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Abstract

Estimating the cell loss probability in an ATM multiplexer is a key issue in network management and
tra�c control tasks such as call admission control and bandwidth allocation� In this paper� we derive a
new approximation to estimate the total and individual cell loss probabilities in an ATM multiplexer fed
by a superposition of heterogeneous on�o� sources� Based on this approximation� a simple algorithm is
proposed to estimate accurately the aggregate required bandwidth to guarantee a given cell loss proba�
bility� Numerical results and comparisons to alternative approaches are also shown�

Supported partly by Hongkong Telecom Institute of Information Technology grant HKTIIT������EG��

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This is the Pre-Published Version 



I� Introduction

Due to its ability to integrate di�erent types of tra�c with di�erent characteristics and quality
of service �QoS� requirements� ATM has been regarded as the desirable transfer mode in the
future broadband integrated service digital network �B�ISDN�� Generally� QoS can be expressed
in terms of cell delay� cell delay jitter and cell loss ratio �CLR� in the multiplexers� The delay
can be bounded by limiting the bu�er size� Knowing the bu�er size� the CLR can be bounded by
allocating the adequate bandwidth and implementing the appropriate tra�c control mechanisms
such as tra�c policing and call admission control�

Usually� bu�er dimensioning and bandwidth allocation rely on a given model of the ATM
multiplexer� An ATM multiplexer is widely modelled as a single deterministic server queue� fed
by a superposition of independent on�o� sources� The actual arrival process is approximated by
di�erent simpler and analytically tractable models such as� stochastic 	uid 	ow �SFF�� Markov
modulated Poisson process �MMPP�� or Markov modulated deterministic process �MMDP��
Among these models� the SFF approximation 
�� and the MMDP approach 
� prove particularly
appealing to represent accurately the congestion that occurs at the so�called burst scale� In the
SFF approach� the input and the service processes are assumed to be continuous rather than
discrete� and the bu�er size is assumed to be in�nite� In 
��� closed form formulae for the over	ow
probability as well as the asymptotic behavior for an in�nitely large queue are obtained for a
superposition of homogeneous on�o� sources� The extension of these results to the superposition
of heterogeneous tra�c sources is presented in 
��� 
��� However� in this latter case the solution
is no longer analytical� Besides� it requires a large amount of computations� Based on the work
in 
�� giving the over	ow probability �in�nite bu�er� in the SFF method� an estimate of the cell
loss probability ��nite bu�er� has been given in 
���

The MMDP approach approximates the real input process by a deterministic process whose
rate is controlled by a Markov chain 
�� 
��� This model is similar to the SFF approach in
the sense that it addresses only the burst scale component of the cell loss probability in the
ATM multiplexer� In this approach� the bu�er is �nite and information is treated as discrete
cells rather than continuous 	uid 	ow� The cell loss probability is estimated as the ratio of the
expected number of cells lost to the expected total number of cells arrived in a period� by solv�
ing a classic Markovian problem through standard numerical solutions �Gauss�Seidel or Jacobi
algorithms�� The cell loss probability is obtained for the superposition of homogeneous on�o�
sources in 
� and this result is extended to the aggregate and individual cell loss probabilities
for a superposition of heterogeneous on�o� sources in 
���

In theory� the most accurate approach to determine the required bandwidth� given the bu�er
size in the ATM multiplexer� is to invert the exact formula for the cell loss probability as a func�
tion of the server capacity� However� in practice� the exact formulae are too complex and always
require a laborious amount of computations� For this reason� many simpler approximations of
the cell loss probability were proposed in the literature� Most of these approximations are based
on the asymptotic equivalent of the over	ow probability provided by the SFF approach 
��� 
���
The basic idea in these approximations is to express the survivor function of the bu�er occu�
pancy as G�x� � Pr�Y � x� � A�C�ez��C�x� where z��C� and A�C� are functions of the server
capacity and the tra�c parameters� For a �xed C� in a logarithmic scale� the approximation
of G��� is a linearly decreasing function whose slope is determined by z��C� and the intercept
on the ordinates axis �for x � �� is governed by the constant A�C�� A closed form solution for
z��C� in the case of a superposition of homogeneous exponentially distributed on�o� sources is
given in 
��� For the heterogeneous tra�c sources case� as shown in 
��� z��C� can be obtained
as the largest negative solution of a non linear equation� which can be solved numerically� The
determination of the constant A�C� proves� however� much more di�cult� Many approxima�
tions of A�C� have been proposed 
��� 
��� 
��� 
��� The tighter the approximation of A�C� to the
intercept of the exact cell loss probability� the better is the approximation of G�x�� and thus of
the required bandwidth�

In this paper� we address the determination of a new tight approximation of the intercept



A�C�� This approximation is determined from our previous work on the MMDP approach to
estimate the cell loss probability in an ATM multiplexer� Although this approximation is tight�
it can sometimes require long computation times� especially when the number of sources is large�
We propose thus an approximate method to evaluate A�C� in terms of its generating function�
Finally� we apply our new approximation to estimate the aggregate required bandwidth�

The remainder of this paper is organized as follows� In the next section� we present brie	y
the previous results obtained in the estimation of the intercept� We� then� introduce the MMDP
approach and derive our main result in Section III� The approximate method to estimate
e�ciently and quickly the value of the intercept in terms of its generating function is also
presented� In Section IV the approximation is applied to the determination of the required
bandwidth� Finally� to show the accuracy and e�ciency of our approximation� numerical results
are presented in Section V�

II� Previous work on the estimation of A�C�

We consider an ATM multiplexer serving a superposition of L independent classes of on�o�
sources� The multiplexer is modelled as a bu�er of size K cells served by a single output link
with deterministic service capacity C� For each class i� i � �� � ���� L� there are Mi identical and
independent sources� Each source can be in one of two states� on and o�� When the source is
on� it generates a stream of cells at a �xed rate �i� when it is o�� no cells are generated� Both on
and o� periods are assumed to be independent exponentially distributed random variables with
mean ���i and ���i� respectively� When a cell arrives� it is served immediately if the output
link is idle� otherwise� it is bu�ered if the bu�er is not full� Cells are dropped �lost� when the
bu�er is full� The cells are served on a FIFO basis�

Let Ni�t� be the number of class i� i � �� � � � � L� sources on at time t� and denote by Y �t�
the bu�er content at time t� Y �t� is not Markovian but the joint process fN�t�� Y �t�g with
N�t� � �N��t�� N��t�� � � � � NL�t�� is Markovian� The system can thus be solved for the joint
stationary probability� and the stationary distribution of the bu�er content can be obtained
from the marginal distribution of fY �t�g� Before introducing our new approximation� in the
next section� we brie	y present the most common results known in the estimation of A�C��

For the sake of simplicity� we present only the case of homogeneous sources� The input rate to
the multiplexer queue is determined by the state of the �nite dimensional Markov process N�t�
representing the number of sources on at time t� Let M be the total number of sources and ri
the input rate in state i� i � �� � � � �M � Denote by T the in�nitesimal generator of N�t�� Tij is
the transition rate from state i to state j� and Tii � �Pj�j ��i Tij� Let �i�x� be the steady state
probability that the rate process N�t� is in state i and the bu�er content Y �t� is not larger than
x� The system of di�erential equations governing the dynamics of the joint process fN�t�� Y �t�g
is then

d

dx
��x�D � ��x�T� ���

where D
�
� diagfri � Cg is the drift matrix and ��x� � f���x�� � � � � �M �x�g� By solving this

system� the stationary bu�er over	ow probability G�x� is given by

G�x� � �� h��x���i
�

P
i��

aih�i��iezix� ��

where ai are real coe�cients determined from the boundary conditions 
��� zi are eigenvalues
with negative real part� and �i are the associated eigenvectors� The pairs �zi� �i� are solutions
of the eigensystem

zi�iD � �iT� ���

As mentioned in 
���� this apparently simple solution requires sometimes a large amount of
computations� Especially� the calculation of the coe�cients ai can lead to severe numerical
problems� These problems� in addition to the need of developing e�ective solutions that can be



used for real�time network management such as resources allocation and routing� lead to the
development of a large number of approximations of the result in ��� Among them� the �rst
one assumes an in�nitely large bu�er size� so that the sum in �� is dominated by a leading term
obtained for the largest eigenvalue say z� 
�� giving

G�x� � a�h����iez�x� for x� ��� ���

This asymptotic approximation has two major drawbacks� the �rst one is that to calculate the
coe�cient a� it is necessary to calculate all the stable eigenvalues zi� The second one� by far
more severe� is that approximation ��� always underestimates the exact result� Moreover� it has
been shown in 
�� that under certain tra�c conditions� the di�erence between the exact result
and the approximation is very large even when the bu�er size is �unrealistically� very large� In

