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Abstract

In this paper, we revisit the forward, backward and bidirectional Bahl-Cocke-Jelinek-Raviv (BCJR)

soft-input soft-output (SISO) maximum a posteriori probability (MAP) decoding process of rate-1 binary

convolutional codes. From this we establish some interesting explicit relationships between encoding

and decoding of rate-1 convolutional codes. We observe thatthe forward and backward BCJR SISO

MAP decoders can be simply represented by their dual SISO channel encoders using shift registers in

the complex number field. Similarly, the bidirectional MAP decoding can be implemented by linearly

combining the shift register contents of the dual SISO encoders of the respective forward and backward

decoders. The dual encoder structures for various recursive and non-recursive rate-1 convolutional codes

are derived.

Index Terms

Convolutional codes, BCJR algorithm, MAP decoding, Encoding and decoding duality, Dual

encoder, Bidirectional MAP decoding

I. INTRODUCTION

Convolutional codes were first introduced by Elias more than50 years ago [1]. They have

been widely used in various modern communications systems,such as space and satellite com-
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munications, cellular mobile, and digital video broadcasting. Its popularity stems from its simple

encoder structure, which can be implemented by shift registers.

The main complexity associated with systems using convolutional coding is situated in the

decoder. Decoding essentially consists of finding an optimal path in a trellis based graph. Various

decoding algorithms have been developed to achieve the optimal decoding performance in the

most efficient manner. The Viterbi algorithm (VA) has been known as a maximum-likehood (ML)

decoding method, which minimizes the sequence error rate [2-4]. It exhaustively searches all

states of the trellis over a fixed length window and finds a mostlikely information sequence. In the

standard VA, the decoder produces hard-decision outputs, which are the estimates of transmitted

binary information symbols. In [5, 8], the VA is modified to deliver not only the most-likely

binary signal sequence, but also the soft output containingthe a posteriori probabilities (APPs) of

the transmitted binary symbols. The soft-output VA (SOVA) is especially useful when decoding

concatenated codes, such as turbo codes, as it provides softinput for the next decoding stage

and thus improved performance.

There exists another class of non-linear decoding algorithms, called maximum a posteriori

probability (MAP) decoding. It was first proposed by Bahl, Cocke, Jelinek and Raviv (BCJR)

in 1974 [6]. It performs symbol by symbol decoding and uses the symbol error rate as the

optimization criterion. Both the input and output of the decoder are soft information signals.

Compared to the VA, the soft-input-soft-output (SISO) MAP can provide the optimal symbol-

by-symbol APP, and thus can fully exploit the full benefits ofsoft-decision decoding in iterative

decoding process of concatenated codes.

The BCJR MAP decoding is a bi-directional decoding process,consisting of a forward and

a backward recursion process, which dominates the main complexity of a decoder. In each

direction, the decoder infers the probabilities of currentstates and information symbols based on

the probabilities of the previous states in the forward and backward trellis, the received signal, the

channel state and the a priori probabilities of the transmitted signals. The complexity of forward

and backward recursion exponentially increases with the constraint length of convolutional codes.

In this paper, we revisit the forward, backward and bidirectional SISO MAP decoding of

rate-1 convolutional codes. We observe some interesting explicit relationship between a SISO

forward/backward MAP decoder of a convolutional code and its encoder. The forward and

backward decoder of a rate-1 convolutional code can actually be represented by its corresponding
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dual encoder using shift registers in the complex field. Thissignificantly reduces the original

exponential computational complexity of MAP forward and backward recursion to the linear

complexity. Similarly the bidirectional MAP decoding can be implemented by linearly combining

the shift register contents of the dual SISO encoders of the respective forward and backward

decoders. With logarithm of the soft coded symbol estimate,directly obtained from the received

signals, as the input to the dual encoder, the dual encoder output produces the logarithm of the

soft symbol estimates of the binary information symbols.

We found that the dual encoder structure of a code depends on whether the code is recursive

or not. In our preliminary work in [9], we investigated the rate-1 recursive convolutional codes.

In this paper, we will study the general rate-1 convolutional codes, including the feedback only

convolutional (FBC) code, feed-forward only convolutional (FFC) code and general convolutional

(GC) code. We will investigate the explicit relationship between a SISO forward/backward MAP

decoder of these codes. The dual encoder structure is derived for each class of codes. In [9], the

bidirectional decoding output is derived through the linear combination of forward and backward

decoder outputs. These complex coefficients are found through computer search. However we

only found the coefficients for some specific 4-state and 8-states codes due to the high complexity

involved in the search. In this paper, we propose a simple andgeneral combining approach to

represent the bidirectional MAP decoder by linearly combining shift register contents of the dual

encoders of the respective forward and backward decoders. We prove that such linear combining

produces exactly the same decoding output as the bidirectional MAP decoding for any rate-1

convolutional codes.

The remainder of the paper is organized as follows. In Section II, we first briefly review

the BCJR forward decoding algorithm and derive the dual encoder structures of MAP forward

decoders for three classes of rate-1 convolutional codes. The dual encoder structure for backward

decoding is presented in Section III. The representation ofbidirectional MAP decoding by using

the derived dual encoder structures of forward and backwarddecoding is described in Section

IV. Simulation results are shown in Section V. Conclusions are drawn in Section VI.

II. L INEAR REPRESENTATION OFMAP FORWARD DECODING

In this section, we first revisit the BCJR forward decoding algorithm. We will focus on

the decoding of a single constituent convolutional code of rate-1. Letb = (b1, b2, . . . , bK) be
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Fig. 1: The encoder and trellis ofgFBC(x) =
1

x2+x+1

a binary information symbol sequence to be transmitted, where K is the frame length. Let

c = (c1, c2, . . . , cK) be the binary codeword ofb, generated by the binary code generator

polynomialg, andx = (x1, x2, . . . , xK) be the modulated symbol sequence ofc. For simplicity,

we consider the BPSK modulation. Lety = (y1, y2, . . . , yK) denote the received signal sequence

at the channel output.

Based on the encoder structure, we define three different classes of convolutional codes.

Let a(x) = xn + an−1x
n−1 + · · · + a1x1 + 1 and q(x) = xn + qn−1x

n−1 + · · · + q1x1 + 1,

wheren is the degree of polynomialsa(x) andg(x). We define a convolutional code, generated

by gFBC(x) = 1/q(x), as a feedback-only convolutional (FBC) code, a code generated by

gFFC(x) = a(x) as a feed-forward only convolutional (FFC) code, and a code generated by

gGC(x) = a(x)/g(x), as a general convolutional (GC) code. We will investigate the forward

decoding process of these three classes of convolutional codes.

A. Forward decoding of a FBC code

In this subsection, we first investigate the forward decoding of an FBC code. To gain better

insight into the decoding process, let us first look at the following example.

Example 1: We consider a FBC code with the generator polynomial ofgFBC(x) =
1

x2+x+1
,

for which the encoder and trellis diagram are shown in Fig. 1.In the trellis diagram, the state

is labeled asS1S2 , whereSi, i = 1, 2 is the value of thei-th encoder shift register content.

