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ABSTRACT

To be able to provide uninterrupted high Quality of Experience to the subscribers, operators must ensure high reliability of

their networks while aiming for zero downtime. With the growing complexity of the networks, their exists unprecedented

challenges in network optimization and planning, especially activities such as cell outage detection and mitigation are

labor-intensive and costly. In this paper, we address the challenge of autonomous cell outage detection (COD) and cell

outage compensation (COC) in Self-Organizing Networks (SON). COD is a pre-requisite to trigger fully automated self-

healing recovery actions following cell outages or network failures. A special case of cell outage, referred to as Sleeping

Cell (SC) remains particularly challenging to detect in state-of-the-art SON, since it triggers no alarms for Operation and

Maintenance (O&M) entity. Consequently, no SON compensation function can be launched unless site visits or drive

tests are performed, or complaints are received by affected customers. To address this issue, our COD solution leverage

minimization of drive test (MDT) functionality, recently specified in third generation partnership project (3GPP) Release

10 for LTE Networks, in conjunction with state-of-the art machine learning methods. Subsequently, the proposed COC

mechanism utilizes fuzzy based reinforcement learning mechanism to fill the coverage gap and improve the Quality of

Service, for the users in the identified outage zone, by reconfiguring the antenna and power parameters of the neighbouring

cells. The simulation results show that the proposed framework can detect cell outage situations in an autonomous fashion,

and also compensate for the detected outage in a reliable manner.
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1. INTRODUCTION

The increased demands of high throughput, coverage and

end user quality of service (QoS) requirements, driven by

ever increasing mobile usage, incur additional challenges

for the network operators. Fueled by the mounting

pressure to reduce capital and operational expenditures

(CAPEX & OPEX) and improve efficiency in legacy

networks, the Self-Organizing Network (SON) paradigm

aims to replace the classic manual configuration, post

deployment optimization, and maintenance in cellular

networks with self-configuration, self-optimization, and

self-healing functionalities. A detailed review of the state-

of-the-art SON functions for legacy cellular networks

can be found in [1]. The main task within self-healing

functional domain is autonomous cell outage detection and

compensation. Current SON solutions generally assume

that the spatio-temporal knowledge of a problem that

requires SON-based compensation is fully or at least

partially available; for example, location of coverage

holes, handover ping-pong zones, or congestion spots are

assumed to be known by the SON engine. Traditionally, to

assess and monitor mobile network performance, manual

drive test have to be conducted. However, this approach
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cannot deliver the stringent resource efficiency and low

latency, and cannot be used to construct dynamic models

to predict system behaviour in live-operation fashion.

This is particularly true for a Sleeping Cell (SC)

scenario, which is a special case of cell outage that

can remain undetected and uncompensated for hours or

even days, since no alarm is triggered for Operation

and Maintenance (O&M) system [2]. A SC either cause

deterioration of the service level or a total loss of radio

service in its coverage area, due to a possible software

(SW), firmware or hardware (HW) problem. SC can

only be detected by means of manual drive tests or via

subscriber complaints. These solutions are not only time

and resource consuming but also require expert knowledge

to troubleshoot the problem. As future cellular network

have to rely more and more on higher cell densities,

manual or semi-manual detection of SC can become a

huge challenge. Therefore, automatic cell detection has

become a necessity so that timely compensation actions

can be triggered to resolve any issues. Once the outage

is detected, the operator can achieve self resilience to

network outages by employing intelligent self healing

mechanism. The area under outage can be compensated

by reusing the network’s own resources through adjusting

the antenna down-tilt and variations in transmit power.

A control mechanism is required to optimize the system

parameters and lead the system closer to the normal state

with minimum convergence time.

Self-healing block in SON consists of two modules

namely cell outage detection (COD) and cell outage

compensation (COC). COD aims to autonomously detect

outage cells, i.e., cells that are not operating properly due

to possible failures, e.g. external failure such as power

supply or network connectivity, or even misconfiguration

[2, 3, 4]. On the other hand, COC refers to the automatic

mitigation of the degradation effect of the outage by

appropriately adjusting suitable radio parameters, such as

the pilot power, antenna elevation and azimuth angels of

the surrounding cells for coverage optimization [2].

The reported studies in literature that addressed

the problem of COD are either based on quantitative

models [5], which requires domain expert knowledge,

or simply rely on performance deviation metrics [6].

Until recently, researchers have applied methods from the

machine learning domain such as clustering algorithms [7]

as well as Bayesian Networks [8] to automate the detection

of faulty cell behaviour. Coluccia et al. [9] analysed the

variations in the traffic profiles for 3G cellular systems

to detect real-world traffic anomalies. In particular, the

problem of sleeping cell detection has been addressed

by constructing and comparing a visibility graph of the

network using Neighbour Cell List (NCL) reports [3].

Compared to aforementioned approaches, the COD

solution proposed in this paper differs in various aspects.

