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Abstract

In this paper, we revisit the forward, backward and bidimewl Bahl-Cocke-Jelinek-Raviv (BCJR)
soft-input soft-output (SISO) maximum a posteriori proltigh(MAP) decoding process of rate-1 binary
convolutional codes. From this we establish some intergstixplicit relationships between encoding
and decoding of rate-1 convolutional codes. We observettteaforward and backward BCJR SISO
MAP decoders can be simply represented by their dual SIS@nehia@ncoders using shift registers in
the complex number field. Similarly, the bidirectional MARabding can be implemented by linearly
combining the shift register contents of the dual SISO eac®df the respective forward and backward
decoders. The dual encoder structures for various reeuasid non-recursive rate-1 convolutional codes

are derived.
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. INTRODUCTION

Convolutional codes were first introduced by Elias more tB@nyears ago [1]. They have

been widely used in various modern communications systeut$) as space and satellite com-
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munications, cellular mobile, and digital video broaduoastlts popularity stems from its simple
encoder structure, which can be implemented by shift regsst

The main complexity associated with systems using conwwlat coding is situated in the
decoder. Decoding essentially consists of finding an optpath in a trellis based graph. Various
decoding algorithms have been developed to achieve thenabtecoding performance in the
most efficient manner. The Viterbi algorithm (VA) has beeown as a maximum-likehood (ML)
decoding method, which minimizes the sequence error rat.[& exhaustively searches all
states of the trellis over a fixed length window and finds a rikelty information sequence. In the
standard VA, the decoder produces hard-decision outpiiishvare the estimates of transmitted
binary information symbols. In [5, 8], the VA is modified toliker not only the most-likely
binary signal sequence, but also the soft output contaitmeg posteriori probabilities (APPs) of
the transmitted binary symbols. The soft-output VA (SOVAespecially useful when decoding
concatenated codes, such as turbo codes, as it providemgoftfor the next decoding stage
and thus improved performance.

There exists another class of non-linear decoding algosthcalled maximum a posteriori
probability (MAP) decoding. It was first proposed by Bahl,cke, Jelinek and Raviv (BCJR)
in 1974 [6]. It performs symbol by symbol decoding and uses simbol error rate as the
optimization criterion. Both the input and output of the deer are soft information signals.
Compared to the VA, the soft-input-soft-output (SISO) MA&hqrovide the optimal symbol-
by-symbol APP, and thus can fully exploit the full benefitssoft-decision decoding in iterative
decoding process of concatenated codes.

The BCJR MAP decoding is a bi-directional decoding processsisting of a forward and
a backward recursion process, which dominates the main leaiyp of a decoder. In each
direction, the decoder infers the probabilities of curretiates and information symbols based on
the probabilities of the previous states in the forward aacklwvard trellis, the received signal, the
channel state and the a priori probabilities of the transuisignals. The complexity of forward
and backward recursion exponentially increases with tinstcaint length of convolutional codes.

In this paper, we revisit the forward, backward and bidioal SISO MAP decoding of
rate-1 convolutional codes. We observe some interestipjcéxrelationship between a SISO
forward/backward MAP decoder of a convolutional code arsdehcoder. The forward and

backward decoder of a rate-1 convolutional code can agtbelfepresented by its corresponding



dual encoder using shift registers in the complex field. ®igmificantly reduces the original
exponential computational complexity of MAP forward andckaard recursion to the linear
complexity. Similarly the bidirectional MAP decoding cae implemented by linearly combining
the shift register contents of the dual SISO encoders of éispactive forward and backward
decoders. With logarithm of the soft coded symbol estimaditectly obtained from the received
signals, as the input to the dual encoder, the dual encodpubproduces the logarithm of the
soft symbol estimates of the binary information symbols.

We found that the dual encoder structure of a code dependshether the code is recursive
or not. In our preliminary work in [9], we investigated thdel recursive convolutional codes.
In this paper, we will study the general rate-1 convolutlawes, including the feedback only
convolutional (FBC) code, feed-forward only convolutib(féFC) code and general convolutional
(GC) code. We will investigate the explicit relationshigween a SISO forward/backward MAP
decoder of these codes. The dual encoder structure is ddaveach class of codes. In [9], the
bidirectional decoding output is derived through the Imeambination of forward and backward
decoder outputs. These complex coefficients are found glr@emputer search. However we
only found the coefficients for some specific 4-state anda8stcodes due to the high complexity
involved in the search. In this paper, we propose a simplegamegral combining approach to
represent the bidirectional MAP decoder by linearly cormmrshift register contents of the dual
encoders of the respective forward and backward decoderqr@ve that such linear combining
produces exactly the same decoding output as the bidiredtidd AP decoding for any rate-1
convolutional codes.

The remainder of the paper is organized as follows. In Sediiowe first briefly review
the BCJR forward decoding algorithm and derive the dual decstructures of MAP forward
decoders for three classes of rate-1 convolutional codesdiial encoder structure for backward
decoding is presented in Section Ill. The representatidmdifectional MAP decoding by using
the derived dual encoder structures of forward and backweambding is described in Section

V. Simulation results are shown in Section V. Conclusiors drawn in Section VI.

II. LINEAR REPRESENTATION OFMAP FORWARD DECODING

In this section, we first revisit the BCJR forward decodingoaithm. We will focus on

the decoding of a single constituent convolutional codeaté-. Letb = (by,bs,...,bx) be
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Fig. 1: The encoder and trellis @f-pc(z) =

a binary information symbol sequence to be transmitted,reviie¢ is the frame length. Let

¢ = (¢,¢9,...,cx) be the binary codeword ob, generated by the binary code generator
polynomialg, andx = (x1, 22, ..., xx) be the modulated symbol sequencecofor simplicity,
we consider the BPSK modulation. Let= (y1, v, . . ., yx ) denote the received signal sequence
at the channel output.