��� an upper bound to ��� was derived by simply replacing the factor a�h����i by �� leading to

G�x� � ez�x� ���

Although this approximation simpli�es substantially the computation of the bandwidth required
for a given CLR target and bu�er size� it often leads to an outrageous over�estimation of the
required bandwidth under realistic tra�c conditions� To overcome this problem� the authors
introduced an improvement by taking the minimum of this approximation and the Gaussian
approximation of the probability that the input rate exceeds the output channel capacity �for
details refer to the original paper 
�� or see 
����� In the same spirit� a new approximation is
proposed in 
��� The factor a�h����i is replaced by a new factor L� obtained from a bu�erless
model by using large deviation theory� leading to

G�x� � L�e
z�x� ���

L� is actually the Cherno��s large deviation approximation to the probability that the instan�
taneous input rate exceeds the channel capacity 
��� This factor L� is very accurate� however�
it constitutes an approximation to the over	ow probability instead of an upper bound so that
when the bu�er size is relatively small� this approximation may underestimate the exact over	ow
probability by a theoretically unknown amount�

III� A new approximation of the intercept A�C�

A� The MMDP approximation

In the MMDP approximation� the discrete nature of the arrival and service processes is con�
served and the bu�er size is assumed to be �nite� In the sequel� we will focus on the superposition
of heterogeneous tra�c sources� Let Mi be the total number of sources of class i� i � �� ���� L� As
de�ned above� the process fN�t�g de�nes a �nite� irreducible� continuous�time Markov process
with state space

S � fn � n � �n�� n�� ���� nL�� ni � �� �� ����Mi� i � �� ���� Lg

and in�nitesimal generator T� Its stationary distribution is given by

pn � lim
t�	�

PrfN�t� � ng �
LY
i��

��
Mi

ni

�
�ni

i ��� �i�
Mi�ni

�
� n � S� ���

where �i � �i���i � �i��
Let 	k be the k

th transition epoch ofN�t�� Nk � N�	k�� Yk � Y �	k�� Note that� in the MMDP
approach� the process fYkg denotes the content of the system including the cell being served�
We assume arriving cells are equally spaced during 
	k� 	k	�� and if a cell is being transmitted at
	k it will be retransmitted immediately after� Then fNkg and f�Nk� Yk�g are embedded �nite�
irreducible Markov chains of fN�t�g and f�N�t�� Y �t��g respectively� The Markov chain fNkg



has the stationary distribution p�n � limk��PrfN�	k� � ng� Denote by ��n�l� the stationary
distribution of the joint process f�Nk� Yk�g�

��n�l� � lim
k�	�

PrfNk � n�Yk � lg� n � S and l � �� �� � � � �K � ��

Let �n � ���n���� ��n���� � � � � ��n�K	��� and 
n � �
�n���� 
�n���� � � � � 
�n�K	��� � �nAn� where

An �
�
an�l�h�

�
is a K � �K �  matrix whose elements are given by

an�l�h� � PrfYk	� � h j Nk � n�Yk � lg�n � S and l� h � �� �� � � � �K � ��

Let V be the set of overload states�V � fn � n � S��n � Cg� where �n �
LP
i��

ni�i� The total

cell loss probability Ploss�C�K� for a given bu�er size K and channel speed C is 
��

Ploss�C�K� �

X
n�V

�
expf��n���n � C�g

�� expf��n���n � C�g
n�K	�

�
X
n�S

�n
�n

p�n

���

and the individual cell loss probability for class i is given by

P i
loss�C�K� �

X
n�V

�
expf��n���n � C�g

�� expf��n���n � C�g
ni�i

�n

n�K	�

�
X
n�S

ni�i

�n
p�n

� i � �� � � � � L� ���

with �n �
LP
i��


�Mi � ni��i � ni�i��

As shown by the results in the original papers 
�� 
��� these formulae are very accurate and
the computation time is quite small when the bu�er size K and�or the total number of sources
are not too large� However� the calculation of 
n�K	� becomes very di�cult for relatively large
sized problems�

B� A new approximation of A�C�

In 
�� it is shown that� like the over	ow probability� the cell loss probability behaves asymptot�
ically as A expfz�xg� where x is the bu�er size� Moreover� it is shown that the asymptotic slope
z� of the cell loss probability in a logarithmic scale is governed by the same largest eigenvalue
z� as the over	ow probability� however the intercept A�C� is smaller than the intercept of the
over	ow probability� Our main objective in this paper is to derive a new accurate closed form
formula for the intercept of the cell loss probability� based on the following facts�
� when the bu�er size is small the approximation should be exactly equal to the cell loss prob�
ability in a bu�erless system�
� when the bu�er size increases towards in�nity� the slope of the cell loss probability �in log
scale� becomes closer to z��
Based on these two facts� the approximation we propose for the cell loss probability in a system
with bu�er size K is of the form Ploss � A�C�ez��C�K � where A�C� is the cell loss probability
in a bu�erless model� obtained from ��� and z� is the largest eigenvalue obtained from ���� The
determination of the eigenvalue z� has been the subject of thorough research� such as 
�� 
��

���� In the following� we will focus mainly on the determination and the evaluation of a more
accurate approximation of the intercept A�C�� For more details on the determination of z� the
reader is referred to 
���



The largest negative eigenvalue of the matrix TD � in ��� can be determined as shown in 
��
as the largest negative solution of the equation

LX
i��

Migi�z� � C� ����

where

gi�z� �
��iz � �i � �i��

q
��iz � �i � �i�

� � ��i�iz

z
� i � �� � � � � L�

Particularly� when all the sources have the same characteristics� a closed form solution for z� is
obtained in 
��

z� � �M��C�� �C �M���

C��M�� C�
�

To calculate the intercept A�C�� we have to notice that for a bu�erless system �K � ��� in
��� and ���� 
n�� � p�n� This can be obtained by �rst writing explicitly 
n�� in terms of �n��
as 
n�� � �n�� since for all n � V� �n�� � � and second by noting that for a bu�erless system�
using the total probability formula� we have p�n � �n�� � �n��� Noting again that for all n � V�
�n�� � �� we deduce 
n�� � p�n� Hence� from ��� the exact intercept for the overall cell loss
probability is given by

A�C� � Ploss�C� �� �

X
n�V

�
expf��n���n � C�g

�� expf��n���n � C�gp
�
n

�
X
n�S

�n
�n

p�n

����

and from ��� the exact intercept for the individual cell loss probability is

Ai�C� � P i
loss�C� �� �

X
n�V

�
expf��n���n � C�g

�� expf��n���n � C�g
ni�i

�n
p�n

�
X
n�S

ni�i

�n
p�n

� i � �� � � � � L� ���

Assume now that �n � C � �n� this can be justi�ed intuitively by the fact that� �rst the
units of �n � C are in cells per second� so that when the system is in an overload state�
n � V� this quantity is large� second� the system we are considering takes into account the
	uctuations of the tra�c only in the burst scale and neglects the cell scale� in other words� these
tra�c 	uctuations occur in a larger time scale than the cells interarrival time� so that ���n
is a large number and thus �n is a small quantity� With this reasonably accurate assumption�
�n���n�C�� �� and the Taylor series expansion can be invoked to approximate the exponential
terms in ����� Particularly� when these exponential terms are replaced by their second order
Taylor approximation around �� Equation ���� becomes

A�C� �

P
n�V

�
�n�C
�n

p�n

�
P
n�S

�
�n

�n
p�n

� ����

Noting that the stationary state probability p�n of the embedded Markov chain fN�k�g is related
to the stationary state probability pn of the Markov process fN�t�g by

pn �
p�n��nP

m�S
p�m��m

� ����



the �nal value for the intercept in ���� becomes

A�C� �

P
n�V

��n � C� pnP
n�S

�npn
�

P
n�V

��n � C� pn

LP
i��

Mi�i�i

� ����

Applying the same assumptions and approximations above to the intercept of the individual cell
loss probability in ���� we obtain

Ai�C� � P i
loss�C� �� �

P
n�V

��n � C�pn
ni�i

�n

Mi�i�i
� ����

The new approximations to the aggregate and individual cell loss probabilities we propose are
then