Our proposed COD framework adopts a model-driven

approach that makes use of mobile terminal assisted

data gathering solution based on minimize drive testing

(MDT) functionality [2] as specified by 3GPP. MDT

functionality allows eNBs to request and configure UEs

to report back the key performance indicators (KPIs)

from the serving and neighbouring cells along with

their location information. To accurately capture the

network dynamics, we first collect UE reported MDT

measurements and further extract a minimalistic KPI

representation by projecting them to a low-dimensional

embedding space. We then employ these embedded

measurements together with density and domain based

anomaly detection models namely Local Outlier Factor

based Detector (LOFD) and One Class Support Vector

Machine based Detector (OCSVMD). We compare and

evaluate the performance of these learning algorithms to

autonomously learn the “normal” operational profile of

the network, while taking into consideration the acute

dynamics of the wireless environment due to channel

conditions as well as load fluctuations. The learned profile

leverage the intrinsic characteristics of embedded network

measurements to intelligently diagnose a sleeping/outage

cell situation. To the best of our knowledge, no prior study

examines the use of OCSVMD and LOFD in conjunction

with embedded MDT measurements for autonomous cell

outage detection. This is in contrast to state-of-the-art

techniques that analyse one or two KPIs to learn the

decision threshold levels and subsequently apply them

for detecting network anomalies. In addition, the COD

framework further exploits the geo-location associated

with each measurement to localize the position of the

faulty cell, enabling the SON to autonomously trigger cell

outage compensation actions.

Once the outage is properly detected, an automatic

COC scheme is required for coverage optimization in

order to continue serving the UEs in the outage area.

Considering the acute dynamics of the always varying
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wireless environment in general, and the high variability in

terms of load fluctuations, in dense wireless deployments,

we propose a fuzzy logic based Reinforcement Learning

(RL) algorithm, which allows to learn online, through

interactions with the surrounding environment, the best

possible policy to compensate the outage. In literature,

fuzzy logic algorithm has been studied [10] to address

the problem of self-recovery in case of cell outage in

LTE network. Moreover, fractional power control based

approaches in conjunction with reinforcement learning

algorithm [11] have also been studied to address the

problem of near far effect by controlling the required

SINR, in order to reduce the call blocking rate. Motivated

by this, in our paper we propose a fuzzy RL based

compensation scheme in order to minimize the interference

caused by the compensating sites.

The main contribution of this paper can be summarized

as follows: Firstly, we propose a novel COD framework

that exploits recently introduced MDT functionality in

conjunction with state of the art machine learning methods,

to detect and localize cell outages in an autonomous

fashion. Secondly, we demonstrate the applicability of

a fuzzy reinforcement learning based method to achieve

autonomous self-recovery in case of network outages.

Finally, the proposed solution is validated with simulations

that are setup in accordance with 3GPP LTE standards.

The remainder of this paper is structured as follows:

Section 2 present the system architecture for proposed

self-healing framework. Section 3 provides a detailed

discussion of COD framework which also includes a

brief description of LOFD and OCSVMD techniques

that are used to profile, detect and localize anomalous

network behaviour. In Section 4, the COC scheme has

been explained, whereas in Section 5, we provide details

of our simulation setup and evaluation methodology.

Furthermore, we present extensive simulation results to

substantiate the performance of our proposed self-healing

framework. Finally, Section 6 concludes this paper.

2. SYSTEM DESIGN

To alleviate the network performance deterioration, the

first step is to detect the cell/base station (BS) in outage.

This can be achieved by monitoring deviations from the

Key Performance Indicator (KPI) measurement report of

the fault free network. Thereafter, the parameters of BSs

neighbouring the outage BS, can be adjusted according to

the operators policy so as to compensate for the outage

situation. Hence, we propose a self-healing framework

which is primarily consists of the COD and COC stages,

as illustrated in Fig 1.

COD Stage: As shown in Figure 1, firstly to profile

the normal operational behaviour of the network, our

solution collects KPIs from the network leveraging

MDT functionality. The goal is to use the learned

profile to perform problem identification and localization

autonomously, during the monitoring period.

The MDT reporting schemes have been defined in

LTE Release 10 during 2011 [2]. The release proposes

to construct a data base of MDT reports from the

network using Immediate or Logged MDT reporting

configuration. In this study, the UE’s are configured to

report the cell identification and radio-measurement data

to the target eNB based on immediate MDT configuration

procedure as shown in Figure 1. The signalling flow

of MDT reporting procedure consists of configuration,

measurement, reporting and storing phase. The UE is

first configured to perform measurements periodically as

well as whenever an A2 event (i.e., serving cell becomes

worst than a threshold) occurs. Subsequently, it performs

KPI measurements: serving and neighbours Reference

Signal Received Power (RSRP), serving and neighbours

Reference Signal Received Quality (RSRQ), as specified

in Table I, and further reports it to the serving eNB. The

eNB after retrieving these measurements further appends

time and wide-band channel quality information (CQI)

and forwards it to Trace Collection Entity (TCE). TCE

collects and stores the trace reports which are subsequently

processed to construct a MDT database. In this study, the

trace records obtained from the reference scenario (i.e.,

fault-free) act as a benchmark data and is used by the

anomaly detection models to learn the network profile.

These models are then employed to autonomously detect

and localize outage situations. The proposed framework

as shown in Figure 1 consists of profiling, detection and

localization phases, as detailed in Section 3.

