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This paper presents details of thewideband directional prop-
agation measurements of millimetre-wave (mmWave) chan-
nels in the 26 GHz, 32 GHz, and 39 GHz frequency bands
in an indoor typical office environment. More than 14400
power delay profiles (PDPs) were measured across the 26
GHz band and over 9000 PDPs have been recorded for the
32 GHz and 39 GHz bands at each measurement point. A
mmWavewideband channel sounder has been used, where
signal analyzer and vector signal generator was employed.
Measurements have been conducted for both co- and cross-
antenna polarization. The setup provided 2GHz bandwidth
and themechanically steerable directional horn antennawith
8 degrees beamwidth provides 8 degrees of directional res-
olution over the azimuth for 32 GHz and 39 GHz while 26
GHzmeasurement setup provides the angular resolution of
5 degrees. Measurements provide path loss, delay and spa-
tial spread of the channel. Large-scale fading characteris-
tics, RMS delay spread, RMS angular spread, angular and
delay dispersion are presented for three mmWave bands
for the line-of-sight (LoS) scenario.

Abbreviations: LoS, line of sight; mmWave, millimetre wave; PL, path loss; AOA, angle of arrival; RX, receiver; TX, transmitter; LSF,
large-scale-fading; RMS delay spread, root mean square delay spread; RMS angular spread, root mean square angular spread.
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1 | INTRODUCTION

Fifth generation (5G) mobile network is expected to emerge for initial deployment from 2020 onwards to overcome
high data traffic and ever-increasing demand for higher transmission speed. Furthermore, to develop 5G systems
with higher bandwidth and low latency, researchers and industries are becoming more and more interested to study
millimetre wave (mmWave) frequency bands for small cell operations in dense urban environments, and mounting de-
mand in using mmWave bands for indoor and outdoor 5G wireless communication as microwave wireless spectrum
(spectrum below 6 GHz) is almost occupied for different applications and not enough to meet future needs. While
mmWave spectrum bands offer an excessive chance to increase the channel capacity, little information is accessible
about the channel propagation at these new carrier frequencies. Such characterization of the wireless channels is par-
ticular crucial to the deployment of mmWave MIMO systems where the use of beamforming techniques is inevitable,
[25, 28, 27] and references therein.

Additionally, propagation measurements in indoor and outdoor environments at mmWave frequency bands are
required to produce statistical channel models to support the development of new standards and technologies for
future 5G wireless communication systems. Moreover, fundamental knowledge of the mmWave channel propagation
characteristics to predict signal strength and multipath time delays are vital to conducting 5G system design precisely.
By considering these, and the fact that different scenarios are considered for mmWave deployment, necessitate the
need for new channel models at mmWave frequencies for different scenarios and environment. Recently, to fill this
research gap, several indoor and outdoor channelmeasurement campaigns have been performed at differentmmWave
frequency bands [33, 29, 32, 40, 36].

For example, mmWave channel measurements at 81 GHz band (81-86 GHz) over 5 GHz of bandwidth for point-
to-point communications in a long street canyon environment have been performed in Helsinki, Finland [18]. The
results demonstrate that although LoS component is dominant but also multipath exist in this band. Moreover, several
mmWave channel measurement campaigns for the 28 GHz band have been conducted and path loss (PL), root mean
square (RMS) delay spread, and multipath effects have been studied. For instance, measurements presented in [5]
showed that higher transmitter (TX) antenna can increase the coverage compared to the TX with the lower antenna
heights, due to fewer obstructions. Multipath delay spreads, number of multipath components and large-scale PL
have been studied by New York University (NYU) wireless research centre at 28 GHz, 38 GHz, and 73 GHz for both
access and backhaul scenario and the first 3-D measurement-based mmWave wideband statistical channel impulse
model for 28 GHz propagation is presented [31].

Polarimetric and wideband directional channel measurement has been performed at 32 GHz and 39 GHz and
presented in [12]. RMS delay spread and power angular spectrum have been discussed for different polarization con-
figuration. RMS delay spread at different polarizations show small difference which can be due to specific scatterers
in the channel. 3GPP path loss has been studied in [11] where directional path loss at three different frequency bands;
26 GHz, 32 GHz, and 39 GHz have been measured in outdoor environment with different base station height.

