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ABSTRACT

Analog Joint Source-Channel Coding (JSCC) has been shown to approach the optimal distortion-cost trade-

off when transmitting over AWGN channels. In this work we consider analog JSCC over frequency-selective

channels using Orthogonal Frequency Division Multiplexing (OFDM) modulation and multiple antennas

at transmission and/or reception, i.e. using a MIMO-OFDM system. Due to its high complexity, optimal

MMSE analog JSCC decoding is infeasible in MIMO-OFDM systems and a practical two-stage decoding

approach made up of an MMSE estimator followed by a Maximum Likelihood (ML) decoder is proposed

instead. Three different alternatives for system optimization are considered: non-adaptive coding, adaptive

coding, and adaptive coding with precoding. We show that the three considered strategies approach the

optimal distortion-cost trade-off, but the best performance is obtained with the adaptive coding scheme when

precoding is utilized. Copyright © 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Source compression and channel coding are typically

performed separately in most digital communication

systems. This communication strategy, known as

the “separation principle”, has been shown to be

optimum for both lossless compression [1] and

lossy compression [2] of analog sources. However,

when digital communication systems are designed

to perform close to the optimal distortion-cost

trade-off, sources have to be compressed using

powerful Vector Quantization (VQ) and entropy

coding methods, and data has to be transmitted

utilizing capacity approaching digital codes that use

long block lengths and introduce significant delay

and high computational complexity. Moreover, full

redesign of the digital system is required whenever

a change is required in either the data rate or the

distortion target.

Recently, discrete-time analog communication

systems based on the transmission of continuous

amplitude channel symbols have been proposed as

an alternative to digital communication systems.

As shown in [3–5], using appropriate analog Joint

Source Channel Coding (JSCC) techniques, it

is possible to approach the optimal distortion-

cost trade-off at high data rates with very low

complexity and an almost negligible delay. In

addition, analog JSCC schemes are more robust

than standard digital systems to changes in the

channel conditions, and they can be continuously

adapted to the channel fluctuations on time-varying

environments by updating the encoder parameters

at the transmitter. These appealing properties make

Copyright © 0000 John Wiley & Sons, Ltd. 1
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analog JSCC strategies specially suitable for high-

speed transmissions with severe constraints on delay

and/or power consumption over fading channels such

as real-time communications over wireless channels

or sensor networks [6].

Most previous work in analog JSCC focuses on

AWGN channels, while analog JSCC over wireless

channels has deserved less attention in the literature.

As an example, references [7, 8] consider the use

of spatial diversity to improve the performance of

analog JSCC in wireless fading channels. Another

example is [9], where the transmission of analog

samples over single-carrier Multiple Input Multiple

Output (MIMO) fading channels is considered.

It is also worth mentioning reference [10] where

the implementation on a Software Defined Radio

testbed of a wireless system based on analog

JSCC is presented. Excellent performance over

wireless channels is attained when the encoder

parameters are continuously adapted to the time-

varying Channel Signal to Noise Ratio (CSNR).

In this work we consider analog JSCC over

frequency-selective channels using Orthogonal Fre-

quency Division Multiplexing (OFDM) modulation.

When combined with MIMO transmission over mul-

tiple transmit and receive antennas, the resulting

signaling method is referred to as MIMO-OFDM.

This transmission method has been adopted by the

last generation of broadband wireless communication

systems due to its ability to achieve large spectral

efficiencies while enabling low-complexity equaliza-

tion of frequency-selective channels.

This work goes several steps further than that

presented in [9]. On the one hand, it considers the

more realistic case of broadband frequency-selective

MIMO channels and extends the design of analog

JSCC narrowband frequency-flat MIMO systems

proposed in [9] to also include the transmission

of OFDM symbols. Notice that complexity of

broadband MIMO-OFDM systems is significantly

larger than that of narrowband single-carrier

MIMO ones and this largely impacts on system

optimization. On the other hand, it considers

transmission strategies not addressed in [9] and

discusses their optimization. More specifically, three

different strategies are considered depending on

the level of channel knowledge at the transmitter:

non-adaptive coding, adaptive coding, and adaptive

coding with linear precoding. We show that

significant performance gains are obtained when

linear precoding is designed according to the MMSE

criterion [11–13] and utilized to exploit the Channel

State Infomation (CSI) at transmission. Related to

system optimization, special attention is paid to

the normalization operation required at the encoder

output. In particular, the utilization of OFDM

symbols allows for either using the time or the

frequency dimension to normalize the analog JSCC

symbols.

This paper is organized as follows. Section 2

reviews the basics of analog JSCC systems.

Section 3 focuses on the specifics of analog JSCC

in MIMO-OFDM systems. Section 4 explores the

adaptation of the analog encoder parameters to

the channel characteristics in order to improve

system performance. Section 5 presents the results

of computer experiments and Section 6 is devoted to

the conclusions.

2. ANALOG JOINT

SOURCE-CHANNEL CODING

Figure 1 shows the block diagram of a discrete-time

N :1 bandwidth compression analog JSCC commu-

nication system. At the transmitter, N independent

and identically-distributed (i.i.d.) source symbols are

grouped into the source vector x = [x1, x2, ..., xN ]T

and compressed into one channel symbol s. The

superindex T denotes transposition. The analog

2

encoding consists of three steps: compression, Mδ ( · );
non-linear transformation, Tα( · ); and normaliza-

√
tion, 1/ γ.