COC Stage: Once the cell outage situation has been

detected by the O&M, subsequently, a COC scheme is

triggered to optimize the coverage and capacity of the

identified outage zone according to the operator policies.

This is achieved by adjusting the antenna gain through
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Figure 1. System Model for Autonomous COD and COC Framework

electrical tilt and the downlink transmission power of the

potential compensating nodes. In our proposed framework,

COC is implemented via a fuzzy logic based RL scheme,

as illustrated in Fig 1, which is further explained in

Section 4.

3. CELL OUTAGE DETECTION
FRAMEWORK

The proposed COD framework consists of profiling,

detection and localization phases which are subsequently

discussed in detail.

3.1. Profiling Phase

In the profiling phase, the trace records are processed to

extract the feature vector O corresponding to each MDT

measurement. The measurements including reference

signal received power and quality of the serving, as well

as of the three strongest neighboring cells and the CQI are

concatenated into a feature vector, O, which is expressed

Measurements Description

Location longitude and latitude infor-
mation

Serving Cell info Cell Global Identity (CGI)
RSRP Reference Signal Received

Power in dBm
RSRQ Reference Signal Received

Quality in dB
Neighboring Cell Information Three Strongest intra-LTE

RSRP, RSRQ information

Table I. MDT Reported Measurements

as follows:

O = [RSRPS , RSRPn1, RSRPn2, RSRPn3,

RSRQS , RSRQn1, RSRQn2, RSRQn3, CQI]
(1)

where the subscript S and n denotes the serving and

neighboring cells, respectively. The observation vector, O,

is a 9-dimensional feature vector of numerical features

that corresponds to one network measurement. To reduce

the complexity of storage, processing and analysis this

9−dimensional feature vector is then embedded to three

dimensions in the Euclidean space using MDS method
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[12]. MDS provides a low dimensional embedding of

the target KPI vectors O while preserving the pairwise

distances amongst them. Given, a t× t dissimilarity

matrix ∆X of the MDT dataset, MDS attempts to find t

data points ψ1, . . . , ψt in m dimensions, such that ∆Ψ

is similar to ∆X. CMDS operates in Euclidean space and

minimizes the following objective function

min
ψ

t∑
i=1

t∑
j=1

(
φ

(X)
ij − φ

(Ψ)
ij

)2

, (2)

where φ
(X)
ij = ‖xi − xj‖2 and φ

(Ψ)
ij = ‖ψi − ψj‖2.

Equation (2) can be reduced to a simplified form by

representing ∆X in terms of a kernel matrix using

XTX = −1

2
H∆XH, (3)

where H = I− 1
t
eeT and e is a column vector of all 1’s.

Hence (2) can be rewritten as

min
ψ

t∑
i=1

t∑
j=1

(
xTi xj − ψTi ψj

)2

. (4)

As shown in [12], that Ψ can be obtained by solving

Ψ =
√

ΛVT , where V and Λ are the matrices of

top m eigenvectors and their corresponding eigenvalues

of XTX, respectively. The m dimensional embedding

of the data points are the rows of
√

ΛVT , whereas

the value of m is chosen to be 3 in our case. The

pre-processing of the network observation Oe using

MDS method has several advantages. In literature, MDS

technique has been widely used as a dimensionality

reduction method [12] to transform high-dimensional data

into meaningful representation of reduced dimensionality.

One of the problems with high-dimensional datasets is

that in many cases not all of the measured variables are

“critical” for understanding the underlying phenomena.

As shown in literature that dimensionality reduction

is a critical pre-processing step for the analysis of

real-world datasets, since it mitigates the curse of

dimensionality and other undesired properties of high-

dimensional spaces. MDS aims to achieve an optimal

spatial configuration in a low dimensional space such that

distances in the new configuration (i.e., φ(Ψ)
ij ) are close

in value to the observed distances (i.e.,φ(X)
ij ). The spatial

configurations helps to reveal a hidden structure that are

not obvious from raw data matrices, allowing to explore the

interrelationships of high-dimensional spaces. Given the

growing complexity of the networks, particularly in case

of SON, it is challenging to identify few measurements

that accurately capture the behaviour of the system.

The MDS pre-processing of the network measurements

allow to achieve reduced representation that corresponds

to intrinsic dimensionality of data. Consequently, the

low-dimensional representation of network measurements

facilitates data modelling and allow the anomaly detection

algorithms to obtain better estimation of data density.

As a result, the anomalous network measurements can

be detected with higher accuracy, as discussed below.

Moreover, unlike other dimensionality reduction methods

such as Principal Component Analysis (PCA) or linear

discriminant analysis, MDS does not make an assumption

of linear relationships between the variables, and hence

applicable to wide variety of data.

In addition to network measurements, each MDT report

is tagged with the location and time information as listed in

Table I, which is used in conjunction with RSRP values to

estimate the dominance or the coverage area of target BS

in the network. The dominance map estimation is further

used to autonomously localize the position of the outage

BS.