Based on the encoder structure, we define three differessedaof convolutional codes.
Let a(z) = 2" + ap,_12" ' + -+ a1z + 1 and g(z) = 2" + gzt + -+ oy + 1,
wheren is the degree of polynomialgx) andg(z). We define a convolutional code, generated
by grpc(z) = 1/q(x), as a feedback-only convolutional (FBC) code, a code gézekray
grrc(z) = a(x) as a feed-forward only convolutional (FFC) code, and a coeleetated by
gac(z) = a(x)/g(x), as a general convolutional (GC) code. We will investigdte forward

decoding process of these three classes of convolutiomigsco

A. Forward decoding of a FBC code

In this subsection, we first investigate the forward decgdihan FBC code. To gain better
insight into the decoding process, let us first look at théofahg example.

Example 1: We consider a FBC code with the generator polynomiayof-(x) = m
for which the encoder and trellis diagram are shown in Eignlthe trellis diagram, the state
is labeled asS;S; , where S;, i = 1,2 is the value of the-th encoder shift register content.
Each branch in the trellis is labeled agy wherex andy denote the encoder input and output,
respectively.

Let p., (1) = p(cx = lyx), L = 0, 1, denote the a posteriori probabilities (APP) of the encoded



symbolc, = [, given the received signal.,, wherec, is the transmitted binary coded symbol at
time k. Let us further denot®,. = {(p., (0), pe, (1)), -+, (P (0), ey (1)), -+ (Pege (0), Dege (1))}
Now let us follow the BCJR forward decoding algorithm to uBe to calculate the APPs
of binary information symbolsy. Let p,, (w) = p(by = w|y) represent the probability of
information symbolb, = w, w=0, 1, given the received signals = {y1, -, vk, ,Yx}-
It can be calculated in the following recursive way [6]

pr(w) = plr=wly)= > aa(m)p(m'm) @)

(m/;m)eU (b(k)=w)

- Z -1 (m")pe, (cx(m',m))

(m!,m)eU (b(k)=w)

Zak 1 % mm Zak 1 Pck Ck(m m)) (2

whereU (b(k) = w) is the set of trellis branches from the staté at time k-1 to the staten
at time k, that are caused by the input binary symbgt) = w, and ¢, (m’, m) represents the
encoder output of the corresponding trellis branch.

Letm = 0, 1, 2, 3 represent the states 8fS, = 00,01, 10, 11 attimek, andx, = (Z¢,, - , Tey )
andxy, = (Zy,, - - - , I, ) denote the soft symbol estimate sequence of codewanad informa-
tion sequencd, respectively. We assume that 0 and 1 are modulated intoaylrdnd -1. Then
the soft symbol estimates, andz;,, which represent the probabilistic average of estimates of

symbolsz., andzx,, giveny, can be calculated as

i'ck = E(xck|yk) = pck(o) _pck(l) (3)
Lo, = E('Ibk‘y) = Py, (0) - pbk(l)' (4)

Then by using Egs[{1) andl(2) alternatively in Example 1, a&e get

(1) at timek = 0,

ap(0) = 1; (1) = 0; ap(2) = 0; ap(3) = 0;

Doy (0) = 15 pyy (1) = 0;

(2) at timek = 1, the received signal ig(1), and the input to the decoder is the APPsqf
given byp., (0) andp., (1), respectively. Then we have

a1(0) = pe, (0); en (1) = 05 a1 (2) = pe, (1); a(3) = 0;

P, (0) = pe; (0); po, (1) = pe, (1);



and
Ty, = Pby (O> - pbl(l) = Py (0) - pm(l) = [‘TAEC;]
(3) at timek = 2, the input to the decoder is the APPs®f p.,(0) andp.,(1). We have
3(0) = ey (0)pe, (0); @2(1) = pe, (0)pe; (1); @2(2) = pey (1)pe, (0); @2(3) = pe, (1)pe, (1);
6y (0) = ey (0)a1(0) + pey (1)1(2); poy (1) = pey (1)1 (0) 4 pe, (0) e (2);
and
Tby = Dby (O> - pb2<1> = (2%2(0) - pcz(l))(p61 (O> - pcl(l)) = L?fz_i;clj
(4) At time 3, we have
3(0) = pe;(0)pe, (0); @3(1) = pey (0)pe, (1); a3(2) = pes (1)pe, (0); @3(3) = ey (1)pe, (1)
o3 (0) = pe; (0)az(0) + pe, (1) az(1) + pe, (1)2(2) + pe
Py (1) = pe; (1)a2(0) + pe, (0)az(1) + pe, (0)2(2) + pe
and

by — pb:;(o) - pbg(l) = (p03(0) - pC:;(l))(pQ(O) _p02(1))(p01 (0) - p01(1)) = Li03i02j01j

(5)Similarly we can have for ang >= 2, we have
(0) = Py, (0)pe,_, (0); k(1) = pe, (0)pe,_, (1); ar(2) = pey, (1)pey_, (0); @k (3) = pe, (1)pe,, (1)
P (0) = e, (0)r—1(0) + pe, (1 ag—1(1) + pe;, (1) ag-1(2) + pe, (0)ar—1(3);
Py (1) = pe (1) ar—1(0) + pe,, (0)ar—1(1) + pe, (0)ak—1(2) + pe, (1) ar—1(3);
and

Ty = Poi(0) = Py (1) = (P (0) = ey, (1)) (r-1(0) + g1(3) = a1 (1) — 1(2))

— 1
- |xckxck 1xck 2 |7
L

where
(ap—1(0)+ak—1(3)—ar—1(1)—ar-1(2)) = pe, , (0)pe,_5(0)+pe, , (1)Pey_5(1)=Pe,, (0)pe, (1)~

pck—l(l)pck72 (O> = j’jckfrfjckfz'
Therefore, the decoder input and its output soft symbohests,z., andz,,, for the code,

generated byrpc(x) = have the following relationship

1
x2+x+1?
Loy, = LepLeg_1Lep_o- (5)

By taking the natural logarithm of both sides of the aboveatign, we get

Indy, = Inde, + Inde,_, + Inde, ,. (6)
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Fig. 3: The Log-domain SISO forward decoder implemented dyaiits dual convolutional

encoder

We define the decoder with the input and output being the ithgarof the soft symbol
estimates (SSE) of the coded symbols and SSEs of the infemsmbols, as the Log-domain
soft-input-soft-output (SISO) decoder. As shown in Eigth& SISO decoder can be implemented
by adding a logarithm module and an exponential module afrtre and rear end of the log-
domain SISO decoder, respectively.

