and V are
auxiliary random variables whose alphabet cardinality dae constrained af/| < |Z||A| + 3

and|V| < [U]|Y]|A] + 1 without loss of optimality.

The proof of the converse is provided in Appendix A. The achlide rate [(23a) can be
interpreted as follows. Node 1 uses a successive refinenoel® with three layers. The first
layer is defined as for Selc. ]Il and carries query and conftrimrination. The second and third
layers are designed as in the optimal Heegard-Berger scliéheSpecifically, the second layer
is destined to both Node 2 and Node 3, while the third layegetsr only Node 2, which has
enhanced decoding capabilities due to the availabilityidé snformation.

To provide further details, as for Proposition 1, the encdilst maps the input sequencg
into an action sequenc4™ so that the two sequences are jointly typical, which regui(e’; A)
bits/source sample. Then, it mapg® into the estimateX’g‘ for Node 3 using a conditional

codebook with ratel (Z; X5|A). Finally, it mapsZ™ into another sequendg™ using the fact
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Table |

ERASURE DISTORTION FOR RECONSTRUCTION ANODE 3.

that Node 2 has the action sequend®, the estimateX’g‘ and the measurement™. Using
conditional codebooks (with respect 1753? and A™) and from the Wyner-Ziv theorem, this
requires! (Z;U|A,Y, Xg) bit/source sample. As for the rafe_(23b), Node 2 employs \W¢ine
coding for the sequenc&™ by leveraging the side informatioA™ available at Node 1 and
conditioned on the sequence®, A" and X7, which are known to both Node 1 and Node 2
as a result of the forward communication. This requires a eafual to the right-hand side of
(23B). Finally, Node 1 and Node 2 produce the estimafésand X7 as the symbol-by-symbol
functions Xy; = f,(V;, Z;) and Xy; = f5(U;, ;) for i € [1,n], respectively.

C. Example

In this section, we extend the binary example of $e¢. IV tosteup in Fig[h. Specifically,
we consider the same setting as in Sed. IV, with the additioNaxle 3. For the latter, we
assume a ternary reconstruction alphabet= {0,1,*} and the distortion metrids(z, z, &) =
ds(1¢z=c}, Z3) in Table[l, where we recall thaf;, = 1,_.; is the erasure process. Accordingly,
Node 3 is interested in recovering the erasure prodgssinder an erasure distortion metric
(see, e.g.[119]) , where “*” represents the “don’t care” oasire reproduction symbol

We first observe that for cases 1) and 3) in $e¢. IV the distomequirements of Node 3 do
not change the rate-distortion function. This is becauseliscussed in Sec. 1V, the requirement
that D, be equal to zero entails that the erasure proég€sbe communicated losslessly to Node
2 without leveraging the side information from the vendingamine (which cannot provide
information about the erasure process). It follows that cawe achieveD; = 0 at no additional
rate cost. We thus now focus on the case 2) in Set. IV, naely- 0 and Dy = D5 145

In the case at hand, Node 1 wishes to recoMer losslessly, Node 2 has no distortion
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requirements and Node 3 wants to reco¥®r with distortion D3. As explained in Sec¢. VB,
in order to reconstruck™ losslessly at Node 1 we must halie> ¢ andPr(A = 1|7 =e) = 1.
Moreover, due to symmerty of the problem with respect4o= 0 and Z = 1, we can
setPr(A = 1|Z = 0) = Pr(A = 1|Z = 1) = 1=, for some0 < v < I'. To evalu-
ate the rate-distortion-cost region {23), we then definéX; = %|A = 1,7 = e) 2 D1,
Pr(Xs = #|A = 0,7 = 0) 2 p, andPr(X3 = #|A = 1,Z = 0) 2 p,;. We thus get that

the rate-distortion-cost region is given by

Ri>Hyle)+1—e—(1-=D1)1—ps) — (I' —¢)

(1=ps) = (L=D)po = (ep1 + (U = e)ps)

€P1 (I' = e)ps
<H2(ep1 + (' —€)ps epr + (I' — e)p3>

and Ry > €, (26Db)

(26a)

where parameters,, po, p3 € [0, 1] must be selected so as to satisfy the distortion constréint o
Node 3, namelyD; > ep; + (1 — I')pay + (' — €)ps.

Fig. [@ illustrates the rate?, in (264), minimized ovemp;, p, and p; under the constraints
mentioned above versus the cost budfetor ¢ = 0.2 and different values ofD3;, namely
D3 = 0.4, 0.6, 0.8 and D3 = Dj ., = 1. Note that forD; = Dj ,,,, = 1 we obtain the rate in
(@94). As it can be seen, fdt < Ds, the rate decreases with increasing dosbut forI" > D,
the rate remains constant while increasihd he reason is that for the latter region, ile> Ds,
the performance of the system is dominated by the distoregmirement of Node 3 and thus
increasing the cost budgét does not improve the rate. Instead, o< Ds, it is sufficient to
cater only to Node 2, and Node 3 is able to recokewith distortion D; = I" at no additional

rate cost.