Each branch in the trellis is labeled asx/y wherex andy denote the encoder input and output,

respectively.

Let pck(l) = p(ck = l|yk), l = 0, 1, denote the a posteriori probabilities (APP) of the encoded
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symbolck = l, given the received signalyk, whereck is the transmitted binary coded symbol at

time k. Let us further denotePc = {(pc1(0), pc1(1)), · · · , (pck(0), pck(1)), · · · , (pcK(0), pcK(1))}.

Now let us follow the BCJR forward decoding algorithm to usePc to calculate the APPs

of binary information symbolsbk. Let pbk(w) = p(bk = w|y) represent the probability of

information symbolbk = w, w=0, 1, given the received signalsy = {y1, · · · , yk, · · · , yK}.

It can be calculated in the following recursive way [6]

pbk(w) = p(bk = w|y) =
∑

(m′,m)∈U(b(k)=w)

αk−1(m
′)γk(m

′m) (1)

=
∑

(m′,m)∈U(b(k)=w)

αk−1(m
′)pck(ck(m

′, m))

αk(m) =
∑

m′

αk−1(m
′)γk(m

′m) =
∑

m′

αk−1(m
′)pck(ck(m

′, m)), (2)

whereU(b(k) = w) is the set of trellis branches from the statem′ at time k-1 to the statem

at time k, that are caused by the input binary symbolb(k) = w, and ck(m
′, m) represents the

encoder output of the corresponding trellis branch.

Letm = 0, 1, 2, 3 represent the states ofS1S2 = 00, 01, 10, 11 at timek, andx̂c = (x̂c1 , · · · , x̂cK )

and x̂b = (x̂b1 , · · · , x̂bK ) denote the soft symbol estimate sequence of codewordc and informa-

tion sequenceb, respectively. We assume that 0 and 1 are modulated into symbol 1 and -1. Then

the soft symbol estimateŝxck and x̂bk , which represent the probabilistic average of estimates of

symbolsxck andxbk giveny, can be calculated as

x̂ck = E(xck |yk) = pck(0)− pck(1) (3)

x̂bk = E(xbk |y) = pbk(0)− pbk(1). (4)

Then by using Eqs. (1) and (2) alternatively in Example 1, we can get

(1) at timek = 0,

α0(0) = 1; α0(1) = 0; α0(2) = 0; α0(3) = 0;

pb0(0) = 1; pb0(1) = 0;

(2) at timek = 1, the received signal isy(1), and the input to the decoder is the APPs ofc1,

given bypc1(0) andpc1(1), respectively. Then we have

α1(0) = pc1(0); α1(1) = 0; α1(2) = pc1(1); α1(3) = 0;

pb1(0) = pc1(0); pb1(1) = pc1(1);
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and

x̂b1 = pb1(0)− pb1(1) = pc1(0)− pc1(1) = x̂c1

(3) at timek = 2, the input to the decoder is the APPs ofc2, pc2(0) andpc2(1). We have

α2(0) = pc2(0)pc1(0); α2(1) = pc2(0)pc1(1); α2(2) = pc2(1)pc1(0); α2(3) = pc2(1)pc1(1);

pb2(0) = pc2(0)α1(0) + pc2(1)α1(2); pb2(1) = pc2(1)α1(0) + pc2(0)α1(2);

and

x̂b2 = pb2(0)− pb2(1) = (pc2(0)− pc2(1))(pc1(0)− pc1(1)) = x̂c2x̂c1

(4) At time 3, we have

α3(0) = pc3(0)pc2(0); α3(1) = pc3(0)pc2(1); α3(2) = pc3(1)pc2(0); α3(3) = pc3(1)pc2(1);

pb3(0) = pc3(0)α2(0) + pc3(1)α2(1) + pc3(1)α2(2) + pc3(0)α2(3);

pb3(1) = pc3(1)α2(0) + pc3(0)α2(1) + pc3(0)α2(2) + pc3(1)α2(3);

and

x̂b3 = pb3(0)− pb3(1) = (pc3(0)− pc3(1))(pc2(0)− pc2(1))(pc1(0)− pc1(1)) = x̂c3 x̂c2 x̂c1

(5)Similarly we can have for anyk >= 2, we have

αk(0) = pck(0)pck−1
(0); αk(1) = pck(0)pck−1

(1); αk(2) = pck(1)pck−1
(0); αk(3) = pck(1)pck−1

(1);

pbk(0) = pck(0)αk−1(0) + pck(1)αk−1(1) + pck(1)αk−1(2) + pck(0)αk−1(3);

pbk(1) = pck(1)αk−1(0) + pck(0)αk−1(1) + pck(0)αk−1(2) + pck(1)αk−1(3);

and

x̂bk = pbk(0)− pbk(1) = (pck(0)− pck(1))(αk−1(0) + αk−1(3)− αk−1(1)− αk−1(2))

= x̂ck x̂ck−1
x̂ck−2

,

where

(αk−1(0)+αk−1(3)−αk−1(1)−αk−1(2)) = pck−1
(0)pck−2

(0)+pck−1
(1)pck−2

(1)−pck−1
(0)pck−2

(1)−

pck−1
(1)pck−2

(0) = x̂ck−1
x̂ck−2

.

Therefore, the decoder input and its output soft symbol estimates,x̂ck and x̂bk , for the code,

generated bygFBC(x) =
1

x2+x+1
, have the following relationship

x̂bk = x̂ck x̂ck−1
x̂ck−2

. (5)

By taking the natural logarithm of both sides of the above equation, we get

lnx̂bk = lnx̂ck + lnx̂ck−1
+ lnx̂ck−2

. (6)
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Fig. 2: The relationship of a SISO decoder and its Log-domainSISO decoder

Fig. 3: The Log-domain SISO forward decoder implemented by using its dual convolutional

encoder

We define the decoder with the input and output being the logarithm of the soft symbol

estimates (SSE) of the coded symbols and SSEs of the information symbols, as the Log-domain

soft-input-soft-output (SISO) decoder. As shown in Fig. 2,the SISO decoder can be implemented

by adding a logarithm module and an exponential module at thefront and rear end of the log-

domain SISO decoder, respectively.

Based on Eq. 6, log-domain SISO forward decoding of the codegFBC(x) = 1
x2+x+1

can

be implemented by using the convolutional encoder, generated by the generator polynomial

1/gFBC(x) = x2 + x + 1, as shown in Fig. 3. Here the addition operation in the encoder is

not carried out in the binary field as in conventional convolutional encoders, but in the complex

field.

Eq. 6 and Fig. 3 reveal an interesting explicit relationshipof the binary encoder and SISO

forward decoder of a rate-1 feedback only convolutional code. This can be generalized to any

FBC codes as summarized in the following theorem.