While many mmWave channel measurements have been conducted for the 60 GHz indoor environment [38, 2,
42, 7, 35] there are also several indoor measurement campaigns on other mmWave bands which don’t suffer high
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oxygen absorption loss, unlike 60 GHz.
Recently, radio propagation transmission characteristics of 28 GHz mm wave band in building and urban cellular

systems are presented in [16]. The channel parameters of mmWave are presented for micro-cell in urban and indoor
NLoS scenario. The measurements were performed in South Korea and the multipath channel, power delay profile
and power angular spectrum have been studied. In [20] the wideband mmWave channel propagation characteristics
with both directional and omnidirectional antennas in the indoor environment at 28 GHz is presented. The path loss
models, received power and root mean square (RMS) delay spreads parameters are analysed and discussed.

In [30], propagation measurements at 2.9 GHz, 29 GHz and 61 GHz carrier frequencies in indoor office, shop-
ping mall, and outdoor scenario have been conducted. The blockage and material penetration losses of mmWave
frequencies have been presented. Also the experimental prototype system is described at 28 GHz where it maintains
high data rates on both the downlink and uplink in outdoor and indoor scenarios. In [21] indoor mmWave channel
measurement at 28 GHz and 73 GHz have been conducted. The measurements employed rotatable directional horn
antennas where directional and omni-directional path loss models and directional multipath RMS delay spread have
been reported. Reflection and penetration loss measurement at 28 GHz is performed and a large penetration loss of
45 dB through an office building is presented in [39].

In [1], mmWave indoor propagation characteristics including multipath delay spread values and path loss models
using omnidirectional and directional antennas are discussed. The performance of the four 5G candidate frequency
bands; 28 GHz, 39 GHz, 60 GHz and 73 GHz, are investigated in LoS and NLoS scenarios using real time frequency
measurements conducted in indoor environments. It has been noted that concrete walls and wood have a much more
serious effect on signals than plaster board walls and glass. The delay spread, number of the received multipath and
received power are decreased in NLoS environment due to high path loss in NLoS scenario compared to LoS rays.
Also, LoS and NLoS scenarios have been studied at 26 GHz in [13].

In [9] wideband mmWave measurement campaigns in the 60 GHz and 70 GHz bands have been conducted over
5 GHz bandwidth. Measurements have been performed by using vector network analyser (VNA) in the different
type of indoor environment such as shopping malls, railway stations, and office environment. Zhu et al. performed
indoormmWave channel measurement and presented path loss component and shadowing fading at 45GHz using the
different type of antennas [41]. Measurements have been conducted in the conference room, cubic office, and living
room for LoS and none line of sight(NLoS)scenarios. Another mmWave channel measurement has been conducted
at 28 GHz band in an indoor laboratory [37]. Measurements have been performed by using rotatable horn antennas
that scan the whole azimuth plane using VNA channel sounding method.

In [15], CI and FI path loss models are compared using measurement data in the 28 GHz and 38 GHz bands for
indoor office scenario. In [34] path loss in different floors in an indoor environment is measured for different frequency
bands between 0.8 and 37 GHz.

In [19] the path loss model is investigated based on measurement results collected in a railway and an airport
passenger terminal. With a steerable directional antenna, the path loss dependency is analysed in terms of bore-sight
angle orientation as well as transmitter - receiver separation distance. Directional RMS delay spread is presented in
[14] for indoor propagation channel using highly directional steerable horn antennas at 28 GHz.

[17] presents an indoor study in Qualcomm building, NJ, USA with comparative study of the 2.9 GHz and 29 GHz
bands. In addition, measurements have been performed with omnidirectional and directional antennas. The path loss,
excess delay, RMS delay and power delay profile of the received paths are discussed. The measurements results are
indicated that 29 GHz is very sensitive in terms of loss and delay.

In [3] an integrated 38 GHz 5GmmWave radio access experiment platform is presented to adopt the hybrid beam-
forming architecture with phased array antenna. In indoor scenario, this platform achieves more than 1 Gbps data
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rate over 100 m transmission range.

Aside of universities and research institutes, a number of projects on mmWave channel models have been also
conducted by industry as well, such as METIS [23], mmMAGIC [22], and MiWEBA [24] for different scenarios and
frequency bands in indoor and outdoor environments.