The next step after the pre-processing is to develop

a reference database, DM , by storing the embedded

measurements that represent the normal operation of the

network. As shown in Fig. 2, this reference database is

used by a state of the art anomaly detection algorithm

to learn the “normal” network profile. The goal of these

algorithms is to define an anomaly detection rule that

can differentiate between normal and abnormal MDT

measurements by computing a threshold ‘ϕ’ based on

a dissimilarity measure ‘D’. Thus, it can be treated as

a binary classification problem which can formally be

expressed as follows:

f(xi) =

Normal, if D(xi,DM ) ≤ ϕ

Anomalous, if D(xi,DM ) > ϕ
(5)

Two state-of-the-art anomaly detection algorithms:

OCSVMD and LOFD are examined in for modelling the

dynamics of network operational behaviour. The brief

working description of the two detection algorithms are

summarized as follows:
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Figure 2. An overview of profiling and detection phases in COD framework

3.1.1. Local Outlier Factor based Detector
(LOFD)

The LOFD method [13] adopts a density based

approach to measure the degree of outlyingness of

each instance. In comparison to nearest neighbour based

approaches, it works by considering the difference in the

local density ρ of the sample to that of its k neighbours;

instead of relying on distance estimation alone. A higher

score will be assigned to the sample, if ρ is highly different

from the local densities of its neighbour. The algorithm

starts by first computing the distance of the measurement

x to its kth nearest neighbour denoted by dk, such that

d(x, xj) ≤ d(x, xi) for at least k samples

d(x, xj) < d(x, xi) for at most k − 1 samples
(6)

The subsequent step is to construct a neighbourhood

Nk(x) by including all those points that fall within the dk
value. The following step is to calculate the reachability

distance of sample x with respect to rest of the samples

dr(x, xi) = max{dk(xi), d(x, xi)} (7)

The local reachability density ρ is the inverse of average

dr and can be defined as

ρ(x) =
| Nk(x) |∑

xi∈Nk(x) dr(x, xi)
(8)

Finally, the S(LOFD) represents a local density-estimation

score whereas value close to 1 mean xi has same density

relative to its neighbours. On the other hand, a significantly

high S(LOFD) score is an indication of anomaly. It can be

computed as follows:

S(LOFD)(x) =

∑
xi∈Nk(x)

ρ(xi)
ρ(x)

| Nk(x) |
(9)

Since, S(LOFD) is sensitive to the choice of k, we iterate

between kmin and kmax value for each sample, and take

the maximum S(LOFD) as described in Algorithm 1.

Algorithm 1 Local Outlier Factor Based Detection Model

1: Input Data X = {xj}Nj=1, kmin, kmax
2: for j = 1, 2, . . . , N : do
3: for k =kmin to kmax: do
4: Find dk(xj) from Equation 6
5: Find the neighborhoodNk of xj
6: Calculate dr(xj , xi) from Equation 7
7: Calculate ρ(xi) from Equation 8
8: Calculate S(LOFD) from Equation 9
9: end for

10: S(LOFD) = max(S(LOFD)
kmin , . . . ,S

(LOFD)
kmax

)
11: end for
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3.1.2. One-Class Support Vector Machine based
Detector (OCSVMD)

One-Class Support Vector Machine by Schölkopf et

al. [14] maps the input data/feature vectors into a higher

dimensional space in order to find a maximum margin

hyperplane that best separates the vectors from the origin.

The idea is to find a binary function or a decision boundary

that corresponds to a classification rule

f(x) =< w, x > +b (10)

The w is a normal vector perpendicular to the

hyperplane and b
‖w‖ is an offset from the origin. For

linearly separable cases, the maximization of margin

between two parallel hyperplanes can be achieved by

optimally selecting the values of w and b. This margin,

according to the definition is 2
‖w‖ . Hence, the optimal

hyperplane should satisfy the following conditions

minimize
1

2
‖w‖2

subject to : yi(〈w, xi〉+ b) ≥ 1

for i = 1, . . . , N (11)

The solution of the optimization problem can be written

in an unconstrained dual form which reveals that the

final solution can be obtained in terms of training vectors

that lie close to the hyperplanes, also referred to as

support vectors. To avoid overfitting on the training data,

the concept of soft decision boundaries was proposed,

and slack variable ξi and regularization constant ν is

introduced in the objective function. The slack variable is

used to soften the decision boundaries, while ν controls

the degree of penalization of ξi. Few training errors

are permitted if ν is increased while degrading the

generalization capability of the classifier. A hard margin

SVM classifier is obtained by setting the value of ν =∞
and ξ = 0. The detail mathematical formulation for SVM

models can be found in [14]. The original formulation

of SVM is for linear classification problems; however

non-linear cases can be solved by applying a kernel

trick. This involves replacing every inner product of x.y

by a non-linear kernel function, allowing the formation

of non-linear decision boundaries. The possible choices

of kernel functions includes polynomial, Gaussian radial

basis function (RBF), and sigmoid. In this study, we have

used the RBF kernel: κ(x, y) = exp(−‖x− y‖2/2σ2),

and the corresponding parameter values of the model are

selected using cross validation method, as described in

Algorithm 2.