Ploss �

P
n�V

��n � C� pn

LP
i��

Mi�i�i

ez�K � ����

and

P i
loss �

P
n�V

��n �C�pn
ni�i

�n

Mi�i�i
ez�K � i � �� � � � � L� ����

C� Numerical evaluation of the intercept A�C�

In Equations ���� and ����� it is obvious that when the number of sources is very large�
the computation of the intercept becomes time consuming because the intercept is de�ned as
a convolution� Especially when the source peak rates are not prime numbers� the number
of di�erent combinations of sources leading to an overload state becomes very large� In the
following� we propose to approximate the intercept by an upper bound which can be expressed
in terms of the generating function of the intercept as a function of the capacity� The generating
function is then inverted numerically by using the method proposed in 
����

Let A�C� be the intercept de�ned in ����� and de�ne a sequence fA�kgk�N such that� for every
C� there exists an integer k with A�C� � A�k� The sequence fA�kgk�N can be constructed by
writing

A�C� �

P
�n�C

��n � C� pn

LP
i��

Mi�i�i

�

P
�n�bCc

��n � bCc� pn
LP
i��

Mi�i�i

�

P
�n�bCc

�C � bCc� pn
LP
i��

Mi�i�i

�

and noting that the second term of the right hand side of the above equation is negligible
compared to the �rst term� We obtain the following de�nition of the sequence of numbers fA�kg

A�C� �

P
�n�bCc

��n � bCc� pn
LP
i��

Mi�i�i

�
� A�bCc� ����

So far� we have transformed the computation of the function A�C� to its lattice approximation
A�k� We have to notice� however� two facts� �rst� the term neglected in discretizing the function
A into the stepwise function A� is indeed negligible� which makes the approximation accurate�



and second� since the term neglected is positive� this makes A� an upper bound of A� and thus
prevents the approximation from underestimating the cell loss probability� We nevertheless need
to compute A�k� For this purpose� let G�z� be the generating function of the sequence fA�kgk��

G�z� �
�P
k��

A�kz
k�

�
�

LP
i��

Mi�i�i

�X
k��

��X
�n�k

��n � k� pn

�Azk�
which may be rewritten as

G�z� �
�

LP
i��

Mi�i�i

X
n���

pn

�n��X
k��

��n � k� zk�

By separating the terms inside the inner summation� and noting that �n � � for n � � we can
�nd readily that

G�z� �
�

LP
i��

Mi�i�i

X
all n

pn

�
�n
�� z

� z

��� z��
�

z�n	�

��� z��

�
�

After evaluation of the sum above� G�z� can be written as

G�z� �
�

�� z

�BBB���
z

�
��

LQ
i��

�� � �i�z
�i � ��Mi�

�
��� z�

LP
i��

Mi�i�i

�CCCA � ���

To invert the generating function G���� we invoke a useful result proved in 
���� According to

���� for any given sequence of numbers bounded by �� such as fA�kgk��� jA�kj 	 �� there exists
r� � � r � � such that� for all k 
 � there exists a number �Ak� such that���A�k � �Ak

��� � r�k

�� r�k
� ���

and

�Ak �
�

krk

�kX
j��

����j�
�
G�reij��k�

�

�
�

krk

��G�r� � ����kG��r� � 

k��X
j��

����j�
�
G�reij��k�

��A �

��

where i �
p�� and ��x� is the real part of the complex number x�

By using ��� we have transformed the computation of A�C� from a convolution on C�
involving a combinatorial sum� to a linear sum in C� However� if C is expressed in a very small
unit� the linear sum can be time consuming� To use e�ciently approximation ��� it is necessary
to �nd a unit by which the peak rates and the channel capacity can be normalized to reduce the
CPU time requirement� For practical computation of �Ak� we chose� for example� the smallest
peak rate as the unit�



IV� Estimation of the aggregate effective bandwidth

Usually� the e�ective bandwidth for heterogeneous tra�c classes is determined by equating
the CLR relation in ��� to an overall cell loss requirement commonly assumed to be the most
stringent individual requirement� and then solving the equation for C� This approach can guar�
antee a conservative bound on the required bandwidth because approximation ��� overestimates
the actual CLR by a signi�cant amount� When a tight bound on the aggregate CLR such as
���� is used� this approach becomes invalid� That is� depending on their burstiness� the di�erent
tra�c classes see di�erent CLRs in the FIFO bu�er� and thus the aggregate CLR approximation
may underestimate the CLR of one or more classes� particularly when the bu�er size is small
and the CLR requirements are su�ciently close to each other� Many researchers argued on this
issue in the past �e�g� 
��� 
��� and the conclusion is that the individual CLRs in the FIFO bu�er
are generally in the same order of magnitude� so that the aggregate CLR can be considered�
However� they generally assume the use of an approximation of the CLR as conservative as ����
Our approach to determine the e�ective bandwidth relies on the individual CLR relation in �����

Let i� i � �� � � � � L� be the cell loss requirement for tra�c class i� Based on the results in
Section �� we can estimate the aggregate e�ective bandwidth �C as the minimum C needed to
satisfy the CLR requirements of all tra�c classes for a �xed bu�er size K as follows�

�C � minfC � P i
loss�C�K� 	 i� i � �� � � � � Lg� ���

Since for all i� P i
loss�C�K� is a decreasing function of C� it is easy to see that

�C � maxfCi � P
i
loss�Ci�K� � i� i � �� � � � � Lg� ���

Let Ci be de�ned as the aggregate required bandwidth to guarantee a CLR i to class i� Then
we have the following proposition�
Proposition �� Let g�z� �

PL
i��Migi�z� as de�ned in ����

�i� C 
 Ci if and only if C 
 g

�
lni � lnAi�C�

K

�
�

�ii� C 	 Ci if and only if C 	 g

�
lni � lnAi�C�

K

�
�

Proof Since �i� and �ii� are symmetric� it is su�cient to prove only �i�� P i
loss�C�K� is a

decreasing function of C� We thus have

C 
 Ci � Ai�C�ez��C�K 	 i�

� z��C� 	 lni � lnAi�C�

K
�

Since g�z� is a monotonically decreasing function of z� we have

z��C� 	
�
lni � lnAi�C�

K

�
� g �z��C�� 
 g

�
lni � lnAi�C�

K

�
and with ����

C 
 g

�
lni � lnAi�C�

K

�
�

which proves �i� �
Let � �

P
Mi�i�i and e� �

P
Mi�i be the aggregate mean and aggregate peak input rates

respectively� We have �C �
h
�� e�i� For a given relative error �� �C can be calculated by the

simple bisection algorithm below based on Proposition ��



CL � �� CL � e� fInitialize the upper and lower bounds of the solutiong
repeat

�C �
CL � CU


�

if �C � max
i�������L

g

�
lni � lnAi� �C�

K

	

 � then

CU � �C
else

CL � �C
end if

until
CU � CL

CL
� �

Algorithm �� Simple bisection algorithm to calculate �C

This algorithm requires only log��e� � �� � log���� iterations� In each iteration� at most L
values of the simple and explicit function g��� are calculated�

From the de�nition of �C� it is clear that it will guarantee the most stringent CLR requirement�
In other words� the class corresponding to this stringent CLR will experience a CLR exactly
equal to this requirement while the other less stringent classes will observe better performance
than required� This obviously results in a waste of bandwidth� Besides� it is well known that
FIFO discipline cannot guarantee di�erent CLRs� As argued in 
��� and 
�� the individual CLRs
experienced by the di�erent classes in a FIFO bu�er are roughly the same for all classes and are
more or less within one order of magnitude around the aggregate CLR� Based on this argument�
to reduce further the complexity of the algorithm above� we propose to take the most stringent
CLR �  � mini i as the target requirement for all the sources and approximate �C by �C� the
solution of the equation

�C � g

�
ln� lnA� �C�

K

	
� �� ���

With this approximation� the function g��� is evaluated only one time in each step of the algo�
rithm instead of L times�

To reduce the waste of bandwidth� we suggest that the tra�c classes are segregated into
di�erent FIFO bu�ers each of which guarantees a given QoS requirement� By guaranteeing the
same CLR for all the tra�c sources sharing each FIFO bu�er� none of the tra�c sources will
experience better performance than required� Besides� since the requirements of the sources in
each bu�er are the same� the above algorithm can be used to determine �C to guarantee the
aggregate CLR in each bu�er� In the resulting multi�bu�er architecture� the waste of statistical
multiplexing gain due to the segregation of the di�erent tra�c streams can be accounted for by
using a round�robin like scheduling algorithm �e�g� 
�����

Equation ��� can be solved numerically using a bisection algorithm similar to the one Algo�
rithm � above� In addition to these approximations� we provide in the following a direct and
closed form formula for an upper bound to �C�

Let �C be the solution of ���� we thus have

A� �C�ez�K �  and g�z�� � �C�

Since A�C� is a decreasing function of C and C � 
�� e���

z� �
ln��� ln�A� �C��

K


 ln��� ln�A����

K
�



Since g��� is a decreasing function�

g�z�� 	 g

�
ln��� ln�A����

K

�
�

and thus we have

�C 	 g

�
ln�� � ln�A����

K

�
�
� C�

where by de�nition� C is an upper bound to �C�

V� Numerical results

A� Accuracy of the bounds on Ploss and P i
loss
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Fig� �� Cell loss probability vs� bu�er size� Homogeneous sources

In this subsection� we show the accuracy of the approximations proposed for the aggregate
and individual CLRs� We present in the following a sample of �gures representing the cell loss
probability as a function of the bu�er size� On these �gures� our results are compared to those
obtained from a simulation and to those obtained from approximation ��� proposed in 
���
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Fig� �� Overall cell loss probability vs� bu�er size� Heterogeneous sources



Figure � shows the cell loss probability against the bu�er size for a superposition of ���
independent on�o� sources with exponentially distributed on and o� periods� The peak bitrate
is  Mbits�s� the mean bitrate is ����� Mbits�s and the mean burst size is ���� cells� The
channel capacity is equal to � Mbits�s� In this �gure we compare our approximation to the
simulation results on one hand and to the �Cherno��s largest eigenvalue approximation �CLE�
��� on the other hand� As expected� our approximation proves very tight and outperforms the
CLE approximation� The CLE gives in fact an approximation of the over	ow probability instead
of the cell loss probability� The intercept of our approximation is almost exactly the same as
that given by simulation�

To illustrate the accuracy of the proposed bounds and approximations for a superposition of
heterogeneous tra�c sources� we present in the following a sample of �gures where we compare
our results to those obtained from simulation and�or the other alternative methods� The tra�c
characteristics used in this case are depicted in Table I�

Class Peak rate Mean rate Burst
�Mb�s� �Mb�s� �Cells�

� �� � ���
  ����� ���
� ����� ���� ��

TABLE I

Traffic characteristics for the heterogeneous case
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Fig� �� Individual cell loss vs� bu�er size� Heterogeneous sources

Figures  and � show the overall and the individual cell loss probabilities respectively� for a su�
perposition of three di�erent tra�c streams� all with exponentially distributed and independent
on and o� periods� The tra�c characteristics are shown in Table I and the channel capacity is ��
Mbits�s� Similar to the homogeneous case� Figure  shows that our approximation outperforms
the CLE approximation for a superposition of heterogeneous classes of sources� by at least one
order of magnitude�

B� Accuracy of approximation �AbCc

In this subsection we want to show the accuracy of approximation ��� The input tra�c is
a mix of �� class��� �� class� and �� class�� sources with the tra�c characteristics as given in
Table I� As shown in Table II� the proposed approximation proves very accurate� Besides� the



Channel capacity C Exact intercept A�C� Approximation AbCc
Mbits�s

� �����e��� �����e���

�� ����e��� ����e���

�� �����e�� �����e��

�� �����e��� �����e���

��� �����e��� �����e���

�� ����e��� ���e���

���� �����e��� �����e���

TABLE II

Comparison of the exact A	C
 to the approximation �AbCc

evaluation of �AbCc requires only a linearly increasing computation time in C� while the calcula�
tion of the exact value of the intercept A�C� requires an exponentially increasing computation
time in C�

In Table II� we notice that the approximation �AbCc begins to be inaccurate when C is large
�entries marked with a � symbol�� This is mainly due to two reasons� First� the absolute error
bound we choose ���� is larger than the exact value of A�C�� and second� the load of the system
for the corresponding values of C is very low� For more practically interesting cases� when
the system load is reasonable� the intercept should be large �e�g� � ������ in which case our
approximation is quite accurate�

C� Accuracy of the required bandwidth estimates

In the following� to illustrate the performance of the proposed upper bounds for the e�ective
bandwidth� some numerical examples are given� Our results are compared to the alternative
solutions based on approximations ���� ��� and to the Gaussian approximation of the stationary
input rate tail proposed in 
���

Bu�er size �cells� �C �C C ��� ��� Gaussian

��� ����� ����� ���� ���� ���� ����

���� ���� ���� ����� ��� ����� ����

����� ���� ���� ����� ���� ���� ����

TABLE III

Aggregate required bandwidth with different algorithms �in Mbits�s�

In Table III� we show the required bandwidth estimated by di�erent methods� for di�erent
bu�er sizes� The input tra�c is a mix of � class�� sources with a CLR requirement equal to
���
� �� class� sources with a CLR requirement equal to ���� and ��� class�� sources with a
CLR requirement equal to ����� The results show that our bounds �C and �C outperform the
alternative methods in terms of tightness�

As we argued in the previous section� we believe it is more valuable to segregate the tra�c
streams in di�erent bu�ers based on their CLR requirements �more generally based on the CLR
and the delay�� In this case our bounds give a very accurate estimate of the required bandwidth�
To show the accuracy of our approximation under this kind of situation� we compare our bounds
to the exact result obtained from simulation� we chose di�erent cases with di�erent tra�c mixes
and bu�er sizes� Besides� we set the QoS requirement for each class of tra�c exactly equal to
the individual cell loss probability observed in the simulation� The four di�erent tra�c mixes
we used are depicted in Table IV�



Cases Bu�er Class Number of Peak rate Mean rate Burst i
�Cells� Sources �Mb�s� �Mb�s� �Cells�

� ���

� �� �� � ��� �������

 ��  ����� ��� ��������

� �� ����� ���� � ��������

 ����

� �� �� � ��� �������

 ��  ����� ��� ��������

� �� ����� ���� �� �������

� ����

� �� � ��� ��� ��������

 ��  ��� ��� ��������

� ����

� � ��  ��� �������

 ��  ��� ��� ��������

� �� ����� ���� �� ��������

TABLE IV

Traffic characteristics for the different cases

Cases Bu�er size �cells� Exact �C �C C ��� ��� Gaussian

� ��� ���� ���� ���� ���� ����� ��� ���

 ���� ���� ��� ���� ���� ���� ���� ����

� ���� ��� ��� ��� ���� ���� ���� ���

� ���� ���� ���� ����� ����� ����� ����� ����

TABLE V

Aggregate required bandwidth with different algorithms �in Mbits�s�

As shown in Table V� the bound �C obtained from the individual cell loss requirements proves
very accurate and� as expected� performs better than all the other approximations� Extensive
calculations have shown that the bound �C is always close to �C� This is expected since the
overall cell loss probability is always close to the individual ones �see for example 
����� The
approximation C overestimates the exact aggregate bandwidth� This is due to the fact that
like approximation ���� C is obtained from the largest upper bound one can choose for the cell
loss probability� Intuitively� we conjecture that the di�erence between these two approxima�
tions� namely� C and ���� is proportional to the di�erence between the exact aggregate cell loss
probability and the over	ow probability in the same system�

Table VI shows computation times required to obtain the values in Table V� The elapsed
computational times in the simulation have been omitted in this table as these are obviously
much larger �many orders of magnitude� than those required by the di�erent approximations�
The computation time for every algorithm is in general too small to be accurate enough� since
most of the approximations have very low complexity� In order to compare the computation
times required by the di�erent methods� each algorithm had to executed a certain number of
times and the execution time is averaged over the number of iterations� For instance� the value
��e�� means that the algorithm has been executed �in a for loop� ��� times in �� seconds� From
Tables VI and V� it can be seen that �C is probably the most attractive approximation among all�
as it balances between computational complexity and accuracy of the approximation� In heavy
tra�c conditions� when the conditions for applying the central limit theorem are satis�ed� it



Cases C C C ��� ��� Gaussian

� ��e�� ��e�� �e�� ��e�� ��e�� ��e��

 �e�� ��e�� �e�� ��e�� ��e�� ��e��

� ��e�� �e�� e�� �e�� ��e�� ��e��

� ��e�� ��e�� �e�� ��e�� ��e�� ��e��

TABLE VI

Required processing times �seconds� for different algorithms

is worth considering the Gaussian approximation� That is� under heavy tra�c� the Gaussian
approximation is quite accurate� while� as shown in Table VI� it requires a negligibly small
computation time�

VI� Conclusion

In this paper we proposed tight and simple upper bounds to the aggregate and individual
cell loss probabilities in an ATM multiplexer� To evaluate these bounds� a long CPU time is
sometimes required� An approximate method for evaluating the bounds had been given� This
approximation reduces the complexity from a combinatorial to a linear function of the channel
capacity� Based on our proposed bounds� a fast and accurate algorithm to estimate the aggregate
required bandwidth is provided� Numerical results show the better performance of our algorithm
when compared to the alternative methods in terms of both accuracy and e�ciency�
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