There are several mmWave frequency bands of interest for 5Gwireless network. A short history of the 5G pioneer
bands is presented in [10]. Also, Ofcom proposed 26GHz band as a pioneer band for 5G in Europe and also highlighted
32 GHz and 40 GHz as promising bands for 5G in the UK [26]. Additionally, 39 GHz is recommended by FCC for 5G
deployment in the US [6].

This paper aims to get a detailed insight into large-scale fading (LSF) characteristics, angular and delay spread for
the mmWave frequency bands at 26 GHz, 32 GHz, and 39 GHz for co- and cross- polarization antenna configurations
over 2 GHz bandwidth. For this purpose, a large amount of measurements have been conducted in the office envi-
ronment. The ultimate purpose of this measurement campaign is to acquire a reliable set of data with appropriate
resolution to propose a wideband, directional channel model for 5G indoor small cell scenarios at 26 GHz, 32 GHz
and 39 GHz. RMS delay spreads of channel, power angular spectrum, path loss exponent, and standard deviation of
shadow fading have been studied and details of measurement description, parameters as well as the analysis of the
measurement data are presented below.

2 | CHANNEL MEASUREMENT CAMPAIGN

The measurement campaign were performed in line with the concept of the future 5G indoor cellular mobile network,
which employs the very directional steerable antennas at new mmWave operating frequency bands. This measure-
ment campaign targets to explore the large-scale fading characteristics of indoor small-cell propagation channel as
well as delay and angular dispersion of channel at 26 GHz, 32 GHz and 39 GHz over 2 GHz bandwidth.

2.1 | Measurement Equipment

A Rohde & Schwarz signal generator R&S R©SMW200A is used to transmit continuous wave signal in power of 17 dBm.
Due to its outstanding autocorrelation properties, Frank-Zadoff-Chu (FZC) sequence is employed as sounding signal
which provides high autocorrelation properties. The received signal is recorded by a Rohde & Schwarz signal analyzer
R&S R©FSW67 to capture I/Q data, later the R&S R© TS-5GCS software tool processes received data which enables
us to perform channel sounding measurement. FSW and SMW are connected with two cables to be synchronized
by a reference frequency, and the measurement is started by a trigger signal. To support bandwidths up to 2 GHz,
an R&S R©RTO1044 oscilloscope is provided to operate with the FSW. The oscilloscope offers a wide bandwidth D/A
conversion. In addition, antenna rotator table, which is connected to the control machine by the fiber optic cables,
enables azimuth scanning at the receiver (RX) with a rotation increment step of 5◦ and 8◦. As shown in Fig. 1, a
computer (PC) is used to not only control the antenna rotator table, but also control the FSW using the LAN cables.

2.2 | Transmitter and Receiver Antennas

Wideband and directional lens antenna is used at the RX with the same gain in both E- and H-plane of 24 dBi at
26 GHz with half power beam width (HPBM) of 5◦ in both planes, which is narrow enough to obtain directional
channel impulse responses (CIRs) with high resolution in azimuth of arrival and delay. At transmitter (TX) side, quasi-
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F IGURE 1 Automatic mmWave channel measurement setup.

directional pyramid horn antenna with 61◦ HPBM is used in the channel measurements with gain of 6.8 dBi at 26
GHz. To measure CIRs at 32 GHz and 39 GHz, wideband and directional horn antenna operating from 26.5 GHz to
40GHz is used as RX with with HPBM of 8◦, while at TX side, quasi-directional horn antenna with HPBM of 54◦ was
used in the channel measurements with gain of 10 dBi and bandwidth of 13.5 GHz from 26.5 GHz to 40 GHz. Before
starting the channel measurements, the SMW was directly connected to the FSW to take calibration data. V-V, and
V-H antenna polarizations (co- and cross- polarization) are conducted which the first symbol refers to the TX antenna
polarization and the latter to the RX antenna polarization. Specification of the TX and RX antennas and hardware
along with measurement equipment and setup are provided in Table 1.