Based on EqL]6, log-domain SISO forward decoding of the cgdg (z) =
be implemented by using the convolutional encoder, geaéraly the generator polynomial

—7— can
1/grpc(z) = 2? + x + 1, as shown in Figl]3. Here the addition operation in the encisle
not carried out in the binary field as in conventional contiohal encoders, but in the complex
field.

Eq.[6 and Fig[ B reveal an interesting explicit relationsbipthe binary encoder and SISO
forward decoder of a rate-1 feedback only convolutionalecothis can be generalized to any
FBC codes as summarized in the following theorem.

Theorem 1 - Linear representation of forward decoding of a feedback only convolutional
(FBC) code: For a FBC code, generated by a generator polynogial-(z) = 1/q(z), we
define its dual encoder as the encoder with the inverse gengralynomial ofgrpc(z), given
by qrpc(x) = 1/grpc(z) = q(x). Then the log-domain SISO forward decoding of the FBC

code can be simply implemented by its dual encoder in the toaild. This property is shown
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Fig. 5: The encoder and trellis @f-rc(z) = 2% + 2 + 1
in Fig.[4.

Proof: See Appendix A.

B. Forward decoding of feed-forward only convolutional (FFC) code

In this sub-section, we investigate the forward decoding &FC code. As will be shown in
the following example, the property shown in Theorem 1 doatsapply to such codes.

Example 2: We consider a FFC code with the generator polynomia;ofc(z) = 22+ 2+ 1
for which the trellis diagram and encoder are shown in Eig. 5.

Let Ind;, represent the output of the log-domain dual encoder, getkeizased on Theorem



TABLE I: Comparison of the dual encoder output calculatedeloaon Theorem 1ni;,, with
the actual forward MAP decoding soft outplutz,,

Log soft Memory S; of Memory S> of Log soft output of Desired soft decoding
input InZ., the dual encoder the dual encode the dual encodeiniy, outputinds,
Ind.e, 0 0 Ind., Ind.,
INTc, InZe, 0 INZey, + Ine, INTey + InZe,
INTey INTey + InZe, InZe, INTey + InTey, + InTc, + Inte,

r- _A _____ : -7
HnZe, +InZey
L -

InZc, InZez+Inde, InTe, + Indc, INTe,HInk ey, + Inkc, + INZe,Hney, + Inke,

r--- - -~ - -~ ---~-~-- - A
+ InZe, Hn,, HINZ o HNT oo HNT oy HNT ey
L -l

INZey INZeyHnde, + Inde, InZe,+inde, INZestnte, + InTe,tine, + | INTeyHnde, + Inde, Hnde,
r---~-~~"~>"-" " ~“"=--" " ~"~—"=°—-°"~° A
HnZ e, HINT ey HNZ oy Hn e, + InZe, Hnde, InZey, HnZez+Inke, HNZey
L e e e e e e e = |

r-.- - - - - - -T---- =T~ A
L HNT o HNE ey H N e HInd ey
L -l

1, with the generator polynomial @f-rc(z) = 1/grrc(z) = 1/(2® + 2 + 1). Table | compares
Indy, with the actual forward MAP decoding soft outputz,, . Their differences are highlighted
in the dashed-line boxes.

From the above table, we can see that the soft outputs of thkeshcoder, generated from
Theorem 1]nd,, are different from the actual forward MAP decoding soft au§ini;,, when
k > 2. This is because the recursive structure of the dual encgder(z) and the complex field
addition operation of the dual encoder. It can be obsernau the above table that if the input
to the dual encoder is the binary symbol and addition in theoéer is a module-2 addition,
as in the conventional binary encoder, the difference teshwsvn in the dotted-line-boxes will
become zero and the dual encoder output will be equal to thmladecoding output. However,
the inputs to the dual encoder are the logarithms of the spfits, which are complex numbers,
and the addition in the dual encoder is done in the complerbar domain, which causes the
differences betweemms;,, andinz; . We can observe from the table that the difference terms
come from the common terms of the shift-register contéhtand.S; in the dual encoder. If we
can change structure of the dual encoder by multiplying bisehnumerator and denominator by
a common polynomial, without changing its actual generptlynomial, such that the encoder

contents do not share any common elements at any time instent the difference between
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Fig. 6: The modified dual encoder 9f o (z) = 2* + x + 1.

TABLE II: Comparison of modified dual encoder outplity,, with the actual forward MAP

decoding soft outputny, .

Log soft Memory S; | Memory S2 | Memory S5 Log soft output of Desired soft decoding
input InZ., the modified dual encodéniy, outputiny,
Inde, 0 0 0 Inde, Inde,
INTec, InZe, 0 0 INZey + Inde, InTe, + Indc,
INTey INZec, InZe, 0 INZey + Iy INTey + I,
InZc, INTecy INTec, InZe, InTe, Hney, + Inke, InTe, HnZey + Inde,
INT ey InZe,Hnd., INTey INTc, INZeg+Ine, + InTe,+Inde, INZesHnd e, + InTe,+inde,

Indy, andInz,, will disappear and the dual encoder output will be equal ® dhtual MAP

forward decoding output.

In Example 2, if we multiply both the numerator and denononaf the dual encoder generator

polynomialg(z) by (1 + z), then we have

q(z)

1+2x

1+

- grro(r)(1+2) 1423

Fig.[8 shows the encoder with the polynomial in Ed. (7).

(7)

Table[Il shows the outputs of the modified dual decoder andotiiput of the actual MAP

forward decoder. We can see that the soft outputs of the naddifual encoder are exactly the

same as the actual MAP forward decoding outputs.

We can prove that for any FFC codes, we can always find a modifiaddecoder to implement

a MAP forward decoder without changing its actual generptdynomial. This is summarized

in Theorem 2.

Before we present the new theorem, we first definaigmum complementary polynomial.
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For a given polynomiak(z) = 2™ 4+ --- 4+ a1 + 1, we define theminimum complementary

polynomial as the polynomial of the smallest degree,
2z) =2+ a1 (8)

such that
a(r)z(z) = 2" + 1. 9

Sincea(z) = 2" + --- + a;x + 1 always dividesz?"~! + 1, the minimum complementary
polynomial ofa(z) always exists.