Recent work on analog JSCC [3–5, 14] proposes

the use of Shannon-Kotel’nikov mappings to define

the compression functions Mδ ( · ) that map the N -

dimensional source vector x into a single value θ̂. In
the particular case of N = 2, Akyol et al. [15] have

shown that the optimal 2:1 mapping quite resembles 
a spiral-like space-filling curve. For that reason, we

specifically consider the Archimedes’ spiral whose
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Figure 1. Block diagram of an analog JSCC system.

mathematical expression is given by

zδ(θ) =

[
sign(θ)

δ

π
θ sin θ,

δ

π
θ cos θ

]T
, (1)

where δ is an encoder parameter that determines

the distance between the two neighboring spiral

arms and θ is the angle from the origin to the

point z = [z1, z2]T on the curve. Notice that the

parameter δ determines how the two-dimensional

space is filled up and, therefore, how protected the

source symbols are against the noise. Hence, the

value of δ must be properly selected according to the

level of the channel noise or, equivalently, according

to the Channel Signal to Noise Ratio (CSNR).

Given a specific spiral defined by its δ value,

the compression function Mδ( · ) calculates the value

θ̂ corresponding to the point on the spiral that

minimizes the distance to x, i.e.

θ̂ = Mδ(x) = argmin
θ
‖x− zδ(θ)‖2. (2)

After the analog mapping, a non-linear invertible

function Tα(θ̂) = sign(θ̂)|θ̂|α, referred to as the

stretching function in [5], is used to produce the

encoded symbols s̃. Although most references in the

literature [3–5] use α = 2, analog JSCC performance

can be significantly improved if α is optimized

together with δ [16].

Finally, the encoded symbol s̃ is normalized by
√
γ

to ensure the average transmitted power is equal to

one. Hence, the symbol sent over the channel is given

by

s =
Tα(Mδ(x))
√
γ

=
s̃
√
γ
. (3)

When transmitting over an AWGN channel,

the received symbols are y = s+ n where n ∼
N (0, N0/2) is a real-valued zero-mean Gaussian

random variable that represents the channel noise.

At reception, the analog source symbols are

decoded from the observation y. In [17] we proposed

a two-stage decoding method that first calculates

an estimate of the transmitted channel symbols, ŝ,

and then performs ML decoding using this symbol

estimate. The advantage of such approach is that

performance approximates the optimal distortion-

cost trade-off in the whole CSNR region while

keeping complexity and delay at a minimum [17].

Recently, we have successfully applied this receiver

structure to the case of MIMO transmission systems,

where the use of the optimal MMSE decoding is

clearly infeasible [9, 17]. In Section 3 , we will also

corroborate that this approach also attains excellent

performance in MIMO-OFDM systems.

Analog JSCC can also be used to satisfactorily

transmit analog symbols over fading channels. Let us

assume a block of T channel symbols st, t = 1, . . . , T

is transmitted over a Single Input Single Output

(SISO) flat fading channel. The block of T received

symbols is given by

yt = hT st + nt, t = 1, . . . , T, (4)

where hT represents the complex-valued channel

response and nt is a block of T zero-mean

complex-valued i.i.d. Gaussian random variables

that represents the channel noise. We assume a block

fading channel whose response remains unchanged

during the block transmission. Subindex t denotes

discrete-time while subindex T indicates that the

channel response changes from one block to another.

In fading channels, the CSNR changes with

each channel realization and is given by ηT =

|hT |2/N0. For the considered analog JSCC system

to approach the optimal distortion-cost trade-off, the

encoder parameters δ and α have to be conveniently

optimized. As shown in [17], using α = 1.3 provides

a good overall performance for a 2:1 compression

and a wide range of CSNR and δ values. However,

the encoder parameter δ has to be specifically

adapted to the CSNR value the channel symbols

3Trans. Emerging Tel. Tech. 0000; 00:1–?? © 0000 John Wiley & Sons, 
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will encounter. We have empirically determined, via

computer simulations, that using α = 1.3 and the

two-stage receiver in [17] provides a good overall

performance for the case of 2:1 compression in

AWGN channels and a wide range of CSNR and δ

values. Since choosing α 6= 2 makes the analytical

optimization of the other encoder parameter, δ, very

difficult [4], we obtained the optimum δ values for

different CSNRs using off-line computer simulations.

The second row of Table I shows the optimum δ

values for the range of CSNR values 0, 1, 2, . . . , 38

dB and a normalized Gaussian source. In a practical

setting, the CSNR can be estimated at the receiver

and sent to the transmitter via a limited feedback

channel, as shown in Fig. 1. We should also assume

that Table I is stored at the transmitter and the

receiver for both terminals to determine the correct

δ to be used in each transmitted frame.

Another important issue to have in mind is that

the normalization factor, γ, corresponds to the mean

square value of the symbols at the output of the

analog encoder, i.e. γ = E[|s̃|2]. Due to the non-linear

nature of the analog JSCC mappings, the statistical

description of s̃ is rather difficult to characterize

and strongly depends on the source distribution

and the encoder parameter δ. One way to overcome

this limitation is to determine off-line, via computer

simulations, the mean square value of s̃ for a given

source distribution and a set of δ values. The third

row of Table I shows the values of γ obtained for the

δ values resulting from the encoding optimization for

a given CSNR. Note that in fading channels γ has to

be continuously adapted, together with δ, according

to the CSNR of each specific channel realization. If

we assume that the third row of Table I is also stored

in the transmitter and the receiver, adaptation of γ

is readily done from the CSNR information provided

by the feedback channel.