2.3 | Measurement Environments

Measurements were conducted in the ground floor of 5G innovation center (5GIC), University of Surrey, U.K. The
ground floor is a typical office environment with common obstructions such as desks, chairs, offices, doors, elevator,
wallsmade of drywall and glass. Fig. 2 displays the detailed layout and themeasuring arrangement of themeasurement
environment. TX antenna is placed 2.7 m above the floor to emulate common indoor hotspot locations, and RX
antenna is placed 1.6 m above the floor, which is typical handset level heights. The TX antenna is fixed, while the
RX antenna moves along a circular route for all the 26 GHz, 32 GHz, and 39 GHz measurements with both co- and
cross- polarization antenna configurations. In each point of measurement, 32- and 39 GHz RX antenna was rotated
in azimuth in small steps of 8◦ without changing the elevation setting whilst 26 GHz TX antenna was rotated with
5◦ precision in the azimuth plane. The separation distance between TX and RX for all three frequencies was ranged
between 4 to 20 m with adjacent separation of 2 m and measurement points were kept fixed for the fair comparison.
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F IGURE 2 Map of the ground plan of 5GIC with TX and RX locations.

During themeasurements, therewas no human activity in themeasurement environment, so the channel is considered
as a time-invariant channel.Fig.3 shows the measurement environment along with TX and RX equipment.

3 | MEASUREMENT RESULTS, ANALYSIS, AND DISCUSSION

The measured channel impulse responses for both polarization configuration and different frequencies are derived
with a delay resolution of 0.5 ns and azimuth angle of arrival resolution of 5◦ for 26 GHz and 8◦ for 32 GHz and
39 GHz. To filter out the small scale fading of each single CIR, measured CIRs are averaged over each direction on
the azimuth at each measurement point to form a power delay profile (PDP). To simplify the characterization of the
channel power dispersion, a set of parameters can be extracted from the PDP. In this section, power angular spectrum
for V-V polarization at all frequencies is presented for comparison between 26 GHz, 32 GHz, and 39 GHz. In addition,
all RMS delay spread and temporal statistics for different polarization and frequencies are presented and discussed.
Large-scale fading characteristics are also studied and discussed.

3.1 | Power angular spectrum

The angular dispersion can be expressed with the power angular spectrum (PAS), which characterizes how the signal
power varies over an angle. Fig. 4 shows the directional received power versus angle of arrival at each measurement
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F IGURE 3 (a) Transmitter and receiver equipments at 32 GHz, (b) directional lens antenna operating at 26 GHz
along with the R&S R©FSW67 and R&S R©RTO1044 oscilloscope.

point to present the angular dispersion at (a) 26 GHz,(b) 32 GHz, and (c) 39 GHz for V-V antenna polarization. From
Fig. 3 (a), it is observed that not only LoS components are strong which are shown at (θ = 0◦), but also, there are other
strong components at other azimuth angle of arrival referring to the reflections when RX antenna was rotated toward
the specific clusters in the measurement environment such as glass walls. Same behaviour has been observed at 32
GHz and 39 GHz, as well. The only difference between is the weaker received signal power value at higher frequency
bands.

3.1.1 | RMS angular spread

Presented PAS in Fig. 4 with 5 ◦ and 8 ◦ angular resolution is fine enough to give a useful indication of the angular
spread, but RMS Angular spread is another parameter that is useful for the successful design of MIMO and smart
antenna systems [4] which can be estimated from the obtained data with the highly directional antennas at the RX.

θrms =

√∑
i P (θi )(θi − θmean)2∑

i P (θi )
(1)

where, P (θi ) is the received power at angle θi , and θmean is the mean azimuth angle of arrival. Fig. 5 presents the
RMS angular spread for 26, 32 and 39 GHz for V-V antenna polarisation configuration. From this figure, it is observed
that higher frequency bands have lower RMS angular spread.
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TABLE 1 Wideband Channel Sounding Setup Specifications and antenna parameters for the 26 GHz, 32 GHz,
and 39 GHz.

Frequencies 26 GHz 32 GHz 39 GHz

Sounding Waveform Frank-Zadoff-Chu 65535

RF Bandwidth 2 GHz

Transmitted Power 17 dBm

Delay Resolution 0.5 ns

TX Polarization Vertical

RX Polarization Vertical / Horizontal

TX E-Plane Beam width 78◦ 54◦

TX H-Plane Beam width 61◦ 54◦

RX E-Plane Beam width 5◦ 8◦

RX H-Plane Beam width 5◦ 8◦

Height of TX Antenna (hT ) 2.7 m

Height of RX Antenna 1.6 m

TX Antenna Gain 6.8 dBi 10 dBi

RX Antenna Gain 24 dBi 23 dBi 25 dBi

TX, transmitter; RX, receiver.