As shown in Figure 2, using the benchmark data,

we compute a reference z-score for each target eNB in

the network. The z-score is calculated as follows:zb =
|nb−µn|
σn

where nb is the number of MDT reports labelled

as anomalies for the eNB b, and variables µn and σn are

the mean and standard deviation anomaly scores of the

neighbouring cells. In the profiling phase, we also estimate

the so called dominance area, i.e., for each cell, we define

the area where its signal is the strongest. This is to

establish the coverage range for each cell by exploiting the

location information tagged with each UE measurement.

The dominance estimation is required to determine a

correct cell and MDT measurement association during

an outage situation. This is because as soon as the

SC situation triggers in the network, the malfunctioning

eNB either becomes completely unavailable or experience

severe performance issues. This triggers frequent UE

handovers to the neighboring cells, and as a result the

reported measurements from the affected area contains

the neighbour cell E-UTRAN Cell Global Identity (CGI),

instead of the target cell. Hence, CGI alone cannot be used

to localize the correct position of faulty cell during an

outage situation. The detection and localization phase of

our COD framework make use of estimated dominance

map and reference z-score information established in

the profiling phase to detect and localize faulty cell as

discussed in the following subsection.

3.2. Detection and Localization Phase

In the detection phase, the trained detection model is

employed to classify network measurements as normal or

anomalous. The output of the detection models allow us to

compute a test z-score for each eNB. To establish a correct

cell measurement association, the geo-location of each

report is correlated with the estimated dominance maps.

In this way, we can achieve detection and localization by

comparing the deviation of test z-score of each cell with

that of reference z-score, as illustrated in Fig 2.

4. CELL OUTAGE COMPENSATION

The output of the detection phase is fed into the cell

outage compensation module. This module is based on
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the combination of fuzzy logic and reinforcement learning

(RL) algorithm [15]. Fuzzy logic is implemented in

contrast to the binary (0,1) decisions, where either the

results are completely opposite to each other. Such binary

machine like decision making is not always appropriate

for applications where a more dynamic and human

like approach is needed. Fuzzy logic induces various

degrees of outputs depending on the input conditions.

The main benefits of such outputs are the controlling

of a system can be performed by using linguistic terms

such as ’high’ or ’low’ instead of providing actual

numerical values. Three main components of a fuzzy

logic based system are fuzzification, rule-based inference

and defuzzification. Fuzzification is the mapping of crisp

input variables to fuzzy sets (linguistic interpretation),

rule-based inference is the process of taking decisions

based on ’if..then’ pre-set rules and finally defuzzification

process generates quantifiable crisp outputs based on the

degree of membership of the outcome in the fuzzy sets.

For our specific problem of multiple inputs and multiple

outputs with a requirement of degree of membership

function, Mamdani type fuzzy logic is preferred due to

its simplicity and more suitable for multiple outputs;

whereas Sugeno type fuzzy has a single output without

membership functions. Further, we employ the Temporal

Difference scheme to solve our problem, as they do not

require modelling of the environment dynamics and can be

implemented in a incremental fashion [16].

As for RL, it is a dynamic machine learning

mechanism that interacts with the real time changes

in the environment. RL algorithm learns from its past

experiences (exploitation) and new actions (exploration),

unlike supervised learning where the system is explicitly

taught. A new action is considered as a reward, if the it

generates a positive result towards the desired objective

else the action is considered as penalty.

In our study, we demonstrate the combination of fuzzy

rules in conjunction with RL algorithm for COC. As

shown in Figure 1, the objective is to improve the

Perf(X) measurements. To achieve this, the proposed

solution compares the current performance Perf(X) of

the outage cell and its neighbours against their previous

performance Perf(X − 1). This change in performance

is closely monitored by the reinforcement learning module

to select the direction of the fuzzy module based on

previous actions. Based on preset fuzzy module rules,

antenna down-tilt and transmit powers of the neighbouring

potential compensator are changed. After each cycle of

action (change in antenna down-tilt and transmit powers)

the new accumulated Perf(X) is compared against the

previous Perf(X − 1) by the reinforcement learning

algorithm. As shown in Figure 1, if the change is accessed

as a reward, the fuzzy forward module is activated.

Likewise, if the change is accessed as a penalty, the fuzzy

backward module is activated for the next iteration. The

fuzzy logic system iteratively reduces the resolution of the

change in action as the target performance reaches closer

to the performance when no outage was detected. This

iterative process halts if their is no improvement detected

in Perf(X) performance as compared to Perf(X − 1)

in either of the fuzzy directions. At this stage, we consider

the algorithm has finalised the best possible compensation

parameters for the potential neighbouring cells.

5. SIMULATION RESULTS

In this section, we demonstrate the performance of our

COD framework by presenting the simulation results

obtained under different network operating conditions.

5.1. Simulation Setup

To simulate the LTE network based on 3GPP specifica-

tions, we employ a full dynamic system tool. We set up

a baseline reference scenario that consists of 27 eNBs

having an inter-site distance of 1000m, with a cell load

of 10 users. To model the variations in signal strength

due to topographic features in an urban environment, the

shadowing is configured to be 8 dB. Normal periodical

MDT measurements as well as RLF-triggered data due

to intra-network mobility, reported by UE’s to eNBs, is

used to construct a reference database for training outage

detection models. To simulate a hardware failure in the

network, at some point in the simulation the antenna gain

of a BS is attenuated to −50 dBi that leads to a cell

outage in a network. The measurements collected from the

outage scenario are then used to evaluate the detection and

localization performance of the proposed COD framework.