Theorem 2 - Linear presentation of forward decoding of a feed-forward only convo-
lutional (FFC) code: For a FFC code, generated by a generator polynomigh(z) = a(x),
let z(z) represent itaminimum complementary polynomial of degreel. The log-domain SISO
forward decoding of the FFC code can be implemented by it$ elueoder with the generator

polynomial of

z(x) z(x) IR T SRR S P S |
qrro(z) = = gt - + :
a(x)z(z) antt+1 antt 41

Proof: See Appendix B.

(10)

As it can be noted from Theorem 2, in contrast to FBC, the emicadd decoder of which can
be implemented by the same number of shift registers, foF&#@ the number of shift registers
required in decoder will be increased compared to the ema@tkthe number of increased shift
registers depends on the degree of its minimum complemeptdynomial.

Theorem 2 can be easily extended to a general convoluti@@) code as shown in the
following corollary.

Corollary 1 - Linear presentation of forward decoding of a general convolutional (GC)
code: For a GC code, generated by a generator polynogialz) = % = % let z(x)
be the degreé-minimum complementary polynomial af(x). The log-domain SISO forward
decoding of the GC code can be simply implemented by its doebaer with the generator
polynomial of

g(@)z(z)  gx)z(z) a4+ 4+ 41
40(@) = a(z)z(z) a1 a4+ 1
T R L
a4+ 1

(11)

=1

+

Y
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Fig. 7: The encoder and its dual encoder of forward decoding general convolutional (GC)

code

whereg(z)z(x) = 2" + by 2™t 4o b+ 1
This relationship of a binary encoder and its dual encodsh@vn in FigL¥. Corollary 1 can

be directly derived from Theorem 2, so we skip its proof here.

[1l. L INEAR PRESENTATION OFBACKWARD DECODING OFRATE-1 CONVOLUTIONAL
CODES

In this section, we investigate the MAP backward decodingaté-1 convolutional codes
and derive its dual encoder structure. Before discussiagotitkward decoding, we first define
a reverse memory-labeling of a general convolutional (G&)ec Given the encoder of a GC
code with rational generator polynomig{z) = % = % if we change the labeling
of the k-th shift register in the encoder frorfi, to S,_,, and change their respective feed-
forward coefficient froma, to a,_., k=1,2,...,n, and feedback coefficients from to b,,_y,
k=1,2,...,n, we will derive an encoder with a new trellis. The resultimgeder is referred to
as thereverse memory-labeling encoder of ¢(z). Figs.[8(a) and 8(b) show the encoder and the

reverse memory-labeling encoder gfr).
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(b) The encoder of(x) = a(z)/q(x) with reverse memory labeling

Fig. 8: An encoder with reverse memory labeling

In a MAP backward decoding, the received signals are decbdekward in a time-reverse
order. That is, given the received signal sequewnce (y1, s, ..., yx), the order of signals to
be decoded is fromyk, yx_1, till y;. In order to decode the received signals backward, the
decoder has to follow the trellis in a reverse direction sH&(a) and 9(b) show the encoder and
trellis of the code with the generator polynomiglr) = %. Fig.[9(c) shows the backward
trellis. For the decoder with the backward trellis in HigcP(the input to the decoder is at the
right hand side of the decoder and its output is at the leftllsde, which operates in a reverse
direction of the conventional decoder. Hig. 9(d) shows thieesponding forward representation
of the backward trellis, where the decoder input and outpetcianged to the conventional
order. The forward representation of the backward trellis be implemented by an encoder
shown in Fig[ 9(e€). When we compare Figs. P(a) 9(e), itmamasily seen that the encoder

in Fig.[9(a) is the encoder of codgz) = D?jgﬁrl and that in Fig[ 9(¢) is its encoder with the
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reverse memory-labeling.

This relationship of the encoders for the forward and backvieellises can be extended to
general rate-1 convolutional codes, as shown in the foligwheorem.

Theorem 3: Given an encoder with a generator polynomjét) = % = % the
forward representation of its backward trellis can be impmated by itgeverse memory-labeling
encoder of the same generator polynomiglz).

Proof: See Appendix C.

From Theorem 2, we know that the log-domain SISO forward dexpof a given general

convolutional (GC) encoder with a generator polynomijét) = % can be implemented by

its dual encoder with the generator polynomiglk(z) = Zggzgg where z(z) is the degreé-

minimum complementary polynomial ef(x). Then according to Theorem 3, the log-domain

SISO backward decoding of the GC code can be implementedédoethrse memory-labeling
encoder of g (). By combining Theorems 2 and 3, we can obtain the linear ptaen of
backward decoding, which is summarized in the following dileen.

Theorem 4 - Linear presentation of backward decoding of a general convolutional (GC)
code: We consider a general convolutional encoder with a genefaatynomial of g(z) =
% = Stast Let 2(x) be the degreé-minimum complementary polynomial of(z).
Its log-domain SISO backward decoding can be implementetsbgual encoder withreverse
memory-labeling and the generator polynomial of

q(x)2(z)  q(z)z(x) 2" 4.+ 41

w6o(®) = @) T 2+ 1 (12)
14 hn+l_1l'n+l_1 +---+ hlfL'.
pn+l +1

This presentation is shown in Fig.]10.

From Theorem 4, we can easily derive the backward decodiesgeptation of a feed-forward
only convolutional (FFC) code, summarized in the followi@grollary.

Corollary 2 - Linear presentation of backward decoding of a feed-forward only convo-
lutional (FFC) code: For a FFC code, generated by a generator polynomiah(z) = a(z) =
"+ ...+ az + 1, let z(x) be the degreé-minimum complementary polynomial af(x).

Its log-domain SISO backward decoding can be implementeiisbgual encoder withreverse
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The encoder for the code generated by

b a(x) x"+--ax+l1
= . S, Sn 2o (¥) = a(x) S L.
I g(x) x"+---gx+1
‘—
Dual encoder with reverse
IO X o o memory-labeling of a log-
B W o1 T E domain SISO backward decoder
> > > :
i forthe code g..(x), given by
Y & e (£)2(x)
g(x)z(x
['“j » Sm.J T SZ Sl =m > qGC (‘T) = ﬁ
1+ '?1;.--3-1“";:71 +---hx
x4+l

Fig. 10: The encoder and its dual encoder for backward dagodi a general convolutional
code

memory-labeling and generator polynomial

() z2(x) A4yt 4z 4]

= = 1
a(r)z(x) antl4+1 anth 4+ 1 (13)

qrro(x) =

Corollary 2 can be proved in the same way as Theorem 4, so \petls&iproof here.