Theorem 1 - Linear representation of forward decoding of a feedback only convolutional

(FBC) code: For a FBC code, generated by a generator polynomialgFBC(x) = 1/q(x), we

define its dual encoder as the encoder with the inverse generator polynomial ofgFBC(x), given

by qFBC(x) = 1/gFBC(x) = q(x). Then the log-domain SISO forward decoding of the FBC

code can be simply implemented by its dual encoder in the complex field. This property is shown
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Fig. 4: Relationship of a FBC encoder and its Log-domain SISOforward decoder

Fig. 5: The encoder and trellis ofgFFC(x) = x2 + x+ 1

in Fig. 4.

Proof: See Appendix A.

B. Forward decoding of feed-forward only convolutional (FFC) code

In this sub-section, we investigate the forward decoding ofa FFC code. As will be shown in

the following example, the property shown in Theorem 1 does not apply to such codes.

Example 2: We consider a FFC code with the generator polynomial ofgFFC(x) = x2+x+1

for which the trellis diagram and encoder are shown in Fig. 5.

Let lnẍbk represent the output of the log-domain dual encoder, generated based on Theorem
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TABLE I: Comparison of the dual encoder output calculated based on Theorem 1lnẍbk with

the actual forward MAP decoding soft outputlnx̂bk

Log soft Memory S1 of Memory S2 of Log soft output of Desired soft decoding

input lnx̂ck the dual encoder the dual encoder the dual encoderlnẍbk output lnx̂bk

lnx̂c1 0 0 lnx̂c1 lnx̂c1

lnx̂c2 lnx̂c1 0 lnx̂c2 + lnx̂c1 lnx̂c2 + lnx̂c1

lnx̂c3 lnx̂c2 + lnx̂c1 lnx̂c1 lnx̂c3 + lnx̂c2 + lnx̂c3 + lnx̂c2

lnx̂c1 + lnx̂c1

lnx̂c4 lnx̂c3+lnx̂c2 lnx̂c2 + lnx̂c1 lnx̂c4+lnx̂c3 + lnx̂c1+ lnx̂c4+lnx̂c3 + lnx̂c1

+ lnx̂c1+lnx̂c1 lnx̂c2+lnx̂c2+lnx̂c1+lnx̂c1

lnx̂c5 lnx̂c4+lnx̂c3 + lnx̂c1 lnx̂c3+lnx̂c2 lnx̂c5+lnx̂c4 + lnx̂c2+lnx̂c1 + lnx̂c5+lnx̂c4 + lnx̂c2+lnx̂c1

+lnx̂c2+lnx̂c2+lnx̂c1+lnx̂c1 + lnx̂c1+lnx̂c1 lnx̂c3 +lnx̂c3+lnx̂c2 +lnx̂c2

+lnx̂c1+lnx̂c1+lnx̂c1+lnx̂c1

...
...

...
...

...

1, with the generator polynomial ofqFFC(x) = 1/gFFC(x) = 1/(x2 + x+ 1). Table I compares

lnẍbk with the actual forward MAP decoding soft outputlnx̂bk . Their differences are highlighted

in the dashed-line boxes.

From the above table, we can see that the soft outputs of the dual encoder, generated from

Theorem 1,lnẍbk are different from the actual forward MAP decoding soft outputs lnx̂bk when

k > 2. This is because the recursive structure of the dual encoderqFFC(x) and the complex field

addition operation of the dual encoder. It can be observed from the above table that if the input

to the dual encoder is the binary symbol and addition in the encoder is a module-2 addition,

as in the conventional binary encoder, the difference termsshown in the dotted-line-boxes will

become zero and the dual encoder output will be equal to the actual decoding output. However,

the inputs to the dual encoder are the logarithms of the soft inputs, which are complex numbers,

and the addition in the dual encoder is done in the complex-number domain, which causes the

differences betweenlnẍbk and lnx̂bk . We can observe from the table that the difference terms

come from the common terms of the shift-register contentsS1 andS2 in the dual encoder. If we

can change structure of the dual encoder by multiplying boththe numerator and denominator by

a common polynomial, without changing its actual generatorpolynomial, such that the encoder

contents do not share any common elements at any time instant, then the difference between
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Fig. 6: The modified dual encoder ofgFFC(x) = x2 + x+ 1.

TABLE II: Comparison of modified dual encoder outputlnẍbk with the actual forward MAP

decoding soft outputlnx̂bk .
Log soft Memory S1 Memory S2 Memory S3 Log soft output of Desired soft decoding

input lnx̂ck the modified dual encoderlnẍbk output lnx̂bk

lnx̂c1 0 0 0 lnx̂c1 lnx̂c1

lnx̂c2 lnx̂c1 0 0 lnx̂c2 + lnx̂c1 lnx̂c2 + lnx̂c1

lnx̂c3 lnx̂c2 lnx̂c1 0 lnx̂c3 + lnx̂c2 lnx̂c3 + lnx̂c2

lnx̂c4 lnx̂c3 lnx̂c2 lnx̂c1 lnx̂c4+lnx̂c3 + lnx̂c1 lnx̂c4+lnx̂c3 + lnx̂c1

lnx̂c5 lnx̂c4+lnx̂c1 lnx̂c3 lnx̂c2 lnx̂c5+lnx̂c4 + lnx̂c2+lnx̂c1 lnx̂c5+lnx̂c4 + lnx̂c2+lnx̂c1

...
...

...
...

...
...

lnẍbk and lnx̂bk will disappear and the dual encoder output will be equal to the actual MAP

forward decoding output.

In Example 2, if we multiply both the numerator and denominator of the dual encoder generator

polynomialq(x) by (1 + x), then we have

q(x) =
1 + x

gFFC(x)(1 + x)
=

1 + x

1 + x3
. (7)

Fig. 6 shows the encoder with the polynomial in Eq. (7).

Table II shows the outputs of the modified dual decoder and theoutput of the actual MAP

forward decoder. We can see that the soft outputs of the modified dual encoder are exactly the

same as the actual MAP forward decoding outputs.

We can prove that for any FFC codes, we can always find a modifieddual decoder to implement

a MAP forward decoder without changing its actual generatorpolynomial. This is summarized

in Theorem 2.

Before we present the new theorem, we first define aminimum complementary polynomial.
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For a given polynomiala(x) = xn + · · · + a1x + 1, we define theminimum complementary

polynomial as the polynomial of the smallest degree,

z(x) = xl + zl−1x
l−1 + · · ·+ z1x+ 1 (8)

such that

a(x)z(x) = xn+l + 1. (9)

Sincea(x) = xn + · · · + a1x + 1 always dividesx2n−1 + 1, the minimum complementary

polynomial ofa(x) always exists.

Theorem 2 - Linear presentation of forward decoding of a feed-forward only convo-

lutional (FFC) code: For a FFC code, generated by a generator polynomialgFFC(x) = a(x),

let z(x) represent itsminimum complementary polynomial of degreel. The log-domain SISO

forward decoding of the FFC code can be implemented by its dual encoder with the generator

polynomial of

qFFC(x) =
z(x)

a(x)z(x)
=

z(x)

xn+l + 1
=

xl + zl−1x
l−1 + · · ·+ z1x+ 1

xn+l + 1
. (10)

Proof: See Appendix B.