VI. CONCLUDING REMARKS

For applications such as complex communication networkglfmud computing or machine-
to-machine communication, the bits exchanged by two madirve a number of integrated
functions, including data transmission, control and quémythis work, we have considered a

baseline two-way communication scenario that capturesesainthese aspects. The problem is
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Figure 6. RateR; versus cosl for the examples in SeE_V}C with= 0.2, D; = 0 and D2 = D2 maz-

addressed from a fundamental theoretical standpoint wsirigformation theoretic formulation.

The analysis reveals the structure of optimal communinasimategies and can be applied to
elaborate on specific examples, as illustrated in the pajpés.work opens a number of possible
avenues for future research, including the analysis ofates in which more than one round

of interactive communication is possible [18].
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APPENDIX A: CONVERSE PROOF FORPrROPOSITIONI]

Here, we prove the converse part of Proposifibn 1. For @0y, Ry, D1 + €, Dy +€,1" +€)
code, we have the series of inequalities

nRy > H(M)

@ 1My XY

— H(X") + HY"|X")

— H(Y"|M;) — H(X"|Y™, M;)

>N H(X) — H(X|XP,, Y™, M, AY)

i=1

+ H(}/;‘Yi_17 Xn? M17 AZ) - H(}/;‘Yi_lu M17 AZ)

(0) &

> H(X;)—H(X,| A, Y;, Up)+ HYi| X;, A;)— HY; | Ay), (27)
=1

where (a) follows since M; is a function of X™ and since conditioning reduces entrogy)
follows sinceA; is a function of(A/;, Y*~!) and M, is a function of X" and (c) follows since
conditioning decreases entropy, by definitig= (A/;, X7, A""*, Y*~!) and using the fact that

the vending machine is memoryless. We also have the serieegdfalities
TLRQ Z H(Mg)
> H(M,| X", M,)

9 I(My; Y™ |X", M)
O iﬂ(myi—l,xn, M;, AY)
=1
— B[V, X", My, My, AY)
S HYA X, AL~ H (Y X AUV, (28)

i=1
where (a) follows since M is a function of (M;,Y™), (b) follows since A; is a function

of (M, Y1) and (c¢) follows since the Markov chait;—(X;, U;, A;)—X*"! holds by the
problem definition (this can be easily checked by using dis#jpn on the Bayesian network
representation of the joint distribution of the variabléshand as induced by the system model

in Fig.[4, see, e.qg., [20, Sec. A.9]), since conditioningueas entropy and by defining = M.
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v «—— 41, X

\_JM

Figure 7. Bayesian network representing the joint pmf ofaldes (M1, M2, X™, Y™, A™) for the two-way source coding

problem with a vending machine in Figl. 2.

Defining () to be a random variable uniformly distributed oJérn| and independent of all
the other random variables and witi 2 X, YV 2 Yy, A 2 Ag, X; £ Xy, X» £ Xao,
= (Vo, Q) andU 2 (Ug, @), from (21) we have

an

v

H(X|Q) - H(X[A,Y,U,Q)

+H(Y|X,A,Q)— H(Y|A, Q)

IVE

H(X)— H(X|AY,U)
+H(Y|X, A) — H(Y|A)
= I(X;A)+ I(X;U|A,Y), (29)

where (a) follows by the fact that sourc&™ and side information vending machine are mem-

oryless and since conditioning decreases entropy. Next) {28), we have
nRy, > HY|X,AU)-HY|X, A UYV)
= I(Y;V|X, A U). (30)

Moreover, from Figl7 and using d-separation, it can be sesrMarkov chaing/,—(X;, A;)—Y;
andV,—(A;, U;, Y;)—X; hold. This implies that the random variableX,Y, A, U, V) factorize
as in [9).
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We now need to show that the estimafés and X, can be taken to be functions ¢¥, X)
and (U,Y"), respectively. To this end, recall that, by the problem diim, the reconstruction
Xy, is a function of(M,, X™) and thus of(X;, U;, V;, X*~!). Moreover, we can také; to be
a function of (X, U;, V;) only without loss of optimality, due to the Markov chain radaship
Yi—(X;, U;, V;)—X""!, which can be again proved by d-separation using Big. 7. ifhjgies
that the distortiond; (X;,Y;, X%) cannot be reduced by including als6¢'~! in the functional
dependence of. Similarly, the reconstructioX,; is a function of(My,Y™) by the problem
definition, and can be taken to be a function(6f, Y;) only without loss of optimality, since
the Markov chain relationshigX,—(Y;, A;, U;)—Y}, holds. These arguments and the fact that
the definition ofV andU includes the time-sharing variabdg allow us to conclude that we can
take X, to be a function of U, V, X) and X, of (U,Y). We finally observe that’ is arbitrarily
correlated withl as per[(®) and thus we can without loss of generality’seto be a function of
(V, X) only. The boundd (10) follow immediately from the discussabove and the constraints
©)-(@).