In order to evaluate the performance of the compensa-

tion module, we identify three neighbouring sectors to

compensated for the outage area. The antenna downtilt

and transmission power of the neighbours is adjusted and
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optimised so as the best possible configuration is set to

safeguard UEs in outage. The detailed simulation param-

eters are listed in Table II. The detection performance of

the outage detection models is also examined for different

network configurations, obtained by varying the simulation

parameter settings for ISD, load and shadowing.

Parameter Values

Cellular Layout 27 Macrocell sites
Inter-site Distance (ISD) 1000m
Sectors 3 Sectors per cell
User Distribution Uniform Random Distribution
Path Loss L[dB] =128.1 + 37.6log10(R)

Antenna Gain (Normal
Scenario)

18 dBi

Antenna Gain (SC Sce-
nario)

−50 dBi

Slow Fading Std 8 dB
Simulation Length 420s (1 time step = 1ms/1TTI)
Control BS Tx Power 46 dBm
Data BS Tx Power 23 dBm
Horizontal HPBW 70◦

Verticall HPBW 6.8◦

Antenna Pattern [15] Bφ(φ) = −max(Bφ, 12.
φ−Φ
∆φ

)

Network Synchronization Asynchronous
HARQ Asynchronous, 8 SAW channels,

Maximum Retransmission = 3

Cell Selection Criteria Strongest RSRP defines the tar-
get cell

Load 20 users/cell
MDT Reporting Interval 240 ms
Traffic Model Infinite Buffer
HO Margin 3 dB

Table II. Simulation Parameters

Parameter Estimation and Evaluation
The parameter selection for LOFD and OCSVMD is

performed using a combination of grid search and cross-

validation (CV) method as listed in Algorithm 2. Initially,

a grid of parameter values are specified that defines the

parameter search space. For example, the hyperparameters

of OCSVMD ν and kernel parameter γ is varied from 0 to

1 with 0.05 interval to determine different combinations.

Subsequently, for every unique parameter combination

Ci, CV is performed as follows: The DM is divided

into training Dtrain and validation dataset Dval, and

subsequently performance of the model is evaluated using

K-folds approach as shown in Algorithm 2. The value of

K is chosen to be 10 in our framework. The performance

estimate of the model over K folds is averaged and

iteratively this process is repeated until all the parameter

combinations are exhausted. The Ci yielding the highest

performance estimate is selected as an optimal parameter

combination for the target model. The value of kmin and

kmax for LOFD is found out to be 5 and 14. In case of

OCSVMD, RBF kernel is employed and the values of the

hyperparamters ν and γ is found out to be 0.3 and 0.25,

respectively. Finally, the test data Dtest from the outage

scenario, has been used to estimate the performance of the

trained models.

In our study, the quality of the target models is

evaluated using Receiver Operating Characteristic (ROC)

curve analysis. The ROC curve plots the true positive rate

or detection rate (DR) (i.e., a percentage of anomalous

measurements correctly classified as anomalies) against

the false positive rates (FPR) (i.e., a percentage of normal

cell measurements classified as anomalies) at various

threshold settings. An Area under ROC curve (AUC)

metric is used for model comparison, whereas a AUC value

of 1 or close to it, is an indicator of higher discriminatory

power of the target algorithm.

Algorithm 2 Parameter Estimation using CV Method

1: Define parameter combination Ci, i = 1, . . . ,M
2: for i = 1, 2, . . . ,M : do
3: Split the target dataset DM into K chunks.
4: for l = 1, 2, . . . ,K: do
5: Set Dval to be the lth chunk of data
6: Set Dtrain to be the other K − 1 chunks.
7: Train model using Ci, Dtrain and evaluate its

performance Pl on Dval.
8: end for
9: Compute average performance Pi over K chunks

10: end for
11: Parameter Selection: Select Ci corresponding to

highest Pi
12: Performance Estimation: Evaluate the

performance of the model M(Ci, DM ) on Dtest

5.2. Cell Outage Detection Results

The training database DM contains pre-processed embed-

ded measurements from the reference scenario as dis-

cussed in Section 3.1. The database is subsequently used

to model the normal operational behaviour of the network.

