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Abstract

Motivated by computer networks and machine-to-machine communication applications, a bidirec-

tional link is studied in which two nodes, Node 1 and Node 2, communicate to fulfill generally conflicting

informational requirements. Node 2 is able to acquire information from the environment, e.g., via access

to a remote data base or via sensing. Information acquisition is expensive in terms of system resources,

e.g., time, bandwidth and energy and thus should be done efficiently by adapting the acquisition process

to the needs of the application. As a result of the forward communication from Node 1 to Node 2,

the latter wishes to compute some function, such as a suitable average, of the data available at Node

1 and of the data obtained from the environment. The forward link is also used by Node 1 to query

Node 2 with the aim of retrieving suitable information from the environment on the backward link. The

problem is formulated in the context of multi-terminal rate-distortion theory and the optimal trade-off

between communication rates, distortions of the information produced at the two nodes and costs for

information acquisition at Node 2 is derived. The issue of robustness to possible malfunctioning of the

data acquisition process at Node 2 is also investigated. Theresults are illustrated via an example that

demonstrates the different roles played by the forward communication, namely data exchange, query

and control.

Index Terms

Source coding, side information, interactive communication.

February 26, 2018 DRAFT

http://arxiv.org/abs/1209.5978v1


2

I. INTRODUCTION

In computer networks and machine-to-machine links, communication is often interactive and

serves a number of integrated functions, such as data exchange, query and control. As an

exemplifying example, consider the set-up in Fig. 1 in whichthe terminals labeled Node 1

and Node 2 communicate on bidirectional links. Node 2 has access to a data base or, more

generally, is able to acquire information from the environment, e.g., through sensors. As a result

of the communication on the forward link, Node 2 wishes to compute some function, e.g., a

suitable average, of the data available at Node 1 and of the information retrievable from the

environment. Instead, Node 1 queries Node 2 on the forward link with the aim of retreiving

some information from the environment through the backwardlink.

Node 1 Node 2

Data base 
server 

Figure 1. Two-way communication with adaptive data acquisition.

Information acquisition from the environment is generallyexpensive in terms of system

resources, e.g., time, bandwidth or energy. For instance, accessing a remote data base requires

interfacing with a server by following the appropriate protocol, and activating sensors entails

some energy expenditure. Therefore, data acquisition by Node 2 should be performed efficiently

by adapting to the informational requirements of Node 1 and Node 2.

To summarize the discussion above, in the system of Fig. 1 theforward communication from

Node 1 to Node 2 serves three integrated purposes:i) Data exchange: Node 1 provides Node 2

with the information necessary for the latter to compute thedesired quantities;ii ) Query: Node

1 informs Node 2 about its own informational requirements, to be met via the backward link;

iii ) Control: Node 1 instructs Node 2 on the most effective way to perform data acquisition from
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the environment in order to satisfy Node 1’s query and to allow Node 2 to perform the desired

computation.

This work sets out to analyze the setting in Fig. 1 from a fundamental theoretical standpoint

via information theory. Specifically, the problem is formulated within the context of network

rate-distortion theory, and the optimal communication strategy, involving the elements of data

exchange, query and control, is identified. Examples are worked out to illustrate the relevance of

the developed theory. Finally, the issue of robustness is tackled by assuming that, unbeknownst

to Node 1, Node 2 may be unable to acquire information from theenvironment, due, e.g., to

energy shortages or malfunctioning. The optimal robust strategy is derived and the examples

extended to account for this generalized model.

A. Related Work

The work in this paper builds on the long line of research within network information

theory that deals with source coding with side information (see, e.g., [1] for an introduction).

More specifically, we adopt the model of a side information “vending machine” that has been

introduced in [2]. This model accounts for source coding scenarios in which acquiring informa-

tion at the receiver entails some cost and thus should be doneefficiently. Specifically, in this

model, the quality of the side informationY can be controlled at the decoder by selecting an

actionA that affects the effective channel between the sourceX and the side informationY

through a conditional distributionpY |X,A(y|x, a). The distributionpY |X,A(y|x, a) defines the side

information “vending machine” as per the nomenclature of [2]. Each actionA is associated with

a cost, and the problem is that of characterizing the available trade-offs among rate, distortion

and action cost. We emphasize the conventional formulationof the source coding problem with

side information instead assumes that the relationship between source and side information is

determined by a given conditional distributionpY |X(y|x) that cannot be controlled.

Various works have extended the results in [2]. Extensions to multi-terminal models can be

found in [3]. Specifically, references [3]-[9] considered aset-up analogous to the Heegard-Berger

problem [10], [11], in which the side information may or may not be available at the decoder.

In [5], a distributed source coding setting that generalizes [12] to the case of a decoder with a

side information “vending machine” is investigated. Multi-hop models were studied in [5][6].

In [7], a related problem is considered in which the sequenceto be compressed is dependent
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Node 1

nX

nA

nX2
ˆ

( | , )p y a x

nY

Node 2
1R

nX1
ˆ

nX

2R

Figure 2. Two-way source coding with a side information vending machine at Node 2.

on the actions taken by a separate encoder. Other extensionsinclude [8], [9] where the model

of [2] is revisited under the additional constraints of common reconstruction [13] or of secrecy

with respect to an "eavesdropping" node.

In this paper, the model of a side information “vending machine” is used to model the

information acquisition process at Node 2 in Fig. 1. Unlike [2] and the previous work discussed

above, communication between Node 1 and Node 2 is assumed to be bidirectional. The problem

of characterizing the rate-distortion region for a two-waysource coding models, with conventional

action-independent side information sequences at Node 2 has been addressed in [14], [15], [18]

and references therein.

B. Contributions and Organization of the Paper

This work studies the model in Fig. 1, which is detailed in terms of a block diagram in Fig.

2. The system model is introduced in Sec. II. The optimal trade-off between the rates of the

bidirectional communication, the distortions of the reconstructions of the desired quantities at

the two nodes, and the budget for information acquisition atNode 2 is derived in Sec. III. An

example that illustrates the application of the developed theory is discussed in Sec. IV. Finally,

in Sec. V, the results are extended to the scenario in Fig. 5 inwhich, unbeknownst to Node 1,

Node 2 may be unable to perform information acquisition.

