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Abstract

Estimating the cell loss probability in an ATM multiplexer is a key issue in network management and
traffic control tasks such as call admission control and bandwidth allocation. In this paper, we derive a
new approximation to estimate the total and individual cell loss probabilities in an ATM multiplexer fed
by a superposition of heterogeneous on-off sources. Based on this approximation, a simple algorithm is
proposed to estimate accurately the aggregate required bandwidth to guarantee a given cell loss proba-
bility. Numerical results and comparisons to alternative approaches are also shown.
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1. 1INTRODUCITION

Due to its ability to integrate different types of traffic with different characteristics and quality
of service (QoS) requirements, ATM has been regarded as the desirable transfer mode in the
future broadband integrated service digital network (B-ISDN). Generally, QoS can be expressed
in terms of cell delay, cell delay jitter and cell loss ratio (CLR) in the multiplexers. The delay
can be bounded by limiting the buffer size. Knowing the buffer size, the CLR can be bounded by
allocating the adequate bandwidth and implementing the appropriate traffic control mechanisms
such as traffic policing and call admission control.

Usually, buffer dimensioning and bandwidth allocation rely on a given model of the ATM
multiplexer. An ATM multiplexer is widely modelled as a single deterministic server queue, fed
by a superposition of independent on/off sources. The actual arrival process is approximated by
different simpler and analytically tractable models such as, stochastic fluid flow (SFF), Markov
modulated Poisson process (MMPP), or Markov modulated deterministic process (MMDP).
Among these models, the SFF approximation [1] and the MMDP approach [2] prove particularly
appealing to represent accurately the congestion that occurs at the so-called burst scale. In the
SFF approach, the input and the service processes are assumed to be continuous rather than
discrete, and the buffer size is assumed to be infinite. In [1], closed form formulae for the overflow
probability as well as the asymptotic behavior for an infinitely large queue are obtained for a
superposition of homogeneous on/off sources. The extension of these results to the superposition
of heterogeneous traffic sources is presented in [3], [4]. However, in this latter case the solution
is no longer analytical. Besides, it requires a large amount of computations. Based on the work
in [1] giving the overflow probability (infinite buffer) in the SFF method, an estimate of the cell
loss probability (finite buffer) has been given in [5].

The MMDP approach approximates the real input process by a deterministic process whose
rate is controlled by a Markov chain [2], [6]. This model is similar to the SFF approach in
the sense that it addresses only the burst scale component of the cell loss probability in the
ATM multiplexer. In this approach, the buffer is finite and information is treated as discrete
cells rather than continuous fluid flow. The cell loss probability is estimated as the ratio of the
expected number of cells lost to the expected total number of cells arrived in a period, by solv-
ing a classic Markovian problem through standard numerical solutions (Gauss-Seidel or Jacobi
algorithms). The cell loss probability is obtained for the superposition of homogeneous on/off
sources in [2] and this result is extended to the aggregate and individual cell loss probabilities
for a superposition of heterogeneous on/off sources in [6].

In theory, the most accurate approach to determine the required bandwidth, given the buffer
size in the ATM multiplexer, is to invert the exact formula for the cell loss probability as a func-
tion of the server capacity. However, in practice, the exact formulae are too complex and always
require a laborious amount of computations. For this reason, many simpler approximations of
the cell loss probability were proposed in the literature. Most of these approximations are based
on the asymptotic equivalent of the overflow probability provided by the SFF approach [1], [4].
The basic idea in these approximations is to express the survivor function of the buffer occu-
pancy as G(z) = Pr(Y > z) = A(C)e*(©)? where 2y(C) and A(C) are functions of the server
capacity and the traffic parameters. For a fixed C, in a logarithmic scale, the approximation
of G(.) is a linearly decreasing function whose slope is determined by zo(C) and the intercept
on the ordinates axis (for z = 0) is governed by the constant A(C). A closed form solution for
20(C) in the case of a superposition of homogeneous exponentially distributed on/off sources is
given in [1]. For the heterogeneous traffic sources case, as shown in [4], z9(C) can be obtained
as the largest negative solution of a non linear equation, which can be solved numerically. The
determination of the constant A(C) proves, however, much more difficult. Many approxima-
tions of A(C') have been proposed [1], [7], [8], [9]. The tighter the approximation of A(C) to the
intercept of the exact cell loss probability, the better is the approximation of G(z), and thus of
the required bandwidth.