To bound the cardinality of auxiliary random varialile we observe thaf {9) factorizes as

p(x,y,a,u,v) = p(u)p(a, r|u)p(yla, z)p(v]a, u, y). (31)

Therefore, for fixedp(y|a, z), p(a,u|x) and p(v|a,u,y) the characterization in Propositign 1
can be expressed in terms of integrdlg;(-)dF (u), for j = 1,....|X||A| + 3, of functions
g;(-) of the given fixed pmfs. Specifically, we have for j = 1,...,|X;| |X2| — 1, given by
p(a,z|u) for all values ofz € X anda € A (except one),gy, v, = H(X|A Y, U = u);
g+ = LY VIA X U = u); gl a2 = Eldi(X, Y (V. X)|U = u] and g2, ja43 =
E[dy(X,Y,£(U,Y))|U = u]. The proof is concluded by invoking Caratheodory Theorem.

To bound the cardinality of auxiliary random varialile we note that[(9) can be factorized

as
p(z,y,a,u,v) = p(v)p(a, y, ulv)p(zla, u,y), (32)
so that, for fixedp(z|a,u,y), the characterization in Propositioh 1 can be expressedrinst
of integrals [ g;(p(a,u,ylv))dF(v), for j = 1,...,|A||U||Y| + 1, of functions g;(-) that are
continuous on the space of probabilities over alphaletx |i/| x |V|. Specifically, we have
g; for j =1,..., |A|[U||Y| — 1, given by p(a,u,y) for all values ofa € A, u € U andy € Y
(except one)y iy = H(Y|A, X, U,V = v); and giay+1 = Eld (X, Y, £ (V, X))V = o],
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The proof is concluded by invoking Fenchel-Eggleston—tba@dory Theorem [1, Appendix
Cl.
The converse for Propositidd 2 follows similar steps as abwith the only difference that

here we have

an > ZH | H_laynaMlvAi)

+ H()/;|YZ_17 va MlvAi) - H()/;|Yi_17 MlaAi)
(®) n

> ZH H(Z;| AiY:Uy)

+H (Yi|Zi,Ai)—H (Yi] A), (33)

where(a) follows follows as in ¢)-(b) of (27); and §) follows since Markov chain relationship
Yi—(Z;, A))—(Y*~1, Z™\' M) holds. The rest of the proof is as above.

APPENDIX B: PROOFS FOR THEEXAMPLE IN SEC. [[V]

1) Dy = D and Dy = 0: Here, we prove that the rate-cost region in Propositibn 2 is

given by [18) forD; = D; ., and D, = 0. We begin with the converse part. Starting from
(14a), we have

—
S
=

Ry, > I(A;Z)+ H(Z|A)Y)
= H(Z)—I1(Z;Y|A)
(Q H(Z)-TI(Z;X|A=1) (34)
< H(Z)-TH(X|A=1)
9 H(Z)-T
9 Hye)+1-e—T, (35)

where @) follows from (144) and since has to be recovered losslessly at Nodeb féllows

sincePr[A = 1] = E[A(A)] < T (c¢) follows because entropy is non-negativé) follows since
H(X|A=1) <1, and ¢) follow becaused (Z) = H,(¢)+1—e. Achievability follows by setting
U=Z,V=0,Pr(A=1Z=0)=Pr(A=1]Z=1) =T/a-¢ andPr(A =0|Z =¢) =1 in

4.
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2) Dy = 0 and Dy = Dy 4, Here, we turn to the casP; = 0 and Dy = Ds ,q,,. We start
with the converse. Sinc& is to be reconstructed losslessly at Node 1, we have theresgent
H(X|V,Z) = 0 from (164). It easy to see that this requires that the edemlt = 1 and
V =Y = X be met if Z = e. In fact, otherwise, X could not be a function ofV, Z) as
required by the equality? (X |V, Z) = 0. The condition thatd = 1 if Z = e requires that the
pmf p(a|z) be such thaPr(A = 1|Z = e) = 1, which entailsI' = Pr[A = 1] > Pr[Z = ¢| = .
Moreover, we can sétr(A =1|Z =0) =Pr(A=1|Z =1) = (0—9/a—¢), for some0 < v < T,
by leveraging the symmetry of the problem on the selectiomhefactions givery = 0 and
Z = 1. Starting from [(14a), we can thus write