Notation: Throughout the paper, a random variable is denoted by an upper case letter (e.g.,

X, Y, Z) and its realization is denoted by a lower case letter (e.g.,x, y, z). Moreover, the shorthand

notationXn is used to denote the tuple (or the column vector) of random variables(X1, . . . , Xn),

andxn is used to denote a realization. We define[a, b] = [a, a+1, ..., b] for a ≤ b and[a, b] = ∅,

otherwise. We say thatX—Y —Z forms a Markov chain ifp(x, y, z) = p(x)p(y|x)p(z|y), that
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is, if X andZ are conditionally independent of each other givenY .

II. SYSTEM MODEL

The two-way source coding problem of interest, sketched in Fig. 2, is formally defined by

the probability mass functions (pmfs)pX(x) and pY |AX(y|a, x), and by the discrete alphabets

X ,Y ,A, X̂1, X̂2, along with distortion and cost metrics to be discussed below. The source

sequenceXn = (X1, ..., Xn) ∈ X n consists ofn independent and identically distributed (i.i.d.)

entriesXi for i ∈ [1, n] with pmf pX(x). Node 1 measures sequenceXn and encodes it in a

messageM1 of nR1 bits, which is delivered to Node 2. Node 2 wishes to estimate asequence

X̂n
2 ∈ X̂ n

2 within given distortion requirements. To this end, Node 2 receives messageM1 and

based on this, it selects an action sequenceAn, whereAn ∈ An.

The action sequence affects the quality of the measurementY n of sequenceXn obtained at

the Node 2. Specifically, givenAn andXn, the sequenceY n is distributed asp(yn|an, xn) =
∏n

i=1 pY |A,X(yi|ai, xi). The cost of the action sequence is defined by a cost functionΛ: A →[0,Λmax]

with 0 ≤ Λmax < ∞, asΛ(an) =
∑n

i=1 Λ(ai). The estimated sequencêXn
2 with X̂n

2 ∈ X̂ n
2 is

then obtained as a function ofM1 andY n.

Upon reception on the forward link, Node 2 maps the messageM1 received from Node 1

and the locally available sequenceY n in a messageM2 of nR2 bits, which is delivered back

to Node 1. Node 1 estimates a sequenceX̂n
1 ∈ X̂ n

1 as a function ofM2 andXn within given

distortion requirements.

The quality of the estimated sequencêXn
j is assessed in terms of the distortion metrics

dj(x, y, x̂j): X ×Y × X̂j → R+ ∪ {∞} for j = 1, 2, respectively. Note that this implies that̂Xn
j

is allowed to be a lossy version of any function of the source and side information sequences. A

more general model is studied in Sec. III-A. It is assumed that Dj = minx̂j∈X̂j
E[d(X, Y, X̂j)] <

∞ for j = 1, 2. A formal description of the operations at encoder and decoder follows.

Definition 1. An (n,R1, R2, D1, D2,Γ, ǫ) code for the set-up of Fig. 2 consists of a source

encoder for Node 1

g1: X
n → [1, 2nR1], (1)

which maps the sequenceXn into a messageM1; an “action” function

ℓ: [1, 2nR1]×Y i−1 → A, (2)

February 26, 2018 DRAFT



6

which maps the messageM1 and the previously observed into an action sequenceAn; a source

encoder for Node 2

g2: Y
n × [1, 2nR1] → [1, 2nR2], (3)

which maps the sequenceY n and messageM1 into a messageM2; two decoders, namely

h1: [1, 2
nR2 ]×X n → X̂ n

1 , (4)

which maps the messageM2 and the sequenceXn into the estimated sequencêXn
1 ;

h2: [1, 2
nR1]× Yn → X̂ n

2 , (5)

which maps the messageM1 and the sequenceY n into the estimated sequencêXn
2 ; such that

the action cost constraintΓ and distortion constraintsDj for j = 1, 2 are satisfied, i.e.,

1

n

n
∑

i=1

E [Λ(Ai)] ≤ Γ (6)

and
1

n

n
∑

i=1

E
[

dj(Xi, Yi, X̂ji)
]

≤ Dj for j = 1, 2. (7)

Definition 2. Given a distortion-cost tuple(D1, D2,Γ), a rate tuple(R1, R2) is said to be

achievable if, for anyǫ > 0, and sufficiently largen, there exists a(n,R1, R2, D1+ǫ,D2+ǫ,Γ+ǫ)

code.

Definition 3. The rate-distortion-cost regionR(D1, D2,Γ) is defined as the closure of all rate

tuples(R1, R2) that are achievable given the distortion-cost tuple(D1, D2,Γ).

Remark1. For the special case in which the side informationY independent of the actionA

givenX, i.e., for p(y|a, x) = p(y|x), the rate-distortion regionR(D1, D2,Γ) has been derived

in [14]. Instead, ifD2 = D2,max, the set of all achievable ratesR1 was characterized in [2].

Remark2. The definition (2) of an action encoder allows for adaptationof the actions to the

previously observed values of the side informationY . This possibility was studied in [16] for

the point-to-point one-way model, which is obtained by setting R2 = 0 in the setting of Fig. 2.

In the following sections, for simplicity of notation, we drop the subscripts from the definition

of the pmfs, thus identifying a pmf by its argument.
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III. RATE-DISTORTION-COST REGION

In this section, a single-letter characterization of the rate-distortion-cost region is derived.

Proposition 1. The rate-distortion-cost regionR(D1, D2,Γ) for the two-way source coding

problem illustrated in Fig. 2 is given by the union of all ratepairs (R1, R2) that satisfy the

conditions

R1 ≥ I(X ;A) + I(X ;U |A, Y ) (8a)

and R2 ≥ I(Y ;V |A,X, U), (8b)

where the mutual information terms are evaluated with respect to the joint pmf

p(x, y, a, u, v) = p(x)p(a, u|x)p(y|a, x)p(v|a, u, y), (9)

for some pmfsp(a, u|x) and p(v|a, u, y) such that the inequalities

E[d1(X, Y, f1(V,X))] ≤ D1, (10a)

E[d2(X, Y, f2(U, Y ))] ≤ D2, (10b)

and E[Λ(A)] ≤ Γ, (10c)

are satisfied for some functionf1: V × X → X̂1 and f2: U × Y → X̂2. Finally, U and V are

auxiliary random variables whose alphabet cardinality canbe constrained as|U| ≤ |X ||A|+ 4

and |V| ≤ |U||Y||A|+ 1 without loss of optimality.