As it can be noted from Theorem 2, in contrast to FBC, the encoder and decoder of which can

be implemented by the same number of shift registers, for theFFC the number of shift registers

required in decoder will be increased compared to the encoder and the number of increased shift

registers depends on the degree of its minimum complementary polynomial.

Theorem 2 can be easily extended to a general convolutional (GC) code as shown in the

following corollary.

Corollary 1 - Linear presentation of forward decoding of a general convolutional (GC)

code: For a GC code, generated by a generator polynomialgGC(x) =
a(x)
g(x)

= xn+···+a1x+1
xn+···+g1x+1

, let z(x)

be the degree-l minimum complementary polynomial ofa(x). The log-domain SISO forward

decoding of the GC code can be simply implemented by its dual encoder with the generator

polynomial of

qGC(x) =
g(x)z(x)

a(x)z(x)
=

g(x)z(x)

xn+l + 1
=

xn+l + · · ·+ h1x+ 1

xn+l + 1
(11)

= 1 +
hn+l−1x

n+l−1 + · · ·+ h1x

xn+l + 1
,
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Fig. 7: The encoder and its dual encoder of forward decoding of a general convolutional (GC)

code

whereg(x)z(x) = xn+l + hn+l−1x
n+l−1 + · · ·+ h1x+ 1

This relationship of a binary encoder and its dual encoder isshown in Fig. 7. Corollary 1 can

be directly derived from Theorem 2, so we skip its proof here.

III. L INEAR PRESENTATION OFBACKWARD DECODING OFRATE-1 CONVOLUTIONAL

CODES

In this section, we investigate the MAP backward decoding ofrate-1 convolutional codes

and derive its dual encoder structure. Before discussing the backward decoding, we first define

a reverse memory-labeling of a general convolutional (GC) code. Given the encoder of a GC

code with rational generator polynomialg(x) = a(x)
q(x)

= xn+···+a1x+1
xn+···+q1x+1

, if we change the labeling

of the k-th shift register in the encoder fromSk to Sn−k, and change their respective feed-

forward coefficient fromak to an−k, k=1, 2, . . . , n, and feedback coefficients frombk to bn−k,

k=1, 2, . . . , n, we will derive an encoder with a new trellis. The resulting encoder is referred to

as thereverse memory-labeling encoder of g(x). Figs. 8(a) and 8(b) show the encoder and the

reverse memory-labeling encoder ofg(x).
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(a) The encoder ofg(x) = a(x)/q(x)

(b) The encoder ofg(x) = a(x)/q(x) with reverse memory labeling

Fig. 8: An encoder with reverse memory labeling

In a MAP backward decoding, the received signals are decodedbackward in a time-reverse

order. That is, given the received signal sequencey = (y1, y2, . . . , yK), the order of signals to

be decoded is fromyK, yK−1, till y1. In order to decode the received signals backward, the

decoder has to follow the trellis in a reverse direction. Figs. 9(a) and 9(b) show the encoder and

trellis of the code with the generator polynomialg(x) = D2+1
D2+D+1

. Fig. 9(c) shows the backward

trellis. For the decoder with the backward trellis in Fig. 9(c), the input to the decoder is at the

right hand side of the decoder and its output is at the left hand side, which operates in a reverse

direction of the conventional decoder. Fig. 9(d) shows the corresponding forward representation

of the backward trellis, where the decoder input and output are changed to the conventional

order. The forward representation of the backward trellis can be implemented by an encoder

shown in Fig. 9(e). When we compare Figs. 9(a) and 9(e), it canbe easily seen that the encoder

in Fig. 9(a) is the encoder of codeg(x) = D2+1
D2+D+1

and that in Fig. 9(e) is its encoder with the
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(a) The encoder of codeg(x) = D2+1
D2+D+1

(b) The trellis of codeg(x)

(c) The backward trellis of the code

(d) The equivalent forward representation of backward trellis

(e) The encoder corresponds to the trellis of (d)

Fig. 9: Trellis, backward trellis and their respective encoders for the codeg(x) = D2+1
D2+D+1
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reverse memory-labeling.

This relationship of the encoders for the forward and backward trellises can be extended to

general rate-1 convolutional codes, as shown in the following theorem.

Theorem 3: Given an encoder with a generator polynomialg(x) = a(x)
q(x)

= xn+···+a1x+1
xn+···+q1x+1

, the

forward representation of its backward trellis can be implemented by itsreverse memory-labeling

encoder of the same generator polynomialg(x).

Proof: See Appendix C.

From Theorem 2, we know that the log-domain SISO forward decoding of a given general

convolutional (GC) encoder with a generator polynomialg(x) = a(x)
q(x)

can be implemented by

its dual encoder with the generator polynomialqGC(x) = q(x)z(x)
a(x)z(x)

, wherez(x) is the degree-l

minimum complementary polynomial ofa(x). Then according to Theorem 3, the log-domain

SISO backward decoding of the GC code can be implemented by the reverse memory-labeling

encoder of qGC(x). By combining Theorems 2 and 3, we can obtain the linear presentation of

backward decoding, which is summarized in the following Theorem.

Theorem 4 - Linear presentation of backward decoding of a general convolutional (GC)

code: We consider a general convolutional encoder with a generator polynomial of g(x) =

a(x)
q(x)

= xn+···+a1x+1
xn+···+q1x+1

. Let z(x) be the degree-l minimum complementary polynomial ofa(x).

Its log-domain SISO backward decoding can be implemented byits dual encoder withreverse

memory-labeling and the generator polynomial of

qGC(x) =
q(x)z(x)

a(x)z(x)
=

q(x)z(x)

xn+l + 1
=

xn+l + · · ·+ h1x+ 1

xn+l + 1
(12)

= 1 +
hn+l−1x

n+l−1 + · · ·+ h1x

xn+l + 1
.

This presentation is shown in Fig. 10.

From Theorem 4, we can easily derive the backward decoding presentation of a feed-forward

only convolutional (FFC) code, summarized in the followingCorollary.

Corollary 2 - Linear presentation of backward decoding of a feed-forward only convo-

lutional (FFC) code: For a FFC code, generated by a generator polynomialgFFC(x) = a(x) =

xn + . . . + a1x + 1, let z(x) be the degree-l minimum complementary polynomial ofa(x).

Its log-domain SISO backward decoding can be implemented byits dual encoder withreverse
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Fig. 10: The encoder and its dual encoder for backward decoding of a general convolutional

code

memory-labeling and generator polynomial

qFFC(x) =
z(x)

a(x)z(x)
=

z(x)

xn+l + 1
=

xl + zl−1x
l−1 · · ·+ z1x+ 1

xn+l + 1
. (13)

Corollary 2 can be proved in the same way as Theorem 4, so we skip the proof here.

For a feedback only convolutional (FBC) code, we can prove that backward decoding does

not contribute to the MAP calculation. The BCJR MAP decodingis exactly the same as the

forward decoding. This is summarized in the following Theorem.