The database measurement also includes RLF-triggered

samples, since even in the reference scenario UE’s experi-

ence connection failures due to intra-LTE mobility or shad-

owing. The test data collected from the outage scenario is

used to evaluate the performance outage detection models.
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(a) Reference Scenario: Shadowing = 8 dB (b) Shadowing = 4 dB (c) RSRP Distribution

(d) Load = 20 UE/cell (e) ISD= 500m (f) RSRP Distribution

Figure 3. (a) OCSVMD learned network profile for Reference Scenario (b) Low-shadowing case (c) Distribution of RSRP values for
all shadowing cases (d) Medium Traffic case (e) smaller ISD case (d) Distribution of RSRP values for all ISD cases

(a) Shadowing (b) Cell Load (c) ISD

Figure 4. OCSVMD ROC Curves for shadowing, traffic and ISD cases

The diagnosis process has been tested in twelve

scenarios by changing the shadowing, user-density and

inter-site distance (ISD) parameters of the baseline

simulation setup as listed in Table II. We have evaluated

the detection performance of the OCSVMD and LOFD

against every target network configuration. Figure 3(a),

illustrates the MDS projection of MDT measurements

from the normal and the outage scenario using the baseline

network operational settings. It can be observed that the

abnormal measurements belonging to SC scenario lie

far from the regular training observations. As discussed

earlier in Section 3.1, MDS tries to maximize the variance

between the data points and consequently dissimilar points

are projected far from each other, allowing the models

to compute a robust dissimilarity measure for outage

detection. The goal of OCSVMD is to learn a close frontier

delimiting the contour of training observations obtained

from the non-outage scenario. In this way, any observation

that lie outside of this frontier-delimited subspace (i.e.

representative of the normal state of the network) is

classified as an anomaly or an abnormal measurement.

However, the inlier population (i.e. measurements that

lie inside the OCSVMD frontier) is contaminated with

RLF events, which ultimately elongates the shape of the

learned frontier. As a result, during the detection phase, the

observations from the outage scenario exhibiting similarity

to RLF-like observations are positioned within the frontier-

delimited space as shown in Figure 3(a), and hence
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wrongly classified as normal. The shape of the learned

frontier determines the precision of the model for detecting

anomalous network measurements.

To study the impact of different radio propagation

environment on the detection performance, we varied

the shadowing parameter from 8 dB to 4 dB and 12

dB cases. Under low-shadowing conditions (i.e., 4dB), it

can be observed from Figure 3(b) that inlier population

exhibits wider separation from anomalous observation

in comparison to reference scenario. This is because

higher shadowing conditions affects the spread of the

KPI measurements, as indicated in Figure 3(c). It can

be inferred from the ROC analysis of OCSVMD, that

detection performance deteriorates as the shadowing effect

is varied from low to high. As shown in Figure 4(a),

at target false positive rate of 10%, the model reports

the highest detection rate (i.e.TPR) of 93% under low-

shadowing conditions. Likewise, the AUC score has also

decreased from 0.98 to 0.94 for high-shadowing scenario

(i.e., 12 dB). Moreover, we also analyzed the OCSVMD

detection performance under varying traffic conditions.

Figure 3(d) depicts the distribution of measurements in the

MDS space for a user density of 20 per cell. The higher

user density implies an increase in the number of training

observations that leads to a more accurate estimate of the

frontier shape. This explains the slight improvement in the

AUC score for OCSVMD with the increase in the cell

load as shown in Figure 4(b). A notable detection rate

improvement of 10% is observed for high traffic scenario

(i.e., 30 users per cell) in comparison to the baseline

OCSVMD.

As for different ISD configurations of a network, we see

a significant change in the values of KPI measurements.

This is expected since there is a strong correlation between

UE reported KPI’s and their distance from the eNB.

Figure 3(f) shows the distribution of UE reported RSRP

values for three different ISD cases. In case of ISD=500m,

we see a distinct peak of RSRP values around −90dBm.

Likewise, at the farther left end we see a small peak around

−180dBm that is mainly due to RLF-like observations.

In contrast, when ISD=1000m, the highest peak value

is observed at around −140 dBm, and the observed

measurements have lower data spread as indicated in

Figure 3(f). As already highlighted, the shape of the

learned frontier by OCSVMD is directly affected by

the distribution of observations in the embedded space.

This becomes evident in Figure 3(e) which shows that

the OCSVMD learns two decision frontiers instead of

one, since there exists two distinct modes in the data

distribution, for the case of ISD=500m. As a result,

OCSVMD interprets a region where RLF-like event are

clustered, as inliers, which leads to an inaccurate network

profile. The ROC analysis shown in Figure 4(c), clearly

indicate the degradation of OCSVMD performance for

lower ISD values.

Similar to OCSVMD, the performance of LOFD is

also evaluated for all target network configurations. As

explained in Section 3.1, LOFD derives a measure of

outlyingness of an observation (i.e., SLOFD), based on

the relative data density of its neighborhood. Figure 5(a)

illustrates the labels assigned by LOFD to the observations

obtained from the baseline scenario. It can be observed that

LOFD classifies some of the test instances that even lie

close to the vicinity of training observations as anomalous.

Due to such instances LOFD receives a high outlying

scores SLOFD , since the local density around them is

highly different from the density of its neighborhood.

To further illustrate the impact of the variation and

spread of the data on the values of SLOFD , we plot

a cumulative distribution function (CDF) for different

shadowing scenarios, as shown in Figure 5(b). It can

be seen that for low-shadowing scenario, almost 80%

of the observations obtain SLOFD value less than 50.

However, as the shadowing increases we see a gradual

increase in the value of SLOFD . Likewise, a similar

behaviour is observed with the increase of ISD, as shown in

Figure 5(c). The shadowing and ISD parameters influence

the distribution and spread of the data as explained earlier,

and consequently the value of SLOFD . This leads to a

low detection performance of LOFD, since it generates an

increased number of false alarms.