Remark3. For the special case in which the side informationY is independent of the actionA

given X, i.e., for p(y|a, x) = p(y|x), the rate-distortion regionR(D1, D2,Γ) in Proposition 1

reduces to that derived in [14], [15]. Instead, ifD2 = D2,max, the result reduces to that in [2].

The proof of the converse is provided in Appendix A. The achievability follows as a combi-

nation of the techniques proposed in [2] and [14], and requires the forward link to be used, in

an integrated manner, for data exchange, query and control.Specifically, for the forward link,

similar to [2], Node 1 uses a successive refinement codebook.Accordingly, the base layer is

used by Node 1 to instruct Node 2 on which actions are best tailored to fulfill the informational

requirements of both Node 1 and Node 2. This base layer thus represents control information

that also serves the purpose of querying Node 2 in view of the backward communication. We
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observe that Node 1 selects this base layer as a function of the sourceXn, thus allowing Node

2 to adapt its actions for information acquisition to the current realization of the sourceXn.

The refinement layer of the code used by Node 1 is leveraged, instead, to provide additional

information to Node 2 in order to meet Node 2’s distortion requirement. Node 2 then employs

standard Wyner-Ziv coding (i.e., binning) [1] for the backward link to satisfy Node 1’s distortion

requirement.

We now briefly outline the main technical aspects of the achievability proof, since the details

follow from standard arguments and do not require further elaboration here. To be more precise,

Node 1 first maps sequenceXn into the action sequenceAn using the standard joint typicality

criterion. This mapping requires a codebook of rateI(X ;A) (see, e.g., [1, pp. 62-63]). Given the

sequenceAn, the description of sequenceXn is further refined through mapping to a sequence

Un. This requires a codebook of sizeI(X ;U |A, Y ) for each action sequenceAn using Wyner-Ziv

binning with respect to side informationY n [1, pp. 62-63]. In the reverse link, Node 2 employs

Wyner-Ziv coding for the sequenceY n by leveraging the side informationXn available at Node

1 and conditioned on the sequencesUn andAn, which are known to both Node 1 and Node 2 as a

result of the communication on the forward link. This requires a rate equal to the right-hand side

of (8b). Finally, Node 1 and Node 2 produce the estimatesX̂n
1 andX̂n

2 as the symbol-by-symbol

functionsX̂1i = f1(Vi, Xi) andX̂2i = f2(Ui, Yi) for i ∈ [1, n], respectively.

Remark4. The achievability scheme discussed above uses actions thatdo not adapt to the previ-

ous values of the side informationY . The fact that this scheme attains the optimal performance

characterized in Proposition 1 shows that, as demonstratedin [16] for the one-way model with

R2 = 0, adaptive actions do not improve the rate-distortion performance.

A. Indirect Rate-Distortion-Cost Region

In this section, we consider a more general model in which Node 1 observes only a noisy

version of the sourceXn, as depicted in Fig. 3. Following [17], we refer to this setting as posing

an indirect source coding problem. The example studied in Sec. IV illustrates the relevance of

this generalization. The system model is as defined in Sec. IIwith the following differences.

The source encoder for Node 1

g1: Z
n → [1, 2nR1], (11)
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Node 1

nX

nA

nX2
ˆ

( | , , )p y a x z

nY

Node 2
1R

nX1
ˆ

nX

2RnZ
( | )p z x

nZ

Figure 3. Indirect two-way source coding with a side information vending machine at Node 2.

maps the sequenceZn into a messageM1; the decoder for Node 1

h1: [1, 2
nR2]×Zn → X̂ n

1 , (12)

maps the messageM2 and the sequenceZn into the estimated sequencêXn
1 ; given(Xn, An, Zn),

the side informationY n is distributed asp(yn|an, xn, zn) =
∏n

i=1 pY |A,X,Z(yi|ai, xi, zi) and the

distortion constraints are given as

1

n

n
∑

i=1

E
[

dj(Xi, Yi, Zi, X̂ji)
]

≤ Dj for j = 1, 2, (13)

for some distortion metricsdj(x, y, z, x̂j) :X × Y × Z × X̂j → R+ ∪ {∞}, for j = 1, 2. The

next proposition derives a single-letter characterization of the rate-distortion-cost region.

Proposition 2. The rate-distortion-cost regionR(D1, D2,Γ) for the indirect two-way source

coding problem illustrated in Fig. 3 is given by the union of all rate pairs (R1, R2) that satisfy

the conditions

R1 ≥ I(Z;A) + I(Z;U |A, Y ) (14a)

and R2 ≥ I(Y ;V |A,Z, U), (14b)

where the mutual information terms are evaluated with respect to the joint pmf

p(x, y, z, a, u, v)=p(x, z)p(a,u|z)p(y|a,x,z)p(v|a,u,y), (15)

for some pmfsp(a, u|x) and p(v|a, u, y) such that the inequalities

E[d1(X, Y, Z, f1(V, Z))] ≤ D1, (16a)

E[d2(X, Y, Z, f2(U, Y ))] ≤ D2, (16b)

and E[Λ(A)] ≤ Γ, (16c)
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are satisfied for some functionf1: V × Z → X̂1 and f2: U × Y → X̂2. Finally, U and V are

auxiliary random variables whose alphabet cardinality canbe constrained as|U| ≤ |Z||A|+ 3

and |V| ≤ |U||Y||A|+ 1 without loss of optimality.

The proof of the achievability and converse follows with slight modifications from that of

Proposition 1. Specifically, in the achievability the sequenceXn is replaced by its noisy version,

i.e., the sequenceZn, and the rest of the proof remains essentially unchanged. The proof of the

converse is provided in Appendix A.

IV. EXAMPLE

In this section, we consider a binary example for the set-up in Fig. 3 to illustrate the main

aspects of the problem and the relevance of the theoretical results derived above. Specifically, we

assume binary alphabets asX = A = {0, 1} and a source distributionX ∼ Bern(0.5). Moreover,

the sourceZn measured by Node 1 is an erased version of the sourceXn with erasure probability

ǫ. This means thatZi = e, where e represents an erasure, with probabilityǫ andZi = Xi with

probability 1− ǫ, for i ∈ [1, n].