Theorem 5 - Linear presentation of decoding of a feedback only convolutional (FBC)

code: For a FBC code, generated by a generator polynomialgFBC(x) = 1/q(x), the MAP

forward decoding is in fact equivalent to the BCJR MAP decoding. Its log-domain SISO decoder

can be simply implemented by the dual encoder of the MAP forward decoding with the inverse

generator polynomial ofgFBC(x), given byqFBC(x) = 1/gFBC(x).

Proof: See Appendix D.
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From Theorem 5, we can see that the MAP decoder of a FBC code canbe implemented by

its dual encoder using shift registers. This significantly reduces the decoding complexity.

IV. THE REPRESENTATION OFBIDIRECTIONAL MAP DECODING

In the previous two sections, we have introduced the linear presentation of SISO MAP for-

ward/backward decoding. Based on the derived linear presentation, in this section, we represent

the bidirectional MAP decoder by linearly combining shift register contents of the dual encoders

of the respective forward and backward decoders. We prove that such linear combining produces

exactly the same decoding output as the bidirectional BCJR MAP decoding.

Next, let us first discuss the boundary conditions for the dual encoder. That is, how to determine

the tail bits for the dual encoder such that the state of dual encoder returns to all-zero state at

the end of encoding process. As we will discuss shortly, the boundary conditions are essential

for shift register contents combining in the proposed decoding structure using dual encoders.

A. Boundary conditions

Let us consider a binary encoder̄C of memory lengthn + l, described byqGC(x) = 1 +
h1x+···+hn+l−1x

n+l−1

1+xn+l . It has the same generator polynomial as the dual encoder of aGC code

C, generated bygGC(x) = a(x)
q(x)

. Therefore, if the input to the encoder̄C is a codewordc =

(c1, c2, · · · , cK), generated bygGC(x), the output of the encoder̄C will produce the decoded

binary information sequenceb. Let us define(cK+1, ..., cK+n+l) as the tail bits required to

terminate the encoder̄C at the all-zero state. Then the tail biting convolutional encoderC̄ has

the following property.

Lemma 1: The tail bits that terminate the encoderC̄, described byqGC(x) = 1+h1x+···+hn+l−1x
n+l−1

1+xn+l ,

at the all-zero state also terminate the encoder C, generated by gGC(x) = a(x)
q(x)

, at the all-zero

state.

Proof: See Appendix E.

Lemma 2: For a tail biting convolutional encoder̄C, generated byqGC(x), and a given

input sequence(c1, c2, · · · , cK , cK+1, · · · , cK+n+l), we define its backward encoder as the en-

coder of the same generator polynomial with reverse-memorylabeling and time-reverse input

(cK+n+l, · · · , cK+1, cK , · · · , c2, c1). Then the tail biting encoder̄C and its backward encoder

arrive at the same state at any timek.
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Proof: See Appendix F.

B. Shift register contents of the dual encoders for forward and backward decoding

In the decoding structures we introduced in the previous twosections, the input, output and

shift register contents of dual encoders for forward and backward decoding are all soft symbol

estimates (SSE). Let us consider a GC code, generated byg(x) = a(x)
q(x)

. Let
−→
V̂j(k) and

←−
V̂j(k),

j = 1, 2, · · · , n+ l, k = 1, 2, · · · , K + n+ l, represent thejth shift register content of the dual

encoders for forward and backward decoding at timek, described by the polynomialqGC(x).

To derive the bidirectional soft decoder output, we combinethe shift register contents of

dual encoders for forward and backward decoding in an optimal way. Let
−→
S ′i(k) and

←−
S ′i(k), i =

1, 2, · · · , n + l, denote the memory of theith shift register at timek in the encoderC̄ and its

backward encoder. LetP−→
S′

i(k)
(ω) andP←−

S′

i(k)
(ω) denote the probability of

−→
S ′i(k) = ω and

←−
S ′i(k) =

ω in the dual encoders of forward and backward decoding, respectively. Their corresponding

LLRs are denoted by
−→
L S′

i
(k) and

←−
L S′

i
(k). Their combined LLR is denoted byLS′

i
(k). Since

−→
L S′

i
(k) and

←−
L S′

i
(k) are obtained from the forward decoding based on the receivedsignals from

time 1 tok and that from backward decoding based on the received signals from timeK+n+ l

to k + 1, they are independent. Furthermore, as shown in Lemma 2, fortail bitting encoderC̄,

generated byqGC(x), forward and backward encoders will arrive at the same stateat time k.

Therefore, in the optimal combining, we have

LS′

i
(k) =

−→
L S′

i
(k) +

←−
L S′

i
(k). (14)

Converted into the SSE representation, (14) can be rewritten as

V̂j(k) =

−→
V̂j (k) +

←−
V̂j(k)

1 +
−→
V̂j(k)

←−
V̂j (k)

. (15)

Based on the dual encoder structure in Fig. 7b, the bidirectional soft decoder output can be

obtained from the combined shift register contents as

ln x̂bk = ln x̂ck +

n+l−1
∑

i=1

hi ln V̂i(k − 1). (16)

As shown in the following theorem, such combining will produce exactly the same output as

the bidirectional BCJR MAP algorithm.
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Theorem 6 - Shift register content combining of dual encoders of forward and backward

decoding: We can represent the bidirectional MAP decoder by linearlycombining shift register

contents of the dual encoders for forward and backward decoding, as shown in (16). Such a

combining produces exactly the same decoding output as the bidirectional BCJR MAP decoding.

Proof: See Appendix G.

V. SIMULATION RESULTS

In this section, we provide the simulation results. All simulations are performed for the BPSK

modulation and a frame size ofK=128 symbols over AWGN channels.

Figs. 11 to 16 show the bit error rate (BER) performance of various 4-state and 8-state GC and

FFC codes, where the curve ’Dual encoder forward + backward’refers to the direct summation of

forward and backward dual encoder outputs, and the curve ’Dual encoder shift register combined

output’ refers to the optimal combining of forward and backward dual encoders as shown in

Theorem 6.

From figures, we can see that direct summation of forward and backward dual encoder outputs

has about1dB performance loss when compared to the bidirectional MAP decoding for the GC

code [5/7]8 at the BER of10−5. This performance loss is reduced to around0.2dB, 0.3dB, and

0.4dB for [7]8 FFC, [17]8 FFC, and[15]8 FFC codes, respectively and increased to more than

1dB for the [15/13]8 GC code. However, when we apply the shift register combiningapproach

detailed in Section IV to the forward and backward dual encoder, their performance is exactly

the same as the BCJR MAP decoding. One particular point needsto be noted is that for the FFC

code [5]8 the direct summation of forward and backward dual encoder outputs has the same

performance as the MAP decoding, so no linear combination isactually required.

VI. CONCLUSIONS

In this paper, we revisited the MAP forward and backward decoding process for the rate-1 con-

volutional codes. Dual encoder structures of forward and backward decoding for three different

classes of rate-1 convolutional codes are derived. The input to the dual encoder is the logarithm

of soft symbol estimates of the coded symbols obtained from the received signals, and the dual

encoder output produces the logarithm of the soft symbol estimates of the information symbols.