An alternative normalization approach is to

determine γ from a channel encoder output block

of symbols s̃t, t = 1, . . . , T . The normalization factor

can thus be obtained as

γT =
1

T

T∑
t=1

|s̃t|2 (5)

We will refer to this normalization approach as

deterministic while the previous one will be termed

statistical. According to ergodicity, both approaches

are related by limT→∞ γT = γ. In practice, however,

we have determined via computer simulations

that both normalizations provide indistinguishable

results for T > 5 in both AWGN and Rayleigh fading

channels.

The advantage of the deterministic normalization

is that it can be calculated online independently of

δ. This means that no table of γ values needs to be

stored at the transmitter and the receiver, and that

the normalization factor can be adapted at a rate

different from δ. The drawback is that the receiver

needs to know γT . However, γT is an analog sample

that could be sent together with the source symbols.

Appending γT to the transmitted symbols will cause

an overhead of 1/T that vanishes as the block size T

increases.

3. ANALOG JSCC IN MIMO-OFDM

Figure 2 shows the block diagram of a MIMO-

OFDM system that employs analog JSCC. Discrete-

time continuous-amplitude symbols are transmitted

over a frequency-selective MIMO channel with nT

transmit antennas and nR receive antennas using an

OFDM modulation with K subcarriers.

We extend the analog JSCC design proposed

for single-carrier MIMO systems in [9] to the case

of multicarrier transmissions over MIMO-OFDM.

Thus, source symbols are first spatially multiplexed

over the nT transmit antennas. At each transmit

antenna, a set of KN analog source symbols is

encoded into K channel symbols using the N :1

analog encoding method explained in Section 2.

The real-valued symbols at the encoder output

are then transformed into complex-valued channel

symbols with a complex interleaver. Let S̃i,k, i =

1, . . . , nT , k = 1, . . . ,K, denote the unnormalized

encoded symbols transmitted over antenna i and

subcarrier k. The corresponding normalized symbols

will be represented by Si,k = S̃i,k/
√
γi,k. In a

4

general setting, both the encoder parameter δi,k
and the normalization factor γi,k may be different
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Figure 2. Block diagram of an analog JSCC MIMO-OFDM system.

at each transmit antenna i and/or subcarrier k.

Blocks of K normalized channel symbols are put

together to be transmitted as OFDM symbols.

Let Si = [Si,1, . . . , Si,K ]T , i = 1, . . . , nT be the

channel symbols that constitute the OFDM symbol

transmitted over antenna i. We also define the vector

Sk = [S1,k, . . . , SnT ,k]T , k = 1, . . . ,K to represent

the MIMO symbols transmitted over subcarrier k.

We assume a block-fading channel that remains

unchanged during the transmission of one OFDM

symbol. In the time-domain, the block-fading MIMO

channel is represented by the sequence of nR ×
nT matrices H[l] for l = 0, . . . L− 1, where L is

the length of the channel impulse response. In a

Rayleigh fading MIMO channel, the entries to H[l]

are complex-valued zero-mean circularly-symmetric

Gaussian random variables. In the frequency-

domain, the MIMO channel response matrices can

be expressed as [18]

Hk =

L−1∑
l=0

R[l]1/2H[l]T[l]1/2 exp

(
−j2πlk
K

)
, (6)

In order to eliminate the channel Intersymbol

Interference (ISI), an IFFT transformation is

applied to the vector of channel symbols Si, i =

1, · · · , nT and a Cyclic Prefix (CP) larger than

the channel impulse response is appended at the

beginning. These two stages produce the discrete-

time representation of the OFDM symbols to be

transmitted over the MIMO channel. At reception,

the inverse operations of FFT transformation and

CP removal are applied. Elaborating the signal

model, the received observations Yk at subcarrier

k are given by

Yk = HkSk + Nk, k = 1, · · · ,K (7)

where Nk is an i.i.d. circularly symmetric complex

Gaussian random vector that represents the additive

spatially and temporally white channel noise.

In analog JSCC, MMSE estimation of the

source symbols is the optimal decoding strategy.

When considering a MIMO-OFDM system,

optimal decoding consists in the calculation,

at each subcarrier k, of the MMSE estimate

of the NnT transmitted source symbols

xk = [x1,1, · · · , xN,1, · · · , x1,nT , · · · , xN,nT ]T from

the received symbol vector Yk, i.e.

x̂k,MMSE = E [xk|Yk] =

∫
xk p(xk|Yk)dxk

=
1

p(Yk)

∫
xk p(Yk|xk)p(xk)dxk. (8)

5

where Hk is the frequency-domain nR × nT MIMO 
channel matrix response corresponding to the k-th 
subcarrier, k = 1, . . . , K. Notice that H[l] entries 
are i.i.d. random variables whereas R[l] and T[l] 
represent the receive and transmit spatial-correlation 
matrices, respectively.
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where E[ · ] denotes the expectation operator. Since

the conditional probability, p(Yk|xk), involves the

mapping function Mδ( · ), which is discontinuous

and highly non-linear, the integral in (8) can only

be calculated numerically. This implies that the

discretization of the set of all possible source values,

xk, is needed. If Q discrete-points are selected per

source dimension, we would have to calculate QNnT

values for p(Yk|xk) and p(xk), and then compute the

integral in (8). This is infeasible in MIMO-OFDM

even for a small number of transmit antennas and

subcarriers.