The vending machine at Node 2 operates as follows:

Y =







X for A = 1

φ for A = 0
, (17)

with cost constraintΛ(a) = a, for a ∈ {0, 1}, whereφ is a dummy symbol representing the case

in which no useful information is acquired by Node 2. This model implies that a cost budget of

Γ limits the average number of samples of the sequenceY that can be measured by Node 2 to

aroundnΓ given the constraint (6).

Node 1 wishes to reconstruct a lossy version of the sourceXn, while Node 2 is interested inZn.

The distortion functions are the Hamming metricsd1(x, x̂1) = 1{x 6=x̂1} andd2(z, x̂2) = 1{z 6=x̂2}.

To obtain analytical insight into the rate-distortion-cost region, in the following we focus on a

number of special cases.

A. D1 = D1,max andD2 = 0

Consider the distortion requirementsD1 = D1,max andD2 = 0. As a result, Node 1 requires

no backward communication from Node 2, while Node 2 wishes torecoverZn losslessly. For

February 26, 2018 DRAFT
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the given distortions, the rate-cost region in Proposition2 can be evaluated as

R1 ≥ H2(ǫ) + (1− ǫ− Γ)+ (18a)

and R2 ≥ 0, (18b)

for any cost budgetΓ ≥ 0, whereH2(α) = −αlog2α− (1−α)log2(1−α) is the binary entropy

function.

A formal proof of this result can be found in Appendix B. The rate region (18) shows that,

as the cost budgetΓ for information acquisition increases, the required rateR1 decreases down

to the rateH2(ǫ) that is required to describe only the erasures processEn with Ei = 1{Zi=e},

i = 1, ..., n, losslessly to Node 2. This can be explained by noting that the following time-sharing

strategy achieves region (18) and is thus optimal.

Node 1 describes the processEn losslessly to Node 2 withH2(ǫ) bits per symbol. In order

to obtain a lossless reconstruction ofZn, Node 2 needs to be informed aboutZi = Xi for all

i in which Ei = 0. This information can be interpreted as control data that isused by Node 2

to adapt its information acquisition process. Note that we have aroundn(1 − ǫ) such samples

of Zi. Node 1 describesZi = Xi for n(1 − ǫ − Γ)+ of these samples, while the remaining

nmin(Γ, 1 − ǫ) are measured by Node 2 through the vending machine. An alternative strategy

based directly on Proposition 2 can be found in Appendix B.

Fig. 4 illustrates the rateR1 in (18a) versus the cost budgetΓ for ǫ = 0.2. We observe that

if Γ ≥ 1− ǫ = 0.8 no further improvement of the rate is possible as per (18a).

B. D1 = 0 andD2 = D2,max

Here we consider the dual case in which Node 1 wishes to reconstruct sequenceXn losslessly

(D1 = 0), while Node 2 does not have any distortion requirements (D2 = D2,max). As shown in

Appendix B, if Γ ≥ ǫ, the rate-cost region is given by the union of all rate pairs(R1, R2) such

that

R1 ≥ H2(ǫ)− ΓH
( ǫ

Γ

)

(19a)

and R2 ≥ ǫ. (19b)

Moreover, forΓ < ǫ, the region is empty as the lossless reconstruction ofX at Node 1 is not

feasible.
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A proof of this result based on Proposition 2 can be found in Appendix B. In the following,

we argue that a natural time-sharing strategy, akin to that used for the caseD1 = D1,max, D2 = 0

above, would be suboptimal, implying that the optimal strategy requires a more sophisticated

approach based on the successive refinement code presented in Sec. III.

A natural time-sharing strategy would be the following. Node 1 describesnη samples of the

erasure processEn, for some0 ≤ η ≤ 1, losslessly to Node 2, using rateR1 = ηH2(ǫ). This

information is used by Node 1 to query Node 2 about the desiredinformation. Specifically, Node

2 setsAi = 1 if Ei = 1, thus observing aroundnηǫ samplesYi = Xi from the vending machine.

These samples are needed to fulfill the distortion requirements of Node 1. For all the remaining

n(1 − η) samples, for which Node 2 does not have control informationfrom Node 1, Node 2

setsAi = 1, thus acquiring all the side information samples. Again, this is necessary given Node

1’s requirements. Node 2 conveys losslessly thenηǫ samplesYi = Xi obtained whenEi = 1,

which requiresηǫ bits per sample, along with then(1− η) samplesYi in the second set, which

amount instead to(1− η)H(X|Z) bits per sample. Note that we have the rateH(X|Z) by the

Slepian-Wolf theorem [1, Chapter 10], since Node 1 has side informationZi for the second set

of samples. Overall, we haveR2 = ηǫ + (1 − η)ǫ = ǫ bits/source symbol. This entails a cost

budget ofΓ = ηǫ+ 1− η, and thusη = (1−Γ)/(1−ǫ).

Fig. 4 compares the rateR1 as in (19a) with the corresponding rate obtained via time-sharing,

for ǫ = 0.2. As seen, in this second case the time-sharing strategy is strictly suboptimal.

C. D1 = D2 = 0

We now consider the case in which both nodes wish to achieve lossless reconstruction, i.e.,

D1 = D2 = 0. As seen in the previous case, achievingD1 = 0 is not possible ifΓ < ǫ and thus

this is a fortiori true forD1 = D2 = 0. For Γ ≥ ǫ, the rate-cost region is given by

R1 ≥ H2(ǫ) + (1− Γ) (20a)

and R2 ≥ ǫ, (20b)

as shown in Appendix B.

A time-sharing strategy that achieves (20) is as follows. Node 1 describes the processEn

losslessly to Node 2 withH2(ǫ) bits per symbol. This information serves the functions of query

and control for Node 2. In order to satisfy its distortion requirement, Node 2 now needs to be
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Figure 4. RateR1 versus costΓ for the examples in Sec. IV withǫ = 0.2.

informed aboutZi = Xi for all i in which Ei = 0. Note that we haven(1− ǫ) such samples of

Zi. Node 1 describesZi = Xi for n(1 − Γ) ≤ n(1 − ǫ) of these samples, while the remaining

n(Γ− ǫ) are measured by Node 2 through the vending machine. Node 2 compresses losslessly

the sequence of aroundnǫ samples ofXi with i such thatEi = 1 which requiresR2 = ǫ bits

per sample.