For the general convolutional (GC) codes, generated by a generator polynomialgGC(x) =
a(x)
q(x)

,
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Fig. 11 BER performances of code [5/7]8
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Fig. 12 BER performances of code [5]8
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Fig. 13: BER performances of code [7]8
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Fig. 14: BER performances of code [15/13]8
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Fig. 15: BER performances of code [17]8
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Fig. 16: BER performances of code [15]8
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the forward and backward decoding can be implemented by their corresponding dual encoders,

which are generated by the polynomial,q(x)z(x)
a(x)z(x)

, where z(x) is the minimum complementary

polynomial of a(x). The feed-forward only convolutional (FFC) code is just a special case

of GC code, so it has the same dual encoder structures as the GCcode. The derived linear

presentation of decoder significantly reduced the the computational complexity of MAP forward

and backward recursion from exponential to linear. Similarly, the bidirectional MAP decoder of

GC and FFC codes can be implemented by linearly combining theshift register contents of dual

encoders for the forward and backward decoding. For a feedback only convolutional (FBC) code

gFBC(x) =
1

q(x)
, the bidirectional MAP SISO decoder is equivalent to the dual encoder for the

forward decoding, with the generator polynomialq(x).

In this paper, we have only focused on a class of convolutional codes, named rate-1 binary

code. It is significant as component codes in concatenated coding schemes, such as turbo coding.

Also, the linear presentation of MAP decoding derived in this paper can also be applied to other

codes and other applications. For example, the transmission of digital signals in the presence

of inter-symbol interference (ISI) can also be representedby a convolutional encoding process.

The channel transfer function of an ISI channel can be represented by a rate-1 convolutional

encoder. Thus the linear presentation of decoding can also be applied to facilitate the MAP

channel detection in ISI channels. Similarly, these properties should exist for other linear codes

that are amenable to representation by a trellis diagram. Wewill discuss these in the next series

papers.

VII. A PPENDIX

A. Proof of Theorem 1

Let us consider a feedback only convolutional (FBC) code, generated by a generator polyno-

mial

gFBC(x) = 1/q(x) = 1/(qnx
n + · · · q1x+ 1), (17)

its encoder is shown in Fig. 4. LetSi(k), i = 1, . . . , n represent the state of memoryi at time

k. Then according to Fig. 4 we have

ck = S1(k) = bk ⊕

n
∑

i=1

qiSi(k − 1) (18)
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Fig. 17: Binary Decoder Structure of a FBC code generated bygFBC(x)

Sp(k) = Sp−1(k − 1), p ≥ 2, (19)

where all summations are done in GF(2).

We can rewrite the above equation as follows

bk = ck ⊕

n
∑

i=1

qiSi(k − 1) (20)

S1(k) = ck, Sp(k) = Sp−1(k − 1), p ≥ 2 (21)

Sp(k) = ck−p, (22)

where we assume thatck = 0 for k ≤ 0.

Based on the above equation, we can derive the following binary decoder structure in Fig. 17,

where the input is the codeword symbolck and the output isbk.

Let PSi(k)(w) denote the probability of memorySi(k) = w andαk(m) denote the probability

of statem at time k. Let (m1, · · · , mn) be then-dimensional binary representation ofm and

(m′1, · · · , m
′
n) be the binary representation ofm′. At time k, with input ck, the state transits

from (m′1, · · · , m
′
n) to (m1, m2, · · · , mn)=

(

ck, m
′
1, · · · , m

′
n−1

)

. Then we have

αk(m) =
n
∏

i=1

PSi(k)(mi) = P (ck = m1)
n
∏

i=2

PSi(k)(mi) (23)

= P (ck = m1)
∑

m′

n=0,1

PSn(k−1)(m
′
n)

n
∏

i=2

PSi(k)(mi)

=
∑

m′

n=0,1

(

n
∏

j=1

PSj(k−1)(m
′
j)

)

P (ck = m1)

=
∑

m′

αk−1(m
′)γk(m

′, m),
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whereαk−1(m
′) =

n
∏

j=1

PSj(k−1)(m
′
j), γk(m

′, m)=P (ck = m1) andm′j=mj+1, for j=1, 2, . . . , n−1.

The APP ofbk = w can then be calculated as

pbk(w) = p (bk = w|y) =
∑

(m′,m)∈U(b(k)=w)

n
∏

j=1

PSj(k−1)(m
′
j)P (ck = m1) (24)

=
∑

m1,m′

1,··· ,m
′

n, m1⊕
n∑

j=1
qjm′

j=w

n
∏

j=1

PSj(k−1)(m
′
j)P (ck = m1)

=
∑

m1,m′

1,··· ,m
′

n, m1⊕
n∑

j=1
qjm′

j=w

n
∏

j=1

P (ck−j = m′j)P (ck = m1)

=
∑

m′

0,m
′

1,··· ,m
′

n,
n∑

j=0
qjm′

j=w

n
∏

j=0

P (ck−j = m′j),

wherem′0 = m1 andq0 = 1.

Let L(bk) represent the LLR ofbk. From Eq. (24) we can easily derive

L(bk) = L

(

n
∑

j=0

qjck−j

)

. (25)

Following the L-sum theory [7], the right-hand side of (25) can be expanded as

L

(

n
∑

j=0

qjck−j

)

= ln

1 +
n
∏

j=0

tanh(L (qjck−j) /2)

1−
n
∏

j=0

tanh(L (qjck−j) /2)
, (26)

wheretanh(x/2) = ex−1
ex+1

.

Then by using the following relationship between the LLR andsoft symbol estimate,

x̂bk =
eL(bk) − 1

eL(bk) + 1
= tanh (L(b(k)/2) , (27)

L(bk) = ln
1 + x̂bk

1− x̂bk

, (28)

(25) can be further written as

L(bk) = L

(

n
∑

j=0

qjck−j

)

= ln

1 +
n
∏

j=0

x̂qjck−j

1−
n
∏

j=0

x̂qjck−j

= ln

1 +
n
∏

j=0

(

x̂ck−j

)qj

1−
n
∏

j=0

(

x̂ck−j

)qj
, (29)
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where x̂qjck−j
denotes the soft symbol estimate of symbolqjck−j. Obviously x̂qjck−j

= 1 when

qj = 0 and x̂qjck−j
= x̂c,k−j whenqj = 1. Thus x̂qjck−j

=
(

x̂ck−j

)qj .

By substituting (29) into (27), we get

x̂bk =
n
∏

j=0

(

x̂ck−j

)qj . (30)

By taking the logarithm on both sides of (30), we have

ln x̂bk =

n
∑

j=0

qj ln x̂ck−j
. (31)

Therefore, the log-domain SISO forward decoding of the FBC code can be simply implemented

by its dual encoder, generated by the generated polynomialqFBC(x) = 1/gFBC(x) = qnx
n +

· · · q1x+ 1.

This proved Theorem 1.

B. Proof of Theorem 2

Let us first examine the forward binary decoding. Based on thecode generator polynomials, we

can easily derive the binary decoder of codes generated bya(x) and a(x)z(x)
z(x)

=xn+l+1
z(x)

, as shown in

Fig. 18(a) and 18(b), respectively. As can be seen from thesefigures, the binary decoder of each

of these two codes is equivalent to the encoder generated by its respective inverse polynomial.