For a feedback only convolutional (FBC) code, we can prow backward decoding does
not contribute to the MAP calculation. The BCJR MAP decodisgxactly the same as the
forward decoding. This is summarized in the following Thexar

Theorem 5 - Linear presentation of decoding of a feedback only convolutional (FBC)
code: For a FBC code, generated by a generator polynomyiagl-(z) = 1/q(x), the MAP
forward decoding is in fact equivalent to the BCJR MAP dengdits log-domain SISO decoder
can be simply implemented by the dual encoder of the MAP faivaecoding with the inverse
generator polynomial ofzpc(z), given bygrpce(z) = 1/grpc(x).

Proof: See Appendix D.
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From Theorem 5, we can see that the MAP decoder of a FBC codbeamplemented by

its dual encoder using shift registers. This significanélgluces the decoding complexity.

IV. THE REPRESENTATION OFBIDIRECTIONAL MAP DECODING

In the previous two sections, we have introduced the lineasgntation of SISO MAP for-
ward/backward decoding. Based on the derived linear ptaten, in this section, we represent
the bidirectional MAP decoder by linearly combining shiégrster contents of the dual encoders
of the respective forward and backward decoders. We pratestith linear combining produces
exactly the same decoding output as the bidirectional BCJ®P Mecoding.

Next, let us first discuss the boundary conditions for thd doeoder. That is, how to determine
the tail bits for the dual encoder such that the state of dneb@er returns to all-zero state at
the end of encoding process. As we will discuss shortly, thenbdary conditions are essential

for shift register contents combining in the proposed dewpdtructure using dual encoders.

A. Boundary conditions

Let us consider a binary encodér of memory lengthn + I, described bygge(z) = 1 +

n+i—1 .
mrtthai 1t has the same generator polynomial as the dual encoder@E€ aode

14antl
C, generated bygc(x) = % Therefore, if the input to the encodér is a codeworde =
(c1,¢2,-+- ,cx), generated byygco(r), the output of the encoder will produce the decoded

binary information sequenck. Let us define(ck.1,...,cx1nty) as the tail bits required to
terminate the encode?' at the all-zero state. Then the tail biting convolutionat@ater C' has

the following property.

hiz+-th, gz tiL
1+In+l ]

Lemma 1. The tail bits that terminate the encodeydescribed bygc(z) = 1+
at the all-zero state also terminate the encoder C, gedebstec(x) = % at the all-zero
state.

Proof: See Appendix E. [ |
Lemma 2: For a tail biting convolutional encodef, generated by;c(z), and a given
input sequencécy, ca, -+ ,Cx,Cixy1, ", Ckintl), We define its backward encoder as the en-
coder of the same generator polynomial with reverse-mentaiygling and time-reverse input
(Ciqnsis -+ »Cx4+1,CK, -+ ,Ca,c1). Then the tail biting encode€ and its backward encoder

arrive at the same state at any tirhe



18
Proof: See Appendix F. [ |

B. Shift register contents of the dual encoders for forward and backward decoding

In the decoding structures we introduced in the previous geations, the input, output and
shift register contents of dual encoders for forward andckwacd decoding are all soft symbol
estimates (SSE). Let us consider a GC code, generated)y—= % Let @(l{i) and <XZ(Z@),
i=12--- n+l, k=12 _--- K+ n+I, represent thgth shift register content of the dual
encoders for forward and backward decoding at timeescribed by the polynomighc(z).

To derive the bidirectional soft decoder output, we comitime shift register contents of

dual encoders for forward and backward decoding in an optivag. Letgf(k) and ESTg(k:),z' =

1,2,---,n+(, denote the memory of thih shift register at time: in the encodelC and its
backward encoder. Ld%f(k) (w) andP<S—g(k) (w) denote the probability oﬁ(k) =w andgf(k) =

w in the dual encoders of forward and backward decoding, otispdy. Their corresponding
LLRs are denoted byf)gzg(k) and ngf(k’). Their combined LLR is denoted b¥g (k). Since
fslf_(k) and ng(k) are obtained from the forward decoding based on the receigels from
time 1 tok and that from backward decoding based on the received sifpaath time KX +n+1(
to k + 1, they are independent. Furthermore, as shown in Lefiima 2aildbitting encoderC,
generated by;c(z), forward and backward encoders will arrive at the same sthtéame k.
Therefore, in the optimal combining, we have

I T

Lgi(k) = Lg(k)+ Ls(k). (14)

Converted into the SSE representatidn, (14) can be rewrise

2>
ooy Vi) + V5(k)

Vi (k) (15)

~

— =
L+ V;(k)V; (k)
Based on the dual encoder structure in Fig. 7b, the bidoeatisoft decoder output can be

obtained from the combined shift register contents as

n+li—1
Indy, =Ind, + »  hlnVi(k - 1). (16)

=1
As shown in the following theorem, such combining will preguexactly the same output as
the bidirectional BCJR MAP algorithm.
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Theorem 6 - Shift register content combining of dual encoders of forward and backward
decoding: We can represent the bidirectional MAP decoder by lineadgbining shift register
contents of the dual encoders for forward and backward degp@s shown in[(16). Such a
combining produces exactly the same decoding output asidivediional BCJR MAP decoding.

Proof: See Appendix G. [ |

V. SIMULATION RESULTS

In this section, we provide the simulation results. All slations are performed for the BPSK
modulation and a frame size ¢f=128 symbols over AWGN channels.

Figs.[11 td 1B show the bit error rate (BER) performance oifover4-state and 8-state GC and
FFC codes, where the curve 'Dual encoder forward + backwafdrs to the direct summation of
forward and backward dual encoder outputs, and the curvel’Bacoder shift register combined
output’ refers to the optimal combining of forward and baek# dual encoders as shown in
Theorem 6.