Fig. 4 illustrates the rateR1 in (20a) versus the cost budgetΓ for ǫ = 0.2.

V. WHEN THE SIDE INFORMATION MAY BE ABSENT

In this section, we generalize the results of the previous section to the scenario in Fig. 5 in

which, unbeknownst to Node 1, Node 2 may be unable to perform information acquisition due,

e.g., to energy shortage or malfunctioning. This set-up is illustrated in Fig. 5.

A. System Model

The formal description of an(n,R1, R2, D1, D2, D3,Γ, ǫ) code for the set-up of Fig. 5 is

given as in Sec. III-A (which generalizes the model in Sec. II) with the addition of Node 3.
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This added node, which has no access to the side information,models the situation in which the

recipient of the communication from Node 1 happens to be unable to acquire information from

the environment. Note that the same messageM1 from Node 1 is received by both Node 2 and

Node 3. This captures the fact that the information about whether or not the recipient is able to

access the side information is not available to Node 1. The model in Fig. 5 is a generalization

of the so called Heegard-Berger problem [10], [11].

Formally, Node 3 is defined by the decoding function

h3: [1, 2
nR1] → X̂ n

3 , (21)

which maps the messageM1 into the the estimated sequencêXn
3 ; and the additional distortion

constraint

1

n

n
∑

i=1

E
[

d3(Xi, Yi, Zi, X̂3i)
]

≤ D3. (22)

We remark that adding a link between Node 3 and Node 1 cannot improve the system perfor-

mance given that Node 3 has only available the messageM1 received from Node 1. Therefore,

this link is not included in the model.

nA

nX2
ˆ

( | , , )p y a x z

nY

Node 2
1R

nX

2R

3
ˆ nXNode 3

Node 1

nX

nX1
ˆ

nZ
( | )p z x

nZ

Figure 5. Indirect two-way source coding when the side information vending machine may be absent at the recipient of the

message from Node 1.

B. Rate-Distortion-Cost Region

In this section, a single-letter characterization of the rate-distortion-cost region is derived for

the set-up in Fig. 5.
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Proposition 3. The rate-distortion-cost regionR(D1, D2, D3,Γ) for the two-way source coding

problem illustrated in Fig. 5 is given by the union of all ratepairs (R1, R2) that satisfy the

conditions

R1 ≥ I(Z;A) + I(Z; X̂3|A)

+I(Z;U |A, Y, X̂3) (23a)

and R2 ≥ I(Y ;V |A,Z, U, X̂3), (23b)

where the mutual information terms are evaluated with respect to the joint pmf

p(x, y, z, a, u, v) =p(x, z)p(a, u, x̂3|z)p(y|a, x, z)

p(v|a, u, y, x̂3), (24)

for some pmfsp(a, u, x̂3|z) and p(v|a, u, y) such that the inequalities

E[d1(X, Y, Z, f1(V, Z))] ≤ D1, (25a)

E[d2(X, Y, Z, f2(U, Y ))] ≤ D2, (25b)

E[d3(X, Y, Z, X̂3)] ≤ D3, (25c)

and E[Λ(A)] ≤ Γ, (25d)

are satisfied for some functionf1: V × Z → X̂1 and f2: U × Y → X̂2. Finally, U and V are

auxiliary random variables whose alphabet cardinality canbe constrained as|U| ≤ |Z||A|+ 3

and |V| ≤ |U||Y||A|+ 1 without loss of optimality.

The proof of the converse is provided in Appendix A. The achievable rate (23a) can be

interpreted as follows. Node 1 uses a successive refinement code with three layers. The first

layer is defined as for Sec. III and carries query and control information. The second and third

layers are designed as in the optimal Heegard-Berger scheme[10]. Specifically, the second layer

is destined to both Node 2 and Node 3, while the third layer targets only Node 2, which has

enhanced decoding capabilities due to the availability of side information.

To provide further details, as for Proposition 1, the encoder first maps the input sequenceZn

into an action sequenceAn so that the two sequences are jointly typical, which requires I(Z;A)

bits/source sample. Then, it mapsZn into the estimateX̂n
3 for Node 3 using a conditional

codebook with rateI(Z; X̂3|A). Finally, it mapsZn into another sequenceUn using the fact
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0 1 *

0 0 1

1 0 1

E
3X̂

∞
∞

Table I

ERASURE DISTORTION FOR RECONSTRUCTION ATNODE 3.

that Node 2 has the action sequenceAn, the estimateX̂n
3 and the measurementY n. Using

conditional codebooks (with respect tôXn
3 and An) and from the Wyner-Ziv theorem, this

requiresI(Z;U |A, Y, X̂3) bit/source sample. As for the rate (23b), Node 2 employs Wyner-Ziv

coding for the sequenceY n by leveraging the side informationZn available at Node 1 and

conditioned on the sequencesUn, An and X̂n
3 , which are known to both Node 1 and Node 2

as a result of the forward communication. This requires a rate equal to the right-hand side of

(23b). Finally, Node 1 and Node 2 produce the estimatesX̂n
1 andX̂n

2 as the symbol-by-symbol

functionsX̂1i = f1(Vi, Zi) and X̂2i = f2(Ui, Yi) for i ∈ [1, n], respectively.

C. Example

In this section, we extend the binary example of Sec. IV to theset-up in Fig. 5. Specifically,

we consider the same setting as in Sec. IV, with the addition of Node 3. For the latter, we

assume a ternary reconstruction alphabetX̂3 = {0, 1, ∗} and the distortion metricd3(x, z, x̂3) =

d3(1{Z=e}, x̂3) in Table I, where we recall thatEi = 1{Zi=e} is the erasure process. Accordingly,

Node 3 is interested in recovering the erasure processEn under an erasure distortion metric

(see, e.g., [19]) , where “*” represents the “don’t care” or erasure reproduction symbol

We first observe that for cases 1) and 3) in Sec. IV the distortion requirements of Node 3 do

not change the rate-distortion function. This is because, as discussed in Sec. IV, the requirement

thatD2 be equal to zero entails that the erasure processEn be communicated losslessly to Node

2 without leveraging the side information from the vending machine (which cannot provide

information about the erasure process). It follows that onecan achieveD3 = 0 at no additional

rate cost. We thus now focus on the case 2) in Sec. IV, namelyD1 = 0 andD2 = D2,max.