Alternatively, the two-stage receiver proposed in

[17] for analog JSCC decoding in SISO channels

can also be applied to MIMO-OFDM channels. This

receiving strategy consists of a first stage where

the received symbols are filtered with the aim of

minimizing the MSE between the encoder output

and the decoder input, and a second step where ML

decoding is applied to the filtered symbols to obtain

an estimate of the transmitted source symbols.

Assuming Hk is perfectly known at the receiver,

the linear filter Wk that minimizes the MSE between

the channel symbol vector Sk and the estimated

symbol vector Ŝk = Wkyk is given by

Wk =
(
HH
k Hk + nTN0InT

)−1

HH
k , (9)

where the super-index H represents conjugate trans-

position. Then, the set of estimated symbols Ŝk =

[Ŝ1,k, . . . , ŜnT ,k]T can be denormalized, transformed

into the corresponding real-valued symbols and

finally input to a bank of ML decoders to calculate

an estimate x̂i,k, i = 1, . . . , nT , of the source symbols

transmitted over antenna i and subcarrier k, i.e.

x̂i,k = zδ(θ̃i,k) (10)

where

θ̃i,k = T−1
α (
√
γŜi,k) = sign(Ŝi,k)|√γŜi,k|−α. (11)

6

4. ADAPTIVE ANALOG JSCC

As explained in Section 2, optimal encoders have 
to be used for the analog JSCC system to 
approximate the optimal distortion-cost trade-off. In 
the case of MIMO-OFDM systems, the optimization 
procedure is specially important because symbols 
transmitted over different antenna i and subcarrier 
k experience in general a different CSNR, ηi,k. 
This means that different encoder parameters 
δi,k (and correspondingly, different normalization 
factors, γi,k) should be used when encoding the 
symbols transmitted over antenna i and subcarrier 
k.

If no information about the channel is available 
at the transmitter, the same δ value should be 
used to encode all the analog source symbols. In 
this case, it is sensible to use the δ value that 
corresponds to the average expected CSNR. This 
fixed approach will perform adequately in frequency-

flat and quasi-static channels where the CSNR 
remains approximately the same at all antennas and 
all subcarriers during the transmission of several 
OFDM symbols. However, it can lead to serious 
performance degradation in practical MIMO-OFDM 
channels where each subcarrier is expected to have 
a different time-varying CSNR.

Better performance is obtained when following 
an adaptive coding strategy where the optimal δi,k 

values are used according to the instantaneous CSNR 
at each subcarrier and transmit antenna, ηi,k. In a 
practical setting, this implies that the system be 
equipped with a feedback channel that regularly 
sends the ηi,k values to the transmitter.

In order to appropriately calculate ηi,k, the 
detector has to be taken into account. When MMSE 
detection is considered, the filter Wk does not 
completely cancel the spatial interference of the 
MIMO channel. If we consider the residual spatial 
interference as noise that adds to the thermal noise, 
it can be shown that the CSNR at the detector 
output corresponding to the symbols transmitted 
over the i-th antenna and the k-th subcarrier can
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be expressed as [19]

ηi,k =
µ2
i,k

µi,k − µ2
i,k

=
µi,k

1− µi,k
, (12)

where µi,k = (WkHk)ii is the i-th diagonal entry of

the equivalent MIMO channel WkHk.

In summary, the MMSE detector transforms a

MIMO-OFDM channel into a set of nT SISO-OFDM

parallel channels, each one with an equivalent CSNR

per subcarrier given by (12). At the transmitter, we

encode the symbols to be transmitted through each

antenna and subcarrier using the appropriate δi,k

parameter. This parameter is selected from the fed-

back ηi,k values and using Table I, which is assumed

to be stored at the transmitter and the receiver.

4.1. Analog JSCC MIMO-OFDM with Linear

Precoding

If the feedback channel is able to provide the

transmitter with the MIMO channel matrices,

Hk, k = 1, . . . ,K (and not just the ηi,k values)

further performance improvements can be obtained

if channel symbols are precoded prior to their

transmission. In digital systems, the water-filling

algorithm is the optimal strategy to distribute the

transmit power among the streams corresponding to

different antennas because it maximizes the channel

capacity. However, the performance of analog JSCC

systems is commonly measured in terms of the signal

distortion. For that reason, following [11], we propose

to jointly design a linear precoder and a linear

detector suitable for analog JSCC in MIMO-OFDM

according to the MMSE criterion.

Recall the MIMO-OFDM signal model defined by

(7). Let us assume the output encoder symbols are

linearly precoded with a rectangular nT × nT matrix

Pk per subcarrier. Hence the transmitted symbols

are PkSk. As in Section 3, Wk represents the MIMO

linear detector per subcarrier. Hence, the channel

symbol estimates obtained at the detector output

are given by

ŝk = Wk(HkPkSk + nk), (13)

and the error between the estimated and transmitted

symbols per subcarrier is

ek = Sk − Ŝk = Sk −Wk(HkPkSk + nk) (14)

The MMSE linear precoder and detector are

obtained after solving the following constrained

optimization problem

arg min
Pk,Wk

K∑
k=1

E[tr(eke
H
k )] (15)

subject to

K∑
k=1

tr(PkP
H
k ) ≤ Ptx, (16)

where tr( · ) denotes the trace operator and Ptx is the

total power available at the transmitter.