Let (m1, · · · , mn) and (m′1, · · · , m
′
n) be then-dimensional binary representation ofm and

m′. Let (u1, · · · , un+l) and
(

u′1, · · · , u
′
n+l

)

be the (n + l)-dimensional binary representation

of u and u′. Assume that at timek, with input ck, the state transits from(m′1, · · · , m
′
n) to

(m1, m2, · · · , mn) in the binary decoder of Fig. 18(a) and transits from(u′1, · · · , u′n+l) to

(u1, · · · , un+l) in 18(b). For a binary input sequencec = (c1, c2, · · · , cK), it is well known

that the polynomials 1
a(x)

and z(x)
a(x)z(x)

generate the same codeword. We thus have

bk =

n−1
∑

i=1

aim
′
i +m′n + ck =

n+l−1
∑

j=1

zju
′
j + u′n+l + ck, (32)

mj = m′j−1, and uj = u′j−1, j ≥ 2. (33)

Then by following similar calculation in Appendix A, we have

L(bk) = L

(

n−1
∑

i=1

aim
′
i +m′n + ck

)

, (34)
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(a) The binary decoder of FFC code generated bya(x), which is equivalent to

an encoder generated by1/a(x)

(b) The binary decoder of FFC code generated bya(x)z(x)
z(x)

= xn+l+1
z(x)

, which is equivalent

to an encoder generated byz(x)
a(x)z(x)

= z(x)

xn+l+1

Fig. 18: The binary dual encoder of a FFC code

L(bk) = L

(

n+l−1
∑

j=1

zju
′
j + u′n+l + ck

)

. (35)

When the terms in the summation of the right-hand side in (34)and (35) are statistically

independent, we can use the L-sum theory to further expand these two equations. However, we

can easily check that the termsm′i, i = 1, · · · , n, in (34), are not independent. Now let us prove

that u′i, i = 1, · · · , n+ l are statistically independent random variables.

When0 < k < n+ l, the stateu′i, i = 1, · · · , n+ l, at timek, is given by

u′i = 0, k < i and u′i = ck−i, k ≥ i. (36)

Whenk > n+ l, the stateu′i, i = 1, · · · , n+ l, at timek, is given by

u′i =

⌊k/(n+l)⌋
∑

p=0

ck−pi, (37)

where⌊x⌋ denotes the largest integer not greater thanx.

From (36) and (37), we can see thatu′i, i = 1, · · · , n+ l, are statistically independent random

variables at any time instantk.
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Fig. 19: The SISO decoder structure, implemented with the encoder with the generator

polynomial ofqFFC(x) =
z(x)

a(x)z(x)
= z(x)

xn+l+1

Since u′i, i = 1, · · · , n + l are statistically independent random variables, we can usethe

L-sum theory [7] to expand the right-hand side of (36). By following a similar calculation as in

Appendix A, we can obtain the following equation

ln x̂bk =

n+l−1
∑

j=1

zj x̂u′

j
+ x̂u′

n+l
+ x̂ck , (38)

and,

x̂uj
= x̂u′

j−1
, j ≥ 2, (39)

where x̂bk , x̂uj
, x̂u′

j
and x̂ck denotes the soft symbol estimate of symbolbk, uj, u′j, and ck,

respectively. Based on (38) and (39), we can derive the SISO decoder structure, shown in Fig.

19, implemented with the encoder with the generator polynomial of

qFFC(x) =
z(x)

a(x)z(x)
=

z(x)

xn+l + 1
. (40)

This proves Theorem 2.

C. Proof of Theorem 3

Assume that the encoder with the generator polynomialg(x) in Fig. 8(a) transits from the

state(m′1, m
′
2, · · · , m

′
n) at timek-1 to the state(m1, m2, · · · , mn) at timek with input bk, then

we have

m1 = bk +

n−1
∑

p=1

qpm
′
p +m′n, mp = m′p−1, p ≥ 2, (41)
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and the corresponding trellis output at timek is given by

c(k) = bk +
n−1
∑

p=1

qpm
′
p +m′n +

m−1
∑

p=1

apm
′
p +m′m (42)

= bk +

n−1
∑

p=1

qpm
′
p +

m−1
∑

p=1

apm
′
p +m′n +m′m.

To prove Theorem 3, we now only need to prove that with inputbk its reverse memory-labeling

encoder transits from the state(m1, m2, · · · , mn) at timek-1 to the state(m′1, m
′
2, · · · , m

′
n) at

time k and generate the same encoder output.

Now let us consider thereverse memory-labeling encoder with the generator polynomialg(x)

in Fig. 8(b). With the state(m1, m2, · · · , mn) at time k-1 and inputbk, the state at timek of

the reverse memory-labeling encoder is given by

Sn(k) = bk +m1 +

n−1
∑

p=1

qpmp+1

(a)
=bk + bk +

n−1
∑

p=1

qpm
′
p +m′n +

n−1
∑

p=1

qpm
′
p =m′n, (43)

Sp(k) = Sp+1(k) = mp+1 = m′p, (44)

where in the step(a) of (43) we have used Eq. (41).

The output ofreverse memory-labeling encoder at timek is given by

c(k) = mn+1 +
m−1
∑

p=1

apmp+1 +m1 = m′m +
m−1
∑

p=1

apm
′
p + bk +

n−1
∑

p=1

qpm
′
p +m′n, (45)

where we have used Eq. (41) in the last step of calculation.

From (43-45), we can see that with inputbk the reverse memory-labeling encoder transits

from the state(m1, m2, · · · , mn) at timek− 1 to the state(m′1, m
′
2, · · · , m

′
n) and generates the

same encoder output as the encoder with the generator polynomial g(x).

This proves Theorem 3.

D. Proof of Theorem 5

To prove Theorem 5, let us first examine the backward decodingof a FBC code. At the

encoder of a FBC code in Fig. 5, with inputbk, the state transits from
(

m′1, · · · , m
′
n−1, m

′
n

)

at

time k−1 to (m1, m2, · · · , mn) =
(

ck, m
′
1, · · · , m

′
n−1

)

at timek, whereck is the encoder output.

The state transition is shown in the Fig. 20, wherea, d, w=0 or 1, ā = 1 − a, d̄ = 1 − d, and

w̄ = 1− w.
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Fig. 20: The backward decoding trellis transition of a FBC code

Then we apply the BCJR backward decoding as follows,

(1) At time K, we haveβK(0) = 1 andβK(m) = 0 for m 6= 0;

(2) At time K-1, we have

βK−1(m) = pcK(0) for m = 0, 1, andβK−1(m) = 0 for m 6= 0, 1;

(3) At time K-2, we have

βK−2(m) = pcK−1
(0)pcK(0), for m = 0, 1, 2, 3, andβK−2(m) = 0, for m 6= 0, 1, 2, 3;

...

(4) At time K − v, 0 ≤ v ≤ n, we have

βK−v(m) =
v−1
∏

i=0

pcK−i
(0), for m = 0, 1 · · · , 2v−1, andβK−v(m) = 0, for m 6= 0, 1 · · · , 2v−1;

...