From figures, we can see that direct summation of forward acéveard dual encoder outputs
has aboutd B performance loss when compared to the bidirectional MARdieg for the GC
code [5/7} at the BER ofl0~°. This performance loss is reduced to arot/3, 0.3dB, and
0.4dB for [7]s FFC, [17]s FFC, and[15]s FFC codes, respectively and increased to more than
1dB for the [15/13]s GC code. However, when we apply the shift register combimipgroach
detailed in Section IV to the forward and backward dual eecotheir performance is exactly
the same as the BCJR MAP decoding. One particular point rtedols noted is that for the FFC
code [5} the direct summation of forward and backward dual encodéputs has the same

performance as the MAP decoding, so no linear combinatiactigally required.

VI. CONCLUSIONS

In this paper, we revisited the MAP forward and backward deapprocess for the rate-1 con-
volutional codes. Dual encoder structures of forward amtkWard decoding for three different
classes of rate-1 convolutional codes are derived. Thet itgpthhe dual encoder is the logarithm
of soft symbol estimates of the coded symbols obtained floenréceived signals, and the dual
encoder output produces the logarithm of the soft symbaheseés of the information symbols.

For the general convolutional (GC) codes, generated by arg&r polynomiakgc(z) = %
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the forward and backward decoding can be implemented by toeiesponding dual encoders,
which are generated by the polynomiazgzgg, where z(z) is the minimum complementary
polynomial of a(x). The feed-forward only convolutional (FFC) code is just @aal case
of GC code, so it has the same dual encoder structures as theo@€ The derived linear
presentation of decoder significantly reduced the the coatipmal complexity of MAP forward
and backward recursion from exponential to linear. Sirtyilahe bidirectional MAP decoder of
GC and FFC codes can be implemented by linearly combininglhiiferegister contents of dual
encoders for the forward and backward decoding. For a feddtwaly convolutional (FBC) code
grpo(x) = ﬁ the bidirectional MAP SISO decoder is equivalent to thel durecoder for the
forward decoding, with the generator polynomjék).

In this paper, we have only focused on a class of convolutioodes, named rate-1 binary
code. It is significant as component codes in concatenaddgschemes, such as turbo coding.
Also, the linear presentation of MAP decoding derived irs thaper can also be applied to other
codes and other applications. For example, the transmissiaigital signals in the presence
of inter-symbol interference (ISI) can also be represemge convolutional encoding process.
The channel transfer function of an ISI channel can be repted by a rate-1 convolutional
encoder. Thus the linear presentation of decoding can asapplied to facilitate the MAP
channel detection in ISI channels. Similarly, these prisgeishould exist for other linear codes
that are amenable to representation by a trellis diagramwilVeliscuss these in the next series

papers.

VII. A PPENDIX
A. Proof of Theorem 1
Let us consider a feedback only convolutional (FBC) codeegated by a generator polyno-
mial
grec(r) = 1/q(x) = 1/(gnz" + -z + 1), (17)
its encoder is shown in Figl 4. Lef;(k),7 = 1,...,n represent the state of memoiat time
k. Then according to Fig.]4 we have

o =Si(k)=br ® Y q:Si(k— 1) (18)
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b,

—@-

S, e 'S,

Fig. 17: Binary Decoder Structure of a FBC code generatedgy-(x)

Sp(k) = Sp-1(k —1),p > 2, (19)

where all summations are done in GF(2).

We can rewrite the above equation as follows

e =ck ® Y qiS(k—1) (20)
Si(k) = cx, Sp(k) = Sp—1(k —1),p > 2 (21)
Sp(k) = ck—p, (22)

where we assume that = 0 for k£ < 0.
Based on the above equation, we can derive the followingpidecoder structure in Fig. 117,
where the input is the codeword symhgland the output i$y.

Let Ps, ) (w) denote the probability of memory;(k) = w anda;(m) denote the probability

of statem at time k. Let (m4,---,m,) be then-dimensional binary representation of and
(m},---,m!) be the binary representation of’. At time k, with input ¢;, the state transits
from (m}, -, m) to (my,ma, -+ ,my)= (cx,m},---,m,_;). Then we have
ax(m) = ] Ps.w(mi) = Plex =ma) [ | Pouw (ma) (23)
i=1 i=2
= Plee=m1) Y Psp-n(mi) [ Ps.ow(mi)
m!,=0,1 i=2
= 5 (T risc=m
m},=0,1 \j=1
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whereay,_1(m') = [] Ps;x—1)(m}), v(m’,m)=P(c, = mq) andm)=m; 4, for j=1,2,... ,n—1.
j=1
The APP ofb, = w can then be calculated as
po(w) = plp=wly)= > ] Psen(m)Plcs=m) (24)
(m/,m)eU (b(k)=w) j=1
= Z H PSj(k—l)(m;')P(Ck =my)
7,7,17771’17...7777/”7 mi1p i qjmgzw =1
Jj=1
= Z H P(cp—; =m))P(ck, =my)
n j:1

! —
MM, My, m1P E qjmj—w
1

/ / [
L L R LW Z QJmJ_w

wheremy = m; andgy = 1.

Let L(by) represent the LLR ob,. From Eg. [(24) we can easily derive

L(by) =L <Z qjck_j) . (25)
=0

Following the L-sum theory [7], the right-hand side pbf(2%)ncbe expanded as

1+ f[ tanh(L (g5cp_;) /2)

L (i qjck_j> =In j;O ; (26)
§=0 1 — [T tanh(L (gjcr—;) /2)

J=0

wheretanh(z/2) = £—.

Then by using the following relationship between the LLR a&oft symbol estimate,

= C =L b (L(b(k) /2 27
zbk_eL(bk)+1_an((()/)’ ( )
1+
L(by) =1 L 28
( k) n 1 _ i‘bk’ ( )
(28) can be further written as

- b ljoiqickﬁ 1+ -1:[0 (‘%Ck—j)qj

Lby) = L <Z qjck_]) = In—_ —In—_ : (29)
=0

1- Hojqjckfj 1 - H (ickfj)qj
j=
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wherei,.., . denotes the soft symbol estimate of symbgl, ;. Obviouslyi, ., , = 1 when
¢; =0 and@y., , = &cp—; Wheng; = 1. Thusi,., . = (i, )"
By substituting [(2B) into[(27), we get

n

= ] (Fe,,)™ (30)

J=0

By taking the logarithm on both sides ¢f {30), we have
Indy, =Y gqjlnd, ;. (31)

Therefore, the log-domain SISO forward decoding of the FB@eccan be simply implemented
by its dual encoder, generated by the generated polynamijal(z) = 1/9rpc(z) = guz™ +
e+ 1.
This proved Theorem 1.