Substituting the error expression (14) in (15),

differentiating with respect to Pk and Wk, and

using the Karush-Kuhn-Tucker (KKT) conditions,

we arrive at the following equations to obtain the

optimal Pk and Wk matrices

Pk = (λInT + HH
k WH

k WkHk)−1(HH
k WH

k ), (17)

Wk = (PH
k HH

k )(nTN0InR + HkPkP
H
k HH

k )−1,

(18)

where N0 is the AWGN noise variance and λ ≥ 0

is the Lagrange multiplier that ensures the total

transmit power is equal to Ptx. Unfortunately, both

equations depend on each other, so we need to

iterate between them to calculate the precoder and

the detector [11]. The iterative algorithm starts

assuming an initial precoder equal to the identity

matrix and, at each iteration, both the precoder

and the detector are sequentially updated using

equations (17) and (18). Notice that the Lagrange

multiplier λ is a scalar value that is recalculated

at each iteration using Newton’s method to ensure

that the transmit power constraint is still satisfied.

Although the convergence of this algorithm has not

been mathematically analyzed, it has been shown to

converge after a few iterations in practice for the

whole range of CSNRs.

It is important to note that linear precoders

change the SNR of the equivalent channel that

corresponds to the symbols transmitted over antenna
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i and subcarrier k. As a consequence, the encoder

parameter δi,k should be adapted accordingly. Notice

that the CSNR values ηi,k when linear precoding

is used are easy to obtain if we take into account

that linear precoders simply transform the MIMO

channel Hk into another one given by HkPk. Hence,

the transmitter can calculate the corresponding ηi,k

values using equation (12) and then choosing δi,k

according to Table I.

4.2. Symbol normalization in MIMO-OFDM

An important issue regarding the optimization of

an adaptive analog JSCC MIMO-OFDM system is

the normalization of the transmitted symbols Si,k.

In a non-adaptive system, all subcarriers in the

OFDM symbol transmitted over the i-th antenna

can be normalized using the same factor γi, i =

1, . . . , nT per antenna. However, when considering

adaptive coding, source symbols are encoded with

different δi,k values that are selected according to the

CSNR ηi,k of the equivalent channel corresponding

to antenna i and subcarrier k.

As in Section 2, either a statistical or a

deterministic approach can be followed to determine

the normalization factors, γi,k. In the statistical

approach, γi,k should be the mean square value of

the unnormalized encoded symbols S̃i,k, i.e. γi,k =

E[|S̃i,k|2]. For a given source statistics and encoder

parameter δi,k, these mean square values can be

estimated off-line via computer simulations and

stored in a table such as Table I.

Alternatively, the normalization factors can be

obtained following a deterministic approach. Let us

assume a block of T OFDM symbols Si,k,t, t =

1, . . . , T , are transmitted over a block fading channel,

i.e.

Yk,t = Hk,TSk,t + Nk,t, k = 1, . . . ,K; t = 1, . . . T,

(19)

where the MIMO channel response per subcarrier

Hk,T (and hence the equivalent CSNR ηi,k) remains

unchanged. The normalization factors can thus be

obtained as

γi,k,T =
1

T

T∑
t=1

|S̃i,k,t|2 (20)

These normalization factors must be known at

reception for correct analog decoding. In a practical

setup, they can be sent using specific OFDM

symbols. This will imply an overhead of 1/T that

vanishes as the block size T increases.

Contrarily to the single carrier case, the

requirement that the channel remains unchanged

during the transmission of a block of T OFDM

symbols is more difficult to satisfy in practical

situations, specially if the FFT size is large. Hence,

although the previous deterministic normalization

performs well for block sizes as small as T = 5, it

may be unfeasible in many practical scenarios. This

limitation can be overcome by formulating a different

deterministic normalization approach where symbols

transmitted along subcarriers with similar SNR

values are used to estimate their mean square value.

Let us define the set Ki = {1, . . . ,K} that

contains all subcarriers when transmitting over

antenna i. Let us divide the set Ki into a number

of B nonoverlapping subsets Ki,1,Ki,2, . . . ,Ki,B .

The number of elements in these subsets will be

represented by Ki,1,Ki,2, . . . ,Ki,B . Hence, Ki =

Ki,1 ∪ Ki,2 ∪ . . .Ki,B and Ki = Ki,1 +Ki,2 + . . .+

Ki,B . Recall that in adaptive coding, channel

symbols Si,k are obtained with an analog encoder

with a parameter δi,k that is selected according

to the CSNR, ηi,k. Hence, symbols transmitted

over subcarriers with similar SNR values will have

similar statistics and can be used to estimate their

corresponding normalization factor.

Indeed, let us assume that for a given channel

realization and a transmit antenna i, the SNRs

accross the different subcarriers belong to the

interval [η̂min, η̂max], i.e. η̂min ≤ ηi,k ≤ η̂max. Next,

we define the subsets Ki,b, b = 1, . . . , B, as follows:

Ki,1 = {k : η̂min ≤ ηi,k < η̂i,1}

Ki,2 = {k : η̂i,1 ≤ ηi,k < η̂i,2}
...

8

Ki,B = {k : η̂i,B−1 ≤ ηi,k ≤ η̂max}

That is, each subset Ki,b, b = 1, . . . , B contains those 
subcarriers with similar SNR for a given channel

realization.
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Having in mind the previous subcarrier clustering,

we can modify our previous adaptive analog coding

approach so that all symbols to be transmitted over

the subcarriers in subset Ki,b are encoded with the

same representant parameter δi,b. This is reasonable

since all subcarriers in Ki,b have similar CSNR.