3.2 | RMS delay spread

Analogous to the RMS angular spread, the delay dispersion can be described by root mean square (RMS) delay spread
which is defined as the square root of the second moment of a PDP:

τrms =

√∑
i Pi (τi − τmean)2∑

i Pi
(2)

where, τi is the delay of the ith multipath with received power of Pi, and τmean is the average delay of themultipath.
It must be noted that RMS delay spread is a good measure of the multipath time dispersion and coherence bandwidth
nature of multipath channels. It was recently expressed that there should be some advantages to search particular
beam pointing directions which offer both minimum multipath delay spread and minimum path loss which can enable
physical layer designers to build power-efficient mmWave mobile communication systems with simple equalization.
Fig. 6 shows the cumulative distribution function (CDF) for the RMS delay spreads of the PDPs measured over all
pointing angles at 26 GHz, 32 GHz, and 39 GHz for V-V and V-H antenna polarization. The RMS delay spread values
are calculated using Eq. (1). In Eq. (1) a threshold of S dB below the maximum peak must be applied to the individual
values of the averaged PDP to distinguish the multipath components from the noise [8]. It must be noted that the
value of S, directly affects the value of τrms. Commonly used values of Swhich can be found in literature include 15, 20
, and 30 dB below themaximal which set the threshold 5 - 30 dB above the noise floor depending on themeasurement
position. In this paper all RMS delay spread values for V-V antenna polarization is calculated by considering only paths
that exceeded a 35 dB threshold below the maximum peak (S = 35 dB) in the PDPs to have a wide dynamic range and
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F IGURE 4 Absolute directional received power at (a) 26 GHz, (b) 32 GHz, and (c) 39 GHz.

TABLE 2 RMS delay spread for the 26 GHz, 32 GHz, and 39 GHz for different antenna polarization configuration.

Carrier Frequency [GHz] 26 32 39

Polarization V-V V-H V-V V-H V-V V-H

RMS delay spread [ns] 26.78 5.88 24.27 3.57 20.48 2.72

fair comparison between three different frequency bands as their noise floors have different values. In this case, the
90% of the measured RMS delay spreads of V-V configuration are less than 26.78 ns, 24.27 ns, and 20.48 ns at 26
GHz, 32 GHz, 39 GHz, respectively which is apparent that 90% of the energy arrived at the RX is less than 27 ns at 26
GHz for all measured arbitrary pointing angles. To calculate RMS delay spreads for V-H antenna polarization, 20 dB
threshold has been applied due to short dynamic range in this case, and as it is expected their values are small for H-V
antenna polarization at all frequency bands. 5.88 ns, 3.57 ns, and 2.72 ns were calculated for 26 GHz, 32 GHz, and 39
GHz, respectively which are muchmore less than V-V cases because cross-polarized signal components are generated
by depolarized multipath due to reflection and diffraction. As it can be seen that from Fig. 6, the RMS delay spread at
39 GHz is smaller than at 26 GHz, and 32 GHz for each polarization similar to results reported in [31] when comparing
RMS delay spreads of 28 GHz, 38 GHz, and 73 GHz. This difference is due to the greater energy being scattered at
lower mmWave frequencies. On the other hand, wavelengths at 39 GHz are smaller than at 26 GHz and 32 GHz
which cause to more diffuse scattering during propagation which results in weaker path which are not detectable in
the receiver. To better understanding of this phenomena, Fig. 7 is presented to show the omni-directional received
power at each measurement point versus delay values for different type of polarization at 26 GHz, 32 GHz, and 39
GHz, which can clearly show more dispersion at 26 GHz compared to 32 GHz and 39 GHz shows how signal have
been scattered in three different bands. The reason is, there are more resolvable multipath component as a function
of TX-RX separation at 26 GHz compared to 32 GHz and 39 GHz due to stronger signals and larger wavelenghts at
26 GHz, which allow the signal to reflect more and scatter less. RMS delay spread values for different frequencies
and polarisations are listed in Table 2.
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F IGURE 5 RMS angular spread for 26 GHz, 32 GHz, and 39 GHz for V-V polarisation configuration.