B. Proof of Theorem 2

Let us first examine the forward binary decoding. Based ortloe generator polynomials, we

can easily derive the binary decoder of codes generatedyand * fé) )—m”(l;rl as shown in

Fig.[18(a) and 18(b), respectively. As can be seen from tfigsees, the binary decoder of each

of these two codes is equivalent to the encoder generatets bgspective inverse polynomial.
Let (mq,---,m,) and (m/},---,m!) be then-dimensional binary representation of and
m/. Let (ug, -+ ,unyq) and (uf,---,ul,,,) be the f + I)-dimensional binary representation
,m.) to
(m1,ma,--+,my) in the binary decoder of Fid. 18{a) and transits frdmi;,--- ,u/,4;) toO

of v and«/. Assume that at timé:, with input ¢4, the state transits frontm/, - - -

(ug, - ,uny) in [18(B). For a binary input sequenee= (ci, ¢, - ,cg), it is well known

that the polynomlals— and L generate the same codeword. We thus have

n—1 n+l—1
by = Z a;m, +m., + ¢, = Z 2 + Uy, + cr, (32)
i=1 j=1
m; = mJ 1, and uj = uJ LJ > 2. (33)

Then by following similar calculation in Appendix A, we have

n—1
L(by) = (Z a;m; +m. + ck> (34)

=1
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(a) The binary decoder of FFC code generatediby), which is equivalent to

an encoder generated Rya(z)
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(b) The binary decoder of FFC code generatedgy=(=) = ”“‘"Ztijl , which is equivalent

to an encoder generated by:tt— = =Gl

Fig. 18: The binary dual encoder of a FFC code

n+i—1
L(b,) =L < Z 2 4wy + ck> : (35)

j=1
When the terms in the summation of the right-hand side[in %) [35) are statistically
independent, we can use the L-sum theory to further expaggkttwo equations. However, we
can easily check that the terms, i = 1,--- ,n, in (34), are not independent. Now let us prove
thatu, i = 1,--- ,n+ [ are statistically independent random variables.

When0 < k < n +1, the stateu}, : =1,--- ,n+ 1, at timek, is given by
uw, =0,k <iand u;, = cy_i, k > 1. (36)

Whenk > n + [, the stateu, i =1,--- ,n+ [, at timek, is given by

Lk/(n+0)]
wp= Y i (37)

p=0
where |z | denotes the largest integer not greater than
From (36) and[(37), we can see thdfi = 1,--- ,n+1, are statistically independent random
variables at any time instant
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Inx,,

Inx. .
ko
(D

!

Fig. 19: The SISO decoder structure, implemented with theo@er with the generator

polynomial of gppc(z) = a(;gﬁzm) = 23

Sincew}, i = 1,---,n + [ are statistically independent random variables, we cantluse
L-sum theory [7] to expand the right-hand side [of](36). Byidaling a similar calculation as in

Appendix A, we can obtain the following equation

n+l—1
gy, = > zidw +du + do,, (38)
j=1
and,
Buy = ,J > 2, (39)

where &y, T, iu; and z., denotes the soft symbol estimate of symbg| «;, v, and ¢,
respectively. Based on (38) arld[39), we can derive the Sl&@der structure, shown in Fig.

[19, implemented with the encoder with the generator polyinbof

2 2(2)
arro(r) = a(x)z(z) a1 (40)

This proves Theorem 2.

C. Proof of Theorem 3

Assume that the encoder with the generator polynomia) in Fig. transits from the

state(m}, mj,--- ,m,) at timek-1 to the state&m,, mo,--- ,m,) at timek with input b;, then
we have
n—1
my = by + qum; +my,, my=m,_,, p>2, (41)

p=1
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and the corresponding trellis output at tirha@s given by

n—1 m—1
ck) = b+ Z qpmy, 4+ my, + Z apmy, +mj, (42)
p=1 p=1
n—1 m—1
= bt > gmp+ > agml,+mj, +m,.
p=1 p=1

To prove Theorem 3, we now only need to prove that with iriputs reverse memory-labeling
encoder transits from the statei,, mo,--- ,m,) at timek-1 to the statgm},m),--- ,m/) at
time k£ and generate the same encoder output.

Now let us consider theeverse memory-labeling encoder with the generator polynomigl:)
in Fig.[8(b). With the statdm;,ms,---,m,) at time k-1 and inputb, the state at timé: of

the reverse memory-labeling encoder is given by

n—1 n—1 n—1
Sn(k) =br+m + Z ApMp+1 (é)bk + b + Z me;p + m;; + Z me;; :m'n, (43)
p=1 p=1 p=1
Sp(k) = Spa1(k) = my41 = my,, (44)
where in the stefa) of (43) we have used Ed. (41).
The output ofreverse memory-labeling encoder at timé: is given by
m—1 m—1 n—1
c(k) = mp1 + Z a,mpi1 +my =m) + Z aym;, + by, + Z qpmy, 4+ my, (45)
p=1 p=1 p=1

where we have used Ed. (41) in the last step of calculation.

From (43t45), we can see that with inplyt the reverse memory-labeling encoder transits
from the statgm;, mo,--- ,m,) at timek — 1 to the statgm/, m),--- ,m]) and generates the
same encoder output as the encoder with the generator poigthg(x).

This proves Theorem 3.

D. Proof of Theorem 5

To prove Theorem 5, let us first examine the backward decodfng FBC code. At the

encoder of a FBC code in Fig. 5, with inptt, the state transits fronn),--- ,m),_,,m}) at

) n—1»
timek —1to (my,ma, - ,my,) = (cx,mi,---,m,,_,) at timek, wherec,, is the encoder output.