In the case at hand, Node 1 wishes to recoverXn losslessly, Node 2 has no distortion
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requirements and Node 3 wants to recoverEn with distortionD3. As explained in Sec. IV-B,

in order to reconstructXn losslessly at Node 1 we must haveΓ ≥ ǫ andPr(A = 1|Z = e) = 1.

Moreover, due to symmerty of the problem with respect toZ = 0 and Z = 1, we can

set Pr(A = 1|Z = 0) = Pr(A = 1|Z = 1) = γ−ǫ

1−ǫ
, for some0 ≤ γ ≤ Γ. To evalu-

ate the rate-distortion-cost region (23), we then definePr(X̂3 = ∗|A = 1, Z = e)
△
= p1,

Pr(X̂3 = ∗|A = 0, Z = 0)
△
= p2 and Pr(X̂3 = ∗|A = 1, Z = 0)

△
= p3. We thus get that

the rate-distortion-cost region is given by

R1 ≥ H2(ǫ) + 1− ǫ− (1− Γ)(1− p2)− (Γ− ǫ)

(1− p3)− (1− Γ)p2 −
(

ǫp1 + (Γ− ǫ)p3

)

(

H2(
ǫp1

ǫp1 + (Γ− ǫ)p3
) +

(Γ− ǫ)p3
ǫp1 + (Γ− ǫ)p3

)

(26a)

and R2 ≥ ǫ, (26b)

where parametersp1, p2, p3 ∈ [0, 1] must be selected so as to satisfy the distortion constraint of

Node 3, namelyD3 ≥ ǫp1 + (1− Γ)p2 + (Γ− ǫ)p3.

Fig. 6 illustrates the rateR1 in (26a), minimized overp1, p2 and p3 under the constraints

mentioned above versus the cost budgetΓ for ǫ = 0.2 and different values ofD3, namely

D3 = 0.4, 0.6, 0.8 andD3 = D3,max = 1. Note that forD3 = D3,max = 1 we obtain the rate in

(19a). As it can be seen, forΓ ≤ D3, the rate decreases with increasing costΓ, but for Γ ≥D3

the rate remains constant while increasingΓ. The reason is that for the latter region, i.e.,Γ ≥ D3,

the performance of the system is dominated by the distortionrequirement of Node 3 and thus

increasing the cost budgetΓ does not improve the rate. Instead, forΓ ≤ D3, it is sufficient to

cater only to Node 2, and Node 3 is able to recoverE with distortionD3 = Γ at no additional

rate cost.

VI. CONCLUDING REMARKS

For applications such as complex communication networks for cloud computing or machine-

to-machine communication, the bits exchanged by two parties serve a number of integrated

functions, including data transmission, control and query. In this work, we have considered a

baseline two-way communication scenario that captures some of these aspects. The problem is

February 26, 2018 DRAFT



18

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Cost Γ

R
1

 

 

D
3
=0.4

D
3
=0.6

D
3
=0.8

D
3
=D

3,max
=1

Figure 6. RateR1 versus costΓ for the examples in Sec. V-C withǫ = 0.2, D1 = 0 andD2 = D2,max.

addressed from a fundamental theoretical standpoint usingan information theoretic formulation.

The analysis reveals the structure of optimal communication strategies and can be applied to

elaborate on specific examples, as illustrated in the paper.This work opens a number of possible

avenues for future research, including the analysis of scenarios in which more than one round

of interactive communication is possible [18].
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APPENDIX A: CONVERSE PROOF FORPROPOSITION1

Here, we prove the converse part of Proposition 1. For any(n,R1, R2, D1 + ǫ,D2 + ǫ,Γ + ǫ)

code, we have the series of inequalities

nR1 ≥ H(M1)

(a)
= I(M1;X

n, Y n)

= H(Xn) +H(Y n|Xn)

−H(Y n|M1)−H(Xn|Y n,M1)

(b)

≥
n

∑

i=1

H(Xi)−H(Xi|X
n
i+1, Y

n,M1, A
i)

+H(Yi|Y
i−1, Xn,M1, Ai)−H(Yi|Y

i−1,M1, Ai)

(c)

≥
n

∑

i=1

H(Xi)−H(Xi|Ai, Yi, Ui)+H(Yi|Xi,Ai)−H(Yi|Ai), (27)

where (a) follows sinceM1 is a function ofXn and since conditioning reduces entropy;(b)

follows sinceAi is a function of(M1, Y
i−1) andM1 is a function ofXn and (c) follows since

conditioning decreases entropy, by definingUi = (M1, X
n
i+1, A

i−1, Y i−1) and using the fact that

the vending machine is memoryless. We also have the series ofinequalities

nR2 ≥ H(M2)

≥ H(M2|X
n,M1)

(a)
= I(M2; Y

n|Xn,M1)

(b)
=

n
∑

i=1

H(Yi|Y
i−1, Xn,M1, A

i)

−H(Yi|Y
i−1, Xn,M1,M2, A

i)

(c)

≥
n

∑

i=1

H(Yi|Xi,Ai,Ui)−H(Yi|Xi,Ai,Ui,Vi), (28)

where (a) follows sinceM2 is a function of (M1, Y
n), (b) follows sinceAi is a function

of (M1, Y
i−1) and (c) follows since the Markov chainYi—(Xi, Ui, Ai)—X i−1 holds by the

problem definition (this can be easily checked by using d-separation on the Bayesian network

representation of the joint distribution of the variables at hand as induced by the system model

in Fig. 7, see, e.g., [20, Sec. A.9]), since conditioning reduces entropy and by definingVi = M2.

February 26, 2018 DRAFT



20

1-i
X

i
X

n

i
X )1( +

1-i
Y

i
Y

n

i
Y 1+

1-i
A

i
A

n

i
A

1+

1
M2M

Figure 7. Bayesian network representing the joint pmf of variables (M1,M2, X
n, Y n, An) for the two-way source coding

problem with a vending machine in Fig. 2.