Hence all channel symbols Si,k with k ∈ Ki,b have

the same statistical properties and their mean square

value can be estimated as

γi,b =
1

Ki,b

∑
k∈Ki,b

|Si,k|2, i = 1, . . . , nT , b = 1, . . . , B

OFDM symbol, is B and the maximum overhead that

normalization factor transmission implies is B/K.

This overhead tends to be negligible as the number

of intervals B decreases and/or the FFT size K

increases.

In practice, however, the specific number of

normalization factors to be transmitted depends on

the channel realization and is often less than B.

Indeed, in standard MIMO-OFDM channels it is

often the case in which subcarrier subsets of a given

channel realization are empty and the normalization

factor corresponding to this subset need not to be

transmitted. This issue is further analyzed in the

ensuing section.

4.3. Complexity Analysis

The overall complexity of the analog JSCC MIMO-

OFDM system is determined by the filtering

operations because the complexity and delay

introduced by the analog encoding and ML decoding

are practically negligible. On one hand, the analog

encoding consists in mapping the bidimensional

point given by two source symbols into the closest

point on the spiral and applying the stretching

function to the corresponding angle from the origin

to that point. Efficient search algorithms can be

employed to determine the closest point on the spiral

with low complexity. On the other hand, the ML

decoding basically inverts the encoding operations

and the complexity is hence identical.

The overall complexity depends on the transmis-

sion strategy considered in the analog JSCC MIMO-

OFDM system. In the case of non-adaptive and

adaptive coding, a linear MMSE detector is used

for filtering the received symbols. The complexity

of such filtering operation is O(n3
T ) because it

involves several products of matrices and especially

the inverse of an nT × nT -sized matrix. Notice that

the complexity of both transmission strategies is the

same since the main difference of the adaptive coding

with respect to the non-adaptive method is the use

of information about the estimated SNR to select the

optimal encoder parameters at the transmitter.

In the case of the adaptive coding with linear

precoding, the optimal linear MMSE filters for each

subcarrier are individually calculated by an iterative

9

The choice of the optimal partitioning of the 
CSNR range into the corresponding B blocks is 
not trivial because it is necessary to find the set 
of block limits and representative δi,b values that 
minimize the signal distortion at the receiver. It is 
not feasible to solve this problem mathematically 
because the impact of the δ parameter on the overall 
distortion can be only determined for the case of ML 
decoding and α = 2, as shown [5]. Otherwise, it is 
rather difficult to characterize the distribution of the 
coded symbols at the output of the analog encoder 
and, hence, it not possible to establish a closed-

form expression that relates the value of δ and the 
observed distortion. For that reason, an exhaustive 
search by computer simulations has been carried out 
to evaluate the impact of using non-optimal values 
for δ on the overall distortion and to determine 
the subcarrier subsets and the representative δi,b 

values of these subsets for different number of blocks. 
Table II shows the subcarrier subsets and their 
corresponding representative values δi,b obtained for 
B = 2, 4 and 8 assuming that the CSNR values lie 
within an interval between η̂min = 0 dB and η̂max = 
40 dB.

It is important to note that, similar to other 
deterministic normalizations, the normalization 
factors have to be known at reception for the 
decoders to perform adequately. In a practical 
setting, the normalization factors can be sent over 
certain subcarriers within the same OFDM symbols 
that are specifically reserved to this aim. This will be 
the approach followed in the sequel. The maximum 
number of transmitted normalization factors in a 
limiting situation, where the channel changes at each
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algorithm that sequentially upadates the precoder

and the corresponding detector. On one hand, the

algorithm complexity at each iteration is O(M3),

where M = max{nT , nR}, because the expressions

for the transmit and receive filters also involve the

inverse of an matrix of size nR × nR and nT ×
nT , respectively. On the other hand, the number

of iterations required for the iterative algorithm

to converge basically depends on the CSNR. In

the high CSNR region, it can be shown that the

MSE cost function is almost flat and, thus, a large

number of iterations is required to converge whereas

for low CSNRs the algorithm converges after very

few iterations. In practice, the computation of the

optimal MMSE filters never exceeds 50 iterations.

Notice that these filters are obtained once for each

channel realization and must only be recalculated

when the channel changes.

5. SIMULATION RESULTS

Computer simulations were carried out to assess

the performance of the analog JSCC MIMO-OFDM

systems considered in previous sections. Three

different configurations were evaluated: non-adaptive

coding, adaptive coding and adaptive coding with

linear precoding.

System performance is measured in terms of the

Signal to Distortion Ratio (SDR) with respect to the

average CSNR. If the MSE between decoded and

source analog symbols, i.e.

MSE =
1

N
E{‖x− x̂‖2},

is selected as the distortion metric, the SDR in dB

can be calculated as

SDR(dB) = 10 log10

(
σ2
x

MSE

)
, (21)

where σ2
x is the source variance. The optimal

distortion-cost trade-off is the maximum attainable

SDR for a given CSNR. In the literature,

this theoretical limit is known as the Optimum

Performance Theoretically Attainable (OPTA) and

is calculated by equating the rate distortion function

to the channel capacity [20]. For N :1 compression of

Gaussian sources over a generic stochastic nR × nT
channel matrix Hk, and assuming that the channel

is not known at the transmitter, the OPTA is given

by

NnT log (SDR) = EHk

[
log det

(
InR +

η

nT
HkH

H
k

)]
,

(22)

10

where EHk [ · ] represents expectation with respect 
to Hk and η is the average CSNR. In a system 
where the channel is known at the transmitter, 
capacity is maximized by the water-filling solution 
at each channel realization. In our case, however, 
channel knowledge at transmission is not exploited 
to maximize capacity but to precode transmitted 
symbols with the linear MMSE precoding matrices 
Pk, k = 1, . . . , K, given by (17). Therefore, OPTA 
is calculated in this case by replacing Hk with the 
equivalent channel HkPk in (22).