(@
Ry

I(Z; A)
= H(Z) - H(Z|A)
= Hyle)+1—e—vyH(Z|A=1)

- (1=7)H(Z]A=0)

(b) € Y—€ v—¢€
©) Hz(e)+1—e—7H(;, 3 27>
—(1=7)
€
= H2(€)—7H2(;)
%) HQ(E)_FHQ(E), (36)

r
where @) follows from (14&) and since there is no distortion reqguieast at Node 2;#) follows
by direct calculation; andc] follows since Hs(e) — vH>(5) is minimzed aty = I' over all
0<~<T.

The bound[(19b) follows immediately by providing Node 2 witle sequence&X™ and then
using the bound?, > H(X|Z) = .

Achievability follows by setting/ = () and the pmfy(a|z) be such thaPr(A =1|Z =¢) =1
andPr(A = 1|Z = 0) = Pr(A = 1|Z = 1) = I=X. Moreover, letV =Y = X if Z = e and
V =Y = ¢ otherwise. Evaluatind (14) with these choices leads$ 0. (19)

3) D1 = D, = 0: Here, we prove the rate-cost regionl(20) for the cBse= D, = 0. Starting
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from (14&), we have

R H(Z)-TI(Z; X|A=1)

= H(Z)-TH(X|A=1)
+TH(X|A=1,Z =¢)Pr(Z =¢|A=1)

©
> H(Z)-T+ r.%

= Hy(e)+1-T, (37)
where @) follows as in [34); §) follows becausé! (X|A=1,Z=0)=H(X|A=1,Z=1) =
0; (c) follows sinceH(X|A=1) <1, H(X|A=1,Z =¢) =1 and becausp(Z =e|A=1) =
&, Where latter follows from the the requiremelt{ X |V, Z) = 0 as per discussion provided in
the previous section.
For the achievability, leUU = Z, Pr(A = 1|Z =e¢) = 1 andPr(4A = 1|Z = 0) = Pr(A =
11Z=1) =
(@4) with these choices leads {o [(20).

=e¢ andV =Y = () otherwise. Evaluating

APPENDIX C: CONVERSE PROOF FORPROPOSITIONZ

Here, we prove the converse part of Proposifibn 3. For @nyR;, Re, D1 + €, Dy + €, D3 +
e,I' + ¢€) code, we have the series of inequalities

nRy > H(M,)

> ZH H(Z\Z",, Y™, My, A') Xs,)

+H(Y;|YL X" My A X)) —H (Y] Y7 My A Xs)

> ZH H(Zi| ALY U Xag)+H (Y| Z,As X 5;)

— H(Y;|A;, X3), (38)

where(a) follows from () in (33) by noting thatXs; is a function of M and (b) follows since
conditioning decreases entropy, by definitig= (M, X7, A", Y*~!) and using the Markov
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chain relationshig/;—(Z;, A,-,Xg,-)—(Y"‘l,X"\i, M;). We also have the series of inequalities

nR2 2 H(Mg)

(@) — . .
> H(Yi|Zi, A Uy, Xai)—H (Y| Zi, Ai, Uy, Vi, Xsi), (39)
=1
where @) follows from (28), by replacing sequenc€™” with the sequence™ and by observing
that X, is a function ofM;. Defining @ as in Appendix A, along with\s £ X0, from (38)

we have
nRy > H(Z|Q) — H(Z|A,Y,U, X5, Q)
+H(Y|Z, A X3,Q) — HY|A, X3, Q)
Y H(Z) = H(ZIAY,U, Xy)
+ H(Y|Z, A, X3) — H(Y|A, X3)
—1(Z; A)+1(Z; Xs| A)+1(Z; U|AY X3),

where(a) follows by the fact that sourc&™ and side information vending machine are memo-

ryless and since conditioning decreases entropy. Next) {&8), we have
nRy > H(Y|Z,A U Xy)— H(Y|Z AUV, Xs)
= 1(Y;V|Z,AU, Xy). (40)

Moreover, by just addingf(g to the Bayesian graph in Figl 7and using d-separation, itbean
seen that Markov chains,—(Z;, A;,)—Y; andV,—(A;, U;, )/Z‘,Xg)—Zi hold, which implies that
the random variable€X,Y, Z, A, U, V, Xg) factorize as in[(24). Based on the discussion in the
converse proof in Appendix A, it is easy to see that the es8m&; and X, are functions of
(V,X) and(U,Y), respectively. The bounds (23) follow immediately from thiecussion above
and the constraint$1(6)4(7) and {22).
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