) n—1

The state transition is shown in the Figl 20, wherel, w=0 or 1,a =1 —a, d = 1 — d, and

w=1-—w.
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Fig. 20: The backward decoding trellis transition of a FBGe&o

Then we apply the BCJR backward decoding as follows,

(1) At time K, we havef(0) = 1 and g (m) = 0 for m # 0;

(2) At time K-1, we have

Br—1(m) = pe,(0) for m = 0,1, and fx_,(m) = 0 for m # 0, 1;

(3) At time K-2, we have

Br—2(m) = pes_,(0)pe, (0), for m =0,1,2,3, and Sk _o(m) = 0, for m # 0, 1,2, 3;

(4) At time K — v, 0 < v <n, we have

v—1
Br—v(m) = [] pex_,(0), form=0,1---,2"—1, andfBx_,(m) =0, form #0,1--- 2" —1;
1=0

Attime K —t, t > n , we have

Bieo(m) = TI pes..(0), for all m.

From the aliozoove equation, we can see thdin) is the same for all states whén< K — n.
Therefore, the backward decoding does not have any cohtibin the probability calculation
of the BCJR decoding. This proves that the BCJR forward degoid exactly the same as the
MAP decoding for the FBC codes.

E. Proof of Lemma 1

Let Si(k),i =1,2,---,n, and Sj(k),j = 1,2,--- ,n+1, denote the memory of theth shift
register of encoder C and theth shift register of encoder, generated bycc(z) andgae(z).
According to Fig. 7a, in encoder G;(k + 1) is given by

Si(k+1) =bypy1 + Z ¢:5i(k), (46)

i=1
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equivalently, we have the following equation

n

b1 = S1(k +1) + D a:Si(k). (47)

i=1
Let go =1 and S;(k + 1) = Sp(k). Then [4Y) can be written as

besr = Y qiSi(k). (48)
i=0

In encoderC', the outputh,,; can be written as

n+l—1
bit1 = Cig1 + Z hjS;'(k)
j=1
n+l—1

(k4 1)+ }:h k) + S, (k), (49)

where we have used the relationshipepf, = Si(k + 1) + 5, (k). Let hy = h,y = 1 and
Si(k+1) = Sy(k), and we get

n—+l

b1 = Z h;Si(k). (50)
=0
Sinceh(r) = q(z)z(z) = q(x) + z1zq(x) + - - + 2127 q(z) + 2'q(x), we have
b1 = Z @Si(k) +21 ) @iSip (k) + -+ 2z Z @i Si1-1 (k) + Z ¢ Si (K
=0 1=0
—}Z%{S )+ 218 (k) + -+ 218l (k) + SR} (51)

Comparing [(4B) and (51), we can represéhtt) by a linear combination of shift register

memories of encoder’
S,(k:) = Szl(k) + ZlSz{+1(k‘) + Z2Sz(+2(k) +o Zl—lsz(+l—1(k‘) + Sz{—l—l(k)' (52)

Therefore, when tail bits of encodér terminate it at the all-zero state, these tail bits will
also terminate encoder C at the all-zero state.

This proves Lemmall.
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F. Proof of Lemma 2

With tail bits, both encode€ and its backward encoder begin with and end at the all-zero

state, that is

o o o

(SUE + 0 +0), SHE +n41), - (K +n+ 1) = (0,0, ,0)

& & &

(ST + 0, S50 +n D), Sy (K +n+1) = (0,0,-,0). (53)
The state of encoder and its backward encoder at tinié+ n + [ — 1 can be calculated as
i 7 o o
<Sl(K+n+l—1),SZ(K+n+l—1),-~-, Co (K +n+l—1), n+l(K+n+l—1))

( -,0 CK+n+l)

& & o
<Sl(K+n+l—1) SUE +n+1—1), 8 (K +n+1-1), n+l(K+n+l—1))
= (0,0, 7070K+n+l)- (54)

This means that the encodér and its backward encoder will arrive at the same state at time
K+n+1—1. Letu' = (u},u,--- ,u,,,) denote the state of encodérat timek — 1. Then its
next state at time is given byu = (uy, ug, - -+, upsi) = (c + uppy, uf, -+ ,ul,,,_,). TO prove
that the encode€' and its backward encoder arrive at the same state any anyktinve only
need to prove that the backward encoder will transit frontestiaat time k£ to stateu’ at time

k — 1. This can be proved in a similar way as the proof of Theorem®wa omit it here.

This proves Lemmal2.

G. Proof of Theorem 6

We consider a GC code generatedday: (z) = E . Its dual encoder for decoding is described
by gao(w) = 1+ Mrtther™ 7 \we assume that the state of the dual encalidransits

from (), uh, -+, ul, ;) at timek — 1 to (uy,us, - -+ , u,4) at timek with input ¢,.. According

to gac(7), the output of the dual encodér at time k can be written as

n+l—1

e =cp+ Y . (55)
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For the bidirectional BCJR MAP algorithm, the probabilityat b, = w is given by

Py (w) = P{by = w|y} = Z a1 (u') i (W' 1) Br(u)
(0 0)=U (=)
n+l

n+l—1

- Z H P31y (cx) H
(W u)=U(bp=w) j=1

n+l—1 n+l—1
I 76

7j=1

- Z u;) H ng(k_1)<u;>P(Ck)
(bp=w

(u',u)=U (bp=w) j=1

n+i—1
N 2. I Py ()P (). (56)

Ckyu/p .. 7L+l7zn+l 1h‘u;+ck:w j:l
where Py .1y (u)) = Pg . (u})Pg ., (). Let L (by) denote the LLR ofy.. From [5B),

J
we can get
n+l—1

L Z h S/ ) +cr |, (57)

Pgr (1-1)(0)
whereL {S/(k—1)} =In B e fsf(k —1) +<fs§_(k:— 1). Let V;(k — 1) denote the SSE

Psg(k—l)(l) j
of Si(k — 1), and we can get

n+l—1
Indy, =Ind, + »  hlnVi(k - 1). (58)
=1
Comparing the shift register combined outputs of the duabdar [16) and the outputs of

the bidirectional BCJR MAP algorithni (58), we can see thalthre exactly of the same.
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