Defining Q to be a random variable uniformly distributed over[1, n] and independent of all

the other random variables and withX
△
= XQ, Y

△
= YQ, A

△
= AQ, X̂1

△
= X̂1Q, X̂2

△
= X̂2Q,

V
△
= (VQ, Q) andU

△
= (UQ, Q), from (27) we have

nR1 ≥ H(X|Q)−H(X|A, Y, U,Q)

+H(Y |X,A,Q)−H(Y |A,Q)

(a)

≥ H(X)−H(X|A, Y, U)

+H(Y |X,A)−H(Y |A)

= I(X ;A) + I(X ;U |A, Y ), (29)

where(a) follows by the fact that sourceXn and side information vending machine are mem-

oryless and since conditioning decreases entropy. Next, from (28), we have

nR2 ≥ H(Y |X,A, U)−H(Y |X,A, U, V )

= I(Y ;V |X,A, U). (30)

Moreover, from Fig. 7 and using d-separation, it can be seen that Markov chainsUi—(Xi, Ai)—Yi

andVi—(Ai, Ui, Yi)—Xi hold. This implies that the random variables(X, Y,A, U, V ) factorize

as in (9).
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We now need to show that the estimatesX̂1 and X̂2 can be taken to be functions of(V,X)

and (U, Y ), respectively. To this end, recall that, by the problem definition, the reconstruction

X̂1i is a function of(M2, X
n) and thus of(Xi, Ui, Vi, X

i−1). Moreover, we can takêX1i to be

a function of(Xi, Ui, Vi) only without loss of optimality, due to the Markov chain relationship

Yi—(Xi, Ui, Vi)—X i−1, which can be again proved by d-separation using Fig. 7. Thisimplies

that the distortiond1(Xi, Yi, X
i
1) cannot be reduced by including alsoX i−1 in the functional

dependence ofX i. Similarly, the reconstruction̂X2i is a function of(M1, Y
n) by the problem

definition, and can be taken to be a function of(Ui, Yi) only without loss of optimality, since

the Markov chain relationshipXi—(Yi, Ai, Ui)—Y n
i+1 holds. These arguments and the fact that

the definition ofV andU includes the time-sharing variableQ allow us to conclude that we can

takeX̂1 to be a function of(U, V,X) andX̂2 of (U, Y ). We finally observe thatV is arbitrarily

correlated withU as per (9) and thus we can without loss of generality setX̂1 to be a function of

(V,X) only. The bounds (10) follow immediately from the discussion above and the constraints

(6)-(7).

To bound the cardinality of auxiliary random variableU , we observe that (9) factorizes as

p(x, y, a, u, v) = p(u)p(a, x|u)p(y|a, x)p(v|a, u, y). (31)

Therefore, for fixedp(y|a, x), p(a, u|x) and p(v|a, u, y) the characterization in Proposition 1

can be expressed in terms of integrals
´

gj(·)dF (u), for j = 1, ..., |X | |A| + 3, of functions

gj(·) of the given fixed pmfs. Specifically, we havegj for j = 1, ..., |X1| |X2| − 1, given by

p(a, x|u) for all values ofx ∈ X and a ∈ A (except one);g|X1||X2| = H(X|A, Y, U = u);

g|X1||X2|+1 = I(Y ;V |A,X, U = u); g|X1||X2|+2 = E[d1(X, Y, f1(V,X))|U = u] and g|X1||X2|+3 =

E[d2(X, Y, f2(U, Y ))|U = u]. The proof is concluded by invoking Caratheodory Theorem.

To bound the cardinality of auxiliary random variableV, we note that (9) can be factorized

as

p(x, y, a, u, v) = p(v)p(a, y, u|v)p(x|a, u, y), (32)

so that, for fixedp(x|a, u, y), the characterization in Proposition 1 can be expressed in terms

of integrals
´

gj(p(a, u, y|v))dF (v), for j = 1, ..., |A||U||Y| + 1, of functions gj(·) that are

continuous on the space of probabilities over alphabet|A| × |U| × |Y| . Specifically, we have

gj for j = 1, ..., |A||U||Y| − 1, given by p(a, u, y) for all values ofa ∈ A, u ∈ U and y ∈ Y

(except one);g|A||U||Y| = H(Y |A,X, U, V = v); andg|A||U||Y|+1 = E[d1(X, Y, f1(V,X))|V = v].
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The proof is concluded by invoking Fenchel–Eggleston–Caratheodory Theorem [1, Appendix

C].

The converse for Proposition 2 follows similar steps as above with the only difference that

here we have

nR1

(a)

≥
n

∑

i=1

H(Zi)−H(Zi|Z
n
i+1, Y

n,M1, A
i)

+H(Yi|Y
i−1, Zn,M1, Ai)−H(Yi|Y

i−1,M1, Ai)

(b)

≥
n

∑

i=1

H(Zi)−H(Zi|Ai,Yi,Ui)

+H(Yi|Zi,Ai)−H(Yi|Ai), (33)

where(a) follows follows as in (a)-(b) of (27); and (b) follows since Markov chain relationship

Yi—(Zi, Ai)—(Y i−1, Zn\i,M1) holds. The rest of the proof is as above.

APPENDIX B: PROOFS FOR THEEXAMPLE IN SEC. IV

1) D1 = D1,max andD2 = 0: Here, we prove that the rate-cost region in Proposition 2 is

given by (18) forD1 = D1,max andD2 = 0. We begin with the converse part. Starting from

(14a), we have

R1

(a)

≥ I(A;Z) +H(Z|A, Y )

= H(Z)− I(Z; Y |A)

(b)

≥ H(Z)− ΓI(Z;X|A = 1) (34)
(c)

≥ H(Z)− ΓH(X|A = 1)

(d)

≥ H(Z)− Γ

(e)
= H2(ǫ) + 1− ǫ− Γ, (35)

where (a) follows from (14a) and sinceZ has to be recovered losslessly at Node 2; (b) follows

sincePr[A = 1] = E[Λ(A)] ≤ Γ; (c) follows because entropy is non-negative; (d) follows since

H(X|A = 1) ≤ 1; and (e) follow becauseH(Z) = H2(ǫ)+1−ǫ. Achievability follows by setting

U = Z, V = ∅, Pr(A = 1|Z = 0) = Pr(A = 1|Z = 1) = Γ/(1−ǫ) andPr(A = 0|Z = e) = 1 in

(14).
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2) D1 = 0 andD2 = D2,max: Here, we turn to the caseD1 = 0 andD2 = D2,max. We start

with the converse. SinceX is to be reconstructed losslessly at Node 1, we have the requirement

H(X|V, Z) = 0 from (16a). It easy to see that this requires that the equalities A = 1 and

V = Y = X be met if Z = e. In fact, otherwise,X could not be a function of(V, Z) as

required by the equalityH(X|V, Z) = 0. The condition thatA = 1 if Z = e requires that the

pmf p(a|z) be such thatPr(A = 1|Z = e) = 1, which entailsΓ = Pr[A = 1] ≥ Pr[Z = e] = ǫ.