As shown in Figure 6(a), the AUC score for LOFD

decreases for high-shadowing scenario. On the other hand,

the increase in the cell load also increase the spread of the

data, which consequently affect the detection performance

of LOFD. As shown in Figure 6(b), at false alarm rate of

10%, the highest detection rate of 81% is achieved for a

network scenario in which load configuration is set to be

10 users per cell. Similarly, the change in the ISD has a

severe effect on the model performance and low detection

performance of 60% and 30% is achieved for 800m and

500m ISD configurations, as shown in Figure 6(c).
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(a) Reference Scenario: Shadowing = 8 dB (b) CDF of SLOFD for Shadowing cases (c) CDF of SLOFD for ISD cases

Figure 5. Network profiling using LOFD

(a) Shadowing (b) Cell Load (c) ISD

Figure 6. LOFD ROC Curves for shadowing, traffic and ISD cases

In summary, we can conclude from the reported

results that OCSVMD under most cases achieves a

better detection performance in comparison to LOFD.

The outage detection models yields worst performance

scores particularly for low ISD network configuration.

The performance issue of the target outage detection

models can be addressed as follows: For OCSVMD, in the

pre-processing step the RLF-like events must be filtered

before constructing a training database. This would help

decrease the spread of the data and the model would

only learn frontier that corresponds to normal operational

network behaviour. In case of LOFD, incremental drift

detection schemes can be incorporated to re-tune the model

parameters in order to minimize the false alarm rate.

5.3. Localization

Since, OCSVMD model has outperformed LOFD for

most test cases, it has been selected as a final model

to compute per cell z-scores for the normal and SC

scenario, as shown in Figure 7. It can be observed from

Figure 7 that measurements are classified as anomalous

even in the normal operational phase of the network due

to occurrence of RLF events. This is particularly true for

cell ID 1,5,11,16, and 19 whose nb values are found to

Figure 7. Localization of SC based on per cell z-scores

be 700,2000, 3000, 1500, respectively in the reference

scenario. However, during an outage scenario, since cell

11 is configured as a faulty cell, the corresponding

z-scores are significantly higher than the rest of the

network. A simple decision threshold can be applied on the

computed z-scores to autonomously localize faulty cells,

and consequently an alarm can be triggered. In addition

to cell outage localization, the change in the z-score can

be used to identify performance degradation issues or a

weaker coverage problems. This information can act as an

input to self-healing block of SON engine, which can then

trigger automated recovery process.
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5.4. Compensation

Plot shown in Figures 8(a) 8(b) and 8(c) present the

radio environment maps (REM) for the normal, outage and

compensated cases respectively, and the color bar shows

the SINR levels. As the subject cell site goes into outage,

it is visible that the coverage area of the outage cell has

very low SINR levels (depicted in 8(b)). The UEs in

this low SINR region are susceptible to outage (failure of

link to the network). The compensator module optimizes

the antenna down-tilt and transmit powers of the three

potential neighbors such that this coverage gap is filled.

It is visible from REM in figure 8(c) that SINR of outage

region is significantly improved after compensation.

Figure 8(d) presents the comparison of SINR levels

with a Cumulative Distribution Function (CDF) plot for

the region in and around the outage cell. It is visible in

the zoomed figure that in the outage case, there are several

UEs in the low SINR region. Where as after compensation

there is a significant reduction in the percentile of users

in the low sinr region. Another visiable effect is that in

the compensation case a majority of the UEs also have

substantially high SINR levels. This is due to the fact that

the increase transmit power and change in antenna down-

tilt configuration further improves the SINR performance

of the UEs closer to the compensating neighbors.

We also present in figure 8(e) the bandwidth normalised

data rate performance of only the UEs present in the outage

area. It is visible that the mean data rate performance

of the UEs is significantly reduced in case of an outage.

However, as the compensation is applied, this performance

is improved upto a level negligibly less than the normal

condition.

6. CONCLUSION

This paper has presented a data-driven analytics frame-

work for autonomous outage detection and coverage opti-

mization in an LTE network, that exploits the minimization

of drive test functionality as specified by 3GPP in Release

10. The outage detection approach first learns a normal

profile of the network behaviour by projecting the network

measurements to low-dimensional space. For this purpose,

multi-dimensional scaling method in conjunction with

domain and density based detection models: OCSVMD

and LOFD, respectively, were examined for different net-

work conditions. It was established that OCSVMD, a

domain based detection model attained a higher detection

accuracy compared to LOFD which adopts a density based

approach to identify abnormal measurements. Finally the

UE reported coordinate information is employed to estab-

lish the dominance areas of target cells which are sub-

sequently used to localize the position of outage zone.

To optimize the coverage and capacity of the identified

outage zone, a fuzzy based based RL algorithm for Cell

Outage Compensation (COC) is purposed. The COC algo-

rithm achieves coverage optimization by adjusting the

gains of the antennas through electrical tilt, and downlink

transmission power of the neighbouring BSs. Simulation

results have shown that the COC algorithm can recover a

significant number of UEs from outage.
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