3.3 | Path loss

The path loss (PL) is the main parameter to describe the large-scale characteristics of the channel. Attenuation over
distance can be estimated by PL models, which are vital for designing wireless communication systems and were
investigated based on deterministic, empirical, and stochastic PL models while, the most realistic PL models is based
on measurements. The PL can be given by:

L(d ) = Pt +Gt +Gr − Pr (d ) − L0[dB] (3)

In (3),Gt andGr respectively denote TX and RX antenna gains in dBi, and Pt and Pr respectively represent transmitted
power and received power in dBm, and L0 is mmWave cable loss in dB.

3.3.1 | CI PATH LOSS MODEL

One of the most popular PL models is single frequency path loss model (CI model), defined as

PLCI(f , d )[dB] = FSPL(f , d0) + 10n log10(d/d0) + X CI
σ (4)

where PLCI(f , d ) represents the path loss at a given frequency of f with different TX-RX separation distance
of d , whilst FSPL(f , d0) is the path loss in dB at a close-in (CI) distance d0. Moreover, Xσ is a zero mean Gaussian
random variable with standard deviation of σ in dB. The CI model is based on determining the path loss exponent
(PLE) n using the minimum mean square error (MMSE) method in order to fit the measured data with smallest error
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F IGURE 6 26 GHz, 32 GHz, and 39 GHz RMS delay spread CDFs for different antenna polarization
configuration.

TABLE 3 Large-scale fading parameters for the 26 GHz, 32 GHz, and 39 GHz.

Carrier Frequency [GHz] 26 32 39

Polarization V-V V-H V-V V-H V-V V-H

Path Loss Component (n) 1.68 2.87 1.88 2.99 1.81 2.93

σ 2.9 4.3 2.5 4.1 2.2 3.8

through minimizing σ and using a true physically-based reference distance of d0. The CI path loss model is therefore
employed by considering d0 = 1m as a reference point. LSF characteristics including the PLE and standard deviation
of the resulting shadow fading σ from the channel measurement data, provided in Table 3 for 3 frequencies and both
co- and cross- polarization. For V-V antenna polarization, the PLEs are 1.68, 1.88, and 1.81 at 26 GHz, 32 GHz, and
39 GHz, respectively. These results show that the PLE values for the three frequencies in indoor environment are
less than but very close to the theoretical free space path loss component (n = 2). These results indicate that the
multipath components from different reflectors in the office environment add up constructively as a waveguide effect
and showing that directional LoS PLEs are independent of frequency. The PLEs are 4.3, 4.1, and 3.8 at 26 GHz, 32
GHz, and 39 GHz, respectively for V-H antenna polarization.

3.3.2 | 3GPP Indoor Path Loss Model

3GPP defined the path loss model for LoS scenarios in the indoor-office environment as
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F IGURE 7 Omni-directional power delay profile for the (a) 26 GHz (V-V), 32 GHz (V-V), and 39 GHz (V-V).

PLInH-LoS = 32.4 + 17.3 log10(d3D) + 20 log10(fc) (5)

In (5), fc is the center frequency in GHz, d3D is the 3-dimensional distances between TX and RX antennas in meter,
respectively. This model is valid for d3D from 1 to 100 meter with shadow fading of σSF = 3 while Table 3 shows the
maximum shadow fading of 2.9 for 26 GHz when both TX and RX antenna are in same polarization.

4 | CONCLUSION

Indoor wideband directional channel measurements were conducted to obtain large-scale characteristics at 26 GHz,
32 GHz, and 39 GHz bands for LoS scenario. The delay resolution was 0.5 ns while high gain directional antenna at
transmitter side, andmechanically steerable highly directional antenna at receiver side have been used. Measurements
were performed on 5GIC ground floor, University of Surrey, which include different type of obstructions. Channel
characteristics such as power angular spectrum as well as RMS delay spread are presented and discussed. It is found
that LoS components are dominant and there are other strong specular reflections in the receiver from other directions
in these bands and scenarios. The RMS delay spread of the directional received signal shows a small delay spread
around the dominant received signal components. Also, RMS angular spread was presented for different frequencies
where, higher bands have lower values. In addition, CI path-loss model has been studied and shown that for the co-
polarized channel (V-V scenario), constructive interference due to waveguiding and reflections resulted in the PLEs
to be less than theoretical free space path loss component (n = 2). PLEs for V-H polarisation configuration are greater
than 2 due to significant de-polarization effect. 3GPP indoor path loss model was studied and compared with the
measured path loss at 26, 32, and 39 GHz.
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