Moreover, we can setPr(A = 1|Z = 0) = Pr(A = 1|Z = 1) = (γ−ǫ)/(1−ǫ), for some0 ≤ γ ≤ Γ,

by leveraging the symmetry of the problem on the selection ofthe actions givenZ = 0 and

Z = 1. Starting from (14a), we can thus write

R1

(a)

≥ I(Z;A)

= H(Z)−H(Z|A)

= H2(ǫ) + 1− ǫ− γH(Z|A = 1)

− (1− γ)H(Z|A = 0)

(b)
= H2(ǫ) + 1− ǫ− γH

( ǫ

γ
,
γ − ǫ

2γ
,
γ − ǫ

2γ

)

−(1− γ)

= H2(ǫ)− γH2

( ǫ

γ

)

(a)

≥ H2(ǫ)− ΓH2

( ǫ

Γ

)

, (36)

where (a) follows from (14a) and since there is no distortion requirement at Node 2; (b) follows

by direct calculation; and (c) follows sinceH2(ǫ) − γH2(
ǫ
γ
) is minimzed atγ = Γ over all

0 ≤ γ ≤ Γ.

The bound (19b) follows immediately by providing Node 2 withthe sequenceXn and then

using the boundR2 ≥ H(X|Z) = ǫ.

Achievability follows by settingU = ∅ and the pmfp(a|z) be such thatPr(A = 1|Z = e) = 1

andPr(A = 1|Z = 0) = Pr(A = 1|Z = 1) = Γ−ǫ
1−ǫ

. Moreover, letV = Y = X if Z = e and

V = Y = φ otherwise. Evaluating (14) with these choices leads to (19).

3) D1 = D2 = 0: Here, we prove the rate-cost region (20) for the caseD1 = D2 = 0. Starting
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from (14a), we have

R1

(a)

≥ H(Z)− ΓI(Z;X|A = 1)

(b)
= H(Z)− ΓH(X|A = 1)

+ΓH(X|A = 1, Z = e)Pr(Z = e|A = 1)

(c)

≥ H(Z)− Γ + Γ.
ǫ

Γ

= H2(ǫ) + 1− Γ, (37)

where (a) follows as in (34); (b) follows becauseH(X|A = 1, Z = 0) = H(X|A = 1, Z = 1) =

0; (c) follows sinceH(X|A = 1) ≤ 1, H(X|A = 1, Z = e) = 1 and becausep(Z = e|A = 1) =

ǫ
Γ
, where latter follows from the the requirementH(X|V, Z) = 0 as per discussion provided in

the previous section.

For the achievability, letU = Z, Pr(A = 1|Z = e) = 1 andPr(A = 1|Z = 0) = Pr(A =

1|Z = 1) = Γ−ǫ
1−ǫ

. Moreover, letV = Y = X if Z = e andV = Y = ∅ otherwise. Evaluating

(14) with these choices leads to (20).

APPENDIX C: CONVERSE PROOF FORPROPOSITION3

Here, we prove the converse part of Proposition 3. For any(n,R1, R2, D1 + ǫ,D2 + ǫ,D3 +

ǫ,Γ + ǫ) code, we have the series of inequalities

nR1 ≥ H(M1)

(a)

≥
n

∑

i=1

H(Zi)−H(Zi|Z
n
i+1, Y

n,M1, A
i, X̂3i)

+H(Yi|Y
i−1,Xn,M1,Ai,X̂3i)−H(Yi|Y

i−1,M1,Ai,X̂3i)

(b)

≥
n

∑

i=1

H(Zi)−H(Zi|Ai,Yi,Ui,X̂3i)+H(Yi|Zi,Ai,X̂3i)

−H(Yi|Ai, X̂3i), (38)

where(a) follows from (a) in (33) by noting thatX̂3i is a function ofM and(b) follows since

conditioning decreases entropy, by definingUi = (M1, X
n
i+1, A

i−1, Y i−1) and using the Markov
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chain relationshipYi—(Zi, Ai, X̂3i)—(Y i−1, Xn\i,M1). We also have the series of inequalities

nR2 ≥ H(M2)

(a)

≥
n

∑

i=1

H(Yi|Zi, Ai, Ui, X̂3i)−H(Yi|Zi, Ai, Ui, Vi, X̂3i), (39)

where (a) follows from (28), by replacing sequenceXn with the sequenceZn and by observing

that X̂3i is a function ofM1. DefiningQ as in Appendix A, along withX̂3
△
= X̂3Q, from (38)

we have

nR1 ≥ H(Z|Q)−H(Z|A, Y, U, X̂3, Q)

+H(Y |Z,A, X̂3, Q)−H(Y |A, X̂3, Q)

(a)

≥ H(Z)−H(Z|A, Y, U, X̂3)

+H(Y |Z,A, X̂3)−H(Y |A, X̂3)

=I(Z;A)+I(Z; X̂3|A)+I(Z;U |A,Y,X̂3),

where(a) follows by the fact that sourceZn and side information vending machine are memo-

ryless and since conditioning decreases entropy. Next, from (39), we have

nR2 ≥ H(Y |Z,A, U, X̂3)−H(Y |Z,A, U, V, X̂3)

= I(Y ;V |Z,A, U, X̂3). (40)

Moreover, by just addinĝXn
3 to the Bayesian graph in Fig. 7and using d-separation, it canbe

seen that Markov chainsUi—(Zi, Ai)—Yi andVi—(Ai, Ui, Yi, X̂3)—Zi hold, which implies that

the random variables(X, Y, Z,A, U, V, X̂3) factorize as in (24). Based on the discussion in the

converse proof in Appendix A, it is easy to see that the estimates X̂1 and X̂2 are functions of

(V,X) and(U, Y ), respectively. The bounds (23) follow immediately from thediscussion above

and the constraints (6)-(7) and (22).
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