Let us start by considering the case nT = nR = 1, 
i.e. SISO-OFDM. We considered a source of i.i.d. 
normalized Gaussian random variables and K = 
64 subcarriers. In a first computer experiment we 
considered real wireless channels measured in an 
indoor scenario (an office) by using a hardware 
testbed which was jointly designed and implemented 
by two research groups from the Universities of 
Cantabria (UC) and A Coruña (UDC) in Spain for 
the practical evaluation of multiuser multiantenna 
transmission techniques. This testbed consists of 
three transmit and three receive nodes each equipped 
with MIMO capabilities. For a detailed description 
of the GTEC MIMO testbed, see the URL of the 
COMONSENS project [21].

In this first experiment, the real channel 
measurements were specifically obtained for 64 
subcarriers using one single transmit antenna and 
one single receive antenna, which are at a distance 
of approximately 9 m with direct line-of-sight. 
Figure 3 plots the Power Delay Profile (PDP) of 
such measured indoor channels. The corresponding 
RMS delay spread is 6 nanoseconds. In addition, 
it has been observed that the channel frequency 
response values at each subcarrier approximately 
follow a Rayleigh distribution although with a 
different variance at each subcarrier.

Trans. Emerging Tel. Tech. 0000; 00:1–?? © 0000 John Wiley & Sons, Ltd. 

DOI: 10.1002/ett.2908

Prepared using ettauth.cls



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
10

−4

10
−3

10
−2

10
−1

10
0

Time ( s )

0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

14

16

CSNR (dB)

S
D

R
 (

d
B

)

Linear Precoder

Adaptive Coding

Non−adaptive Coding

OPTA

OPTA Precoder

Figure 4. Performance of 2:1 analog JSCC SISO-OFDM systems over

measured real channels.
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Figure 5. Performance of 2:1 analog JSCC SISO-OFDM systems over

a Pedestrian B model.

approaches, the encoder parameters are adjusted at

each OFDM symbol and stochastic normalization

was used. Figure 5 shows the obtained results which

are similar to those presented in Figure 4, although

the performance gains when considering adaptive

coding and linear precoding are slightly higher.

We now shift our focus to MIMO-OFDM channels.

Let us start by considering real 4 × 4 MIMO-

OFDM fading channels measured using the GTEC

MIMO testeb described above in the same indoor

scenario and for K = 64. Stochastic normalization

was used in the adaptive coding approaches, but

the same results were again obtained with per-

subcarrier deterministic normalization and B = 8

blocks. Figure 6 plots the obtained results. The

non-adaptive coding strategy exhibits the worst

performance. It is 8.0 dB below the OPTA at high

11

Figure 3. Power delay profile of the measured real indoor channel

Figure 4 plots the obtained results. It can be seen 
that the three proposed analog JSCC techniques 
approach the OPTA in the whole SNR region. 
As expected, the worst performance is obtained 
when no CSI is available at the transmitter (i.e. 
non-adaptive coding and no precoding), specially 
when the CSNR is high in which case performance 
is almost 4.0 dB below the OPTA. Performance 
is significantly improved (about 1.8 dB at high 
SNR) when adaptive coding is considered and 
further improvement can be obtained if MMSE 
linear precoding is utilized. This latter improvement, 
however, is relatively small becasuse we are in 
a SISO scenario and not much performance gain 
should be expected from linear precoding. Stochastic 
normalization was used in the adaptive coding 
approaches, but the same results were obtained with 
per-subcarrier deterministic normalization and B = 
8 blocks.

In a second computer experiment for SISO-

OFDM, we considered the ITU-Pedestrian B model. 
For a complete description of the delay and 
Doppler power profiles of such model see reference 
[22]. Doppler shift is assumed low enough so 
that the channel remains unchanged during the 
transmission of an OFDM symbol and no Inter 
Carrier Interference (ICI) arises. In the ITU-

Pedestrian B channel model this condition is met 
for a reasonable large number of practical situations. 
Nevertheless, the channel changes from one OFDM 
symbol to another according to the Doppler power 
profile of the model. In the adaptive coding
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Figure 6. Performance of analog JSCC 4 × 4 MIMO-OFDM systems

over measured real channels.

channel SNR values. A significant improvement in

performance is obtained (3.5 dB at high SNR) when

considering adaptive coding. Different to the SISO

case, performance also improves significantly (2 dB

at high SNR) when incorporating linear MMSE

precoding. It is interesting to note from Figure 6

that the OPTA with precoding is actually lower than

that without precoding. This is because the precoder

has been designed to minimize the MSE and not

to maximize capacity. Nevertheless, notice that the

actual performance of the precoded system is better

than that of the system without precoding.

We also carried out computer experiments

considering a standard model such as the Intelligent

Multi-element Transmit and Receive Antennas case

D (IMETRA-D) channel model described in [23].