At time K − t, t > n , we have

βK−t(m) =
n−1
∏

i=0

pcK−i
(0), for all m.

From the above equation, we can see thatβk(m) is the same for all states whenk ≤ K − n.

Therefore, the backward decoding does not have any contribution in the probability calculation

of the BCJR decoding. This proves that the BCJR forward decoding is exactly the same as the

MAP decoding for the FBC codes.

E. Proof of Lemma 1

Let Si(k), i = 1, 2, · · · , n, andS ′j(k), j = 1, 2, · · · , n+ l, denote the memory of thei-th shift

register of encoder C and thej-th shift register of encoder̄C, generated bygGC(x) andqGC(x).

According to Fig. 7a, in encoder C,S1(k + 1) is given by

S1(k + 1) = bk+1 +

n
∑

i=1

qiSi(k), (46)
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equivalently, we have the following equation

bk+1 = S1(k + 1) +
n
∑

i=1

qiSi(k). (47)

Let q0 = 1 andS1(k + 1) = S0(k). Then (47) can be written as

bk+1 =

n
∑

i=0

qiSi(k). (48)

In encoderC̄, the outputbk+1 can be written as

bk+1 = ck+1 +
n+l−1
∑

j=1

hjS
′
j(k)

= S ′1(k + 1) +

n+l−1
∑

j=1

hjS
′
j(k) + S ′n+l(k), (49)

where we have used the relationship ofck+1 = S ′1(k + 1) + S ′n+l(k). Let h0 = hn+l = 1 and

S ′1(k + 1) = S ′0(k), and we get

bk+1 =

n+l
∑

j=0

hjS
′
j(k). (50)

Sinceh(x) = q(x)z(x) = q(x) + z1xq(x) + · · ·+ zl−1x
l−1q(x) + xlq(x), we have

bk+1 =

n
∑

i=0

qiS
′
i(k) + z1

n
∑

i=0

qiS
′
i+1(k) + · · ·+ zl−1

n
∑

i=0

qiS
′
i+l−1(k) +

n
∑

i=0

qiS
′
i+l(k)

=

n
∑

i=0

qi
{

S ′i(k) + z1S
′
i+1(k) + · · ·+ zl−1S

′
i+l−1(k) + S ′i+l(k)

}

. (51)

Comparing (48) and (51), we can representSi(k) by a linear combination of shift register

memories of encoder̄C

Si(k) = S ′i(k) + z1S
′
i+1(k) + z2S

′
i+2(k) + · · ·+ zl−1S

′
i+l−1(k) + S ′i+l(k). (52)

Therefore, when tail bits of encoder̄C terminate it at the all-zero state, these tail bits will

also terminate encoder C at the all-zero state.

This proves Lemma 1.
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F. Proof of Lemma 2

With tail bits, both encoder̄C and its backward encoder begin with and end at the all-zero

state, that is
(−→
S ′1(K + n+ l),

−→
S ′2(K + n+ l), · · · ,

−−→
S ′n+l(K + n + l)

)

= (0, 0, · · · , 0)
(←−
S ′1(K + n+ l),

←−
S ′2(K + n+ l), · · · ,

←−−
S ′n+l(K + n + l)

)

= (0, 0, · · · , 0) . (53)

The state of encoder̄C and its backward encoder at timeK + n+ l− 1 can be calculated as
(−→
S ′1(K + n+ l − 1),

−→
S ′2(K + n+ l − 1), · · · ,

−−−−→
S ′n+l−1(K + n+ l − 1),

−−→
S ′n+l(K + n + l − 1)

)

= (0, 0, · · · , 0, cK+n+l)
(←−
S ′1(K + n+ l − 1),

←−
S ′2(K + n+ l − 1), · · · ,

←−−−−
S ′n+l−1(K + n+ l − 1),

←−−
S ′n+l(K + n + l − 1)

)

= (0, 0, · · · , 0, cK+n+l) . (54)

This means that the encoder̄C and its backward encoder will arrive at the same state at time

K+n+ l−1. Let u′ =
(

u′1, u
′
2, · · · , u

′
n+l

)

denote the state of encoderC̄ at timek−1. Then its

next state at timek is given byu = (u1, u2, · · · , un+l) =
(

ck + u′n+l, u
′
1, · · · , u

′
n+l−1

)

. To prove

that the encoder̄C and its backward encoder arrive at the same state any any timek, we only

need to prove that the backward encoder will transit from state u at timek to stateu′ at time

k − 1. This can be proved in a similar way as the proof of Theorem 3 and we omit it here.

This proves Lemma 2.

G. Proof of Theorem 6

We consider a GC code generated bygGC(x) =
a(x)
q(x)

. Its dual encoder for decoding is described

by qGC(x) = 1 + h1x+···+hn+l−1x
n+l−1

1+xn+l . We assume that the state of the dual encoderC̄ transits

from
(

u′1, u
′
2, · · · , u

′
n+l

)

at timek − 1 to (u1, u2, · · · , un+l) at timek with input ck. According

to qGC(x), the output of the dual encoder̄C at timek can be written as

bk = ck +

n+l−1
∑

j=1

hju
′
j. (55)
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For the bidirectional BCJR MAP algorithm, the probability that bk = w is given by

Pbk(ω) = P {bk = ω|~y} =
∑

(u′,u)=U(bk=ω)

αk−1 (u
′) γk (u

′, u)βk(u)

=
∑

(u′,u)=U(bk=ω)

n+l−1
∏

j=1

P−→
S′

j(k−1)
(u′j)P (ck)

n+l
∏

i=2

P←−
S′

i(k)
(ui)

=
∑

(u′,u)=U(bk=ω)

n+l−1
∏

j=1

P−→
S′

j(k−1)
(u′j)

n+l−1
∏

j=1

P←−
S′

j(k−1)
(u′j)P (ck)

=
∑

ck,u
′

1,··· ,u
′

n+l
,
∑n+l−1

j=1 hju′

j+ck=ω

n+l−1
∏

j=1

PS′

j(k−1)
(u′j)P (ck) , (56)

wherePS′

j(k−1)
(u′j) = P−→

S′
j(k−1)

(u′j)P←−S′
j(k−1)

(u′j). Let L (bk) denote the LLR ofbk. From (56),

we can get

L (bk) = L

(

n+l−1
∑

j=1

hjS
′
j(k − 1) + ck

)

, (57)

whereL
{

S ′j(k − 1)
}

= ln
PS′

j
(k−1)(0)

PS′

j
(k−1)(1)

=
−→
L S′

j
(k−1)+

←−
L S′

j
(k−1). Let V̂j(k−1) denote the SSE

of S ′j(k − 1), and we can get

ln x̂bk = ln x̂ck +
n+l−1
∑

i=1

hi ln V̂i(k − 1). (58)

Comparing the shift register combined outputs of the dual encoder (16) and the outputs of

the bidirectional BCJR MAP algorithm (58), we can see that they are exactly of the same.
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