The IMETRA-D model only specifies the spatial

correlation of a MIMO channel, i.e. the matrices

R[l] and T[l] in (6). For the delay and Doppler

power profile we chose the same parameters as in

the ITU-pedestrian B model [22]. Figure 7 plots

the obtained results which highlight the importance

of the adaptive coding strategies. Indeed, without

adapting the analog encoder parameters, system

performance is very far away from the OPTA (9.5 dB

at high SNR). With adaptive coding the gap to the

OPTA reduces significantly (5.0 dB at high SNR)

while the distance to the OPTA is even less (less

than 3 dB at high SNR) when adaptive coding with

linear precoding is utilized.
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Figure 7. Performance of analog JSCC 4 × 4 MIMO-OFDM systems 
over an IMETRA-D channel.

It is important to note that the deterministic 
normalization based on temporal averaging cannot 
be used when transmitting over this type of time 
varying channels. In such cases, the subcarrier 
clustering deterministic normalization described in 
Section 4.2 should be used. Figure 8 plots the 
performance of an analog JSCC 4 × 4 MIMO-

OFDM system with adaptive coding and precoding 
when transmitting over an IMETRA-D channel for 
different values of B, i.e. the number of subsets 
in which we divided the CSNR range [η̂min, η̂max]. 
Similar behavior as a function of B was observed for 
the case of adaptive coding without precoding. The 
subset limits and the encoder representant values δi,b 

are those in Table II. Figure 8 also plots the limiting 
case B = 40 in which there is a subset per CSNR 
integer value in dB (see Table I). The results shown 
in Figure 8 indicate that the SDR decreases very 
slightly when B ≥ 4 (less than 0.5 dB) with respect 
to the per-SNR normalization. Performance starts 
degrading significantly when B is less than 4.

As explained before, deterministic normalization 
has the inconvenience that the normalization factors 
have to be transmitted, hence increasing the system 
overhead. Nevertheless, the fact that the number 
of subcarrier subsets can be significantly reduced 
without degrading performance enables the system 
to reduce the number of normalization factors 
to be transmitted. Figure 9 illustrates this issue 
by plotting the overhead percentage for different
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6. CONCLUSIONS

We have studied the analog transmission of discrete-

time coded samples using a MIMO-OFDM system.

Source symbols are analog JSCC encoded and sent

as OFDM symbols over frequency-selective MIMO

fading channels. As an alternative to optimal MMSE

decoding, we proposed a more practical two-stage

receiver made up of a MMSE estimator followed

by a Maximum Likelihood (ML) decoder. This

approach exhibits a satisfactory performance in the

whole SNR region while keeping complexity and

delay at a minimum. We studied three different

alternatives for system optimization: non-adaptive

coding, adaptive coding and adaptive coding with

precoding. Simulation results show that the three

analog JSCC transmission strategies approach the

optimal distortion-cost trade-off (i.e. the OPTA),

and the best performance is obtained when using

the adaptive coding together with precoding. We

have also paid special attention to the normalization

of the analog encoded symbols. A deterministic

normalization approach has been proposed that can

be applied to each OFDM symbol individually, while

significantly reducing the overhead caused by the

transmission of the normalization factors.
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Figure 9. Overhead caused by deterministic normalization in an 
analog JSCC 4 × 4 MIMO-OFDM system over an IMETRA-D 

channel.

values of CSNR and B. Notice that the per-

SNR normalization (B = 40) demands a significant 
overhead, which can be as high as 50 % at high CSNR 
values. At lower SNRs the overhead is less because 
the number of empty SNR subsets increases and it 
is not necessary to send their normalization factors. 
As shown in Figure 9, overhead reduces significantly 
for B = 2, 4 and 8.

In summary, according to Figures 8 and 9 the 
choice B = 4 attains a good trade-off between perfor-

mance and overhead. The number of normalization 
factors to be sent can be greatly reduced, with a 
negligible impact on performance, from almost 50%

to just 6% in the worst case.
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CSNR (dB) 0 1 2 3 4 5 6 7 8 9 10 11 12

δ 9.8 8.0 5.6 5.0 4.2 4.0 3.9 3.7 3.6 3.4 3.2 3.1 3.0

γ 0.1 0.11 0.12 0.14 0.16 0.2 0.6 1.2 1.9 2.5 3.0 3.3 3.5

CSNR (dB) 13 14 15 16 17 18 19 20 21 22 23 24 25

δ 2.9 2.7 2.5 2.3 2.2 2.1 2.0 1.8 1.7 1.5 1.4 1.3 1.2

γ 3.9 4.7 5.7 7.1 7.9 8,9 10.0 13.1 15.1 20.5 24.5 29.7 35.3

CSNR (dB) 26 27 28 29 30 31 32 33 34 35 36 37 38

δ 1.1 1.0 0.9 0.8 0.8 0.8 0.7 0.7 0.6 0.6 0.5 0.5 0.4

γ 45 56 74 99 99 99 140 140 209 209 333 333 588

Table I. Optimal values for δ and γ for 2:1 analog JSCC and Gaussian sources.
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Number of intervals CSNR range (dB) δi,b values

B = 2
[0-20] 2.3

[21-40] 0.8

B = 4

[0-8] 8.0

[9-19] 2.2

[20-29] 0.9

[30-40] 0.5

B = 8

[0-7] 8.0

[8-14] 3.0

[15-20] 2.0

[21-25] 1.3

[26-30] 0.8

[31-34] 0.7

[25-37] 0.5

[38-40] 0.4

Table II. Subcarrier partitioning for deterministic normalization
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