In this paper, we address the determination of a new tight approximation of the intercept



A\C ). 1115 approximation 1s deterimined Irom our previous work on tne MNDIE approaci to
estimate the cell loss probability in an ATM multiplexer. Although this approximation is tight,
it can sometimes require long computation times, especially when the number of sources is large.
We propose thus an approximate method to evaluate A(C) in terms of its generating function.
Finally, we apply our new approximation to estimate the aggregate required bandwidth.

The remainder of this paper is organized as follows. In the next section, we present briefly
the previous results obtained in the estimation of the intercept. We, then, introduce the MMDP
approach and derive our main result in Section III. The approximate method to estimate
efficiently and quickly the value of the intercept in terms of its generating function is also
presented. In Section IV the approximation is applied to the determination of the required
bandwidth. Finally, to show the accuracy and efficiency of our approximation, numerical results
are presented in Section V.

IT. PREVIOUS WORK ON THE ESTIMATION OF A(C)

We consider an ATM multiplexer serving a superposition of L independent classes of on/off
sources. The multiplexer is modelled as a buffer of size K cells served by a single output link
with deterministic service capacity C. For each class ¢, ¢ = 1,2, ..., L, there are M; identical and
independent sources. Each source can be in one of two states: on and off. When the source is
on, it generates a stream of cells at a fixed rate A;, when it is off, no cells are generated. Both on
and off periods are assumed to be independent exponentially distributed random variables with
mean 1/p; and 1/);, respectively. When a cell arrives, it is served immediately if the output
link is idle, otherwise, it is buffered if the buffer is not full. Cells are dropped (lost) when the
buffer is full. The cells are served on a FIFO basis.

Let N;(t) be the number of class i, ¢ = 1,..., L, sources on at time ¢, and denote by Y (t)
the buffer content at time ¢. Y'(¢) is not Markovian but the joint process {N(¢),Y (¢)} with
N(t) = (Ny(t), Nao(t),...,Np(t)) is Markovian. The system can thus be solved for the joint
stationary probability, and the stationary distribution of the buffer content can be obtained
from the marginal distribution of {Y'(¢)}. Before introducing our new approximation, in the
next section, we briefly present the most common results known in the estimation of A(C).

For the sake of simplicity, we present only the case of homogeneous sources. The input rate to
the multiplexer queue is determined by the state of the finite dimensional Markov process N(t)
representing the number of sources on at time ¢. Let M be the total number of sources and r;
the input rate in state ¢, = 0,---, M. Denote by T the infinitesimal generator of N(t): Tj; is
the transition rate from state i to state 7, and Tj; = — Zj,#i T;;. Let m;(x) be the steady state
probability that the rate process N (t) is in state ¢ and the buffer content Y'(¢) is not larger than
z. The system of differential equations governing the dynamics of the joint process {N(¢),Y (¢)}

is then
d

ETF
where D 2 diag{r; — C} is the drift matrix and n(z) = {mo(x),---,mm(z)}. By solving this
system, the stationary buffer overflow probability G(z) is given by

(z)D = n(z)T, (1)

G(z) = 1—(n(z),1)
= 2 ai(¢, 1)e™?, (2)

>0

where a; are real coefficients determined from the boundary conditions [1], z; are eigenvalues
with negative real part, and ¢; are the associated eigenvectors. The pairs (z;, ¢;) are solutions
of the eigensystem

zipiD = ¢;T. (3)

As mentioned in [10], this apparently simple solution requires sometimes a large amount of
computations. Especially, the calculation of the coefficients a; can lead to severe numerical
problems. These problems, in addition to the need of developing effective solutions that can be



used IOor real-tlme network management sucll as resources alloCatlion and routing, lead tO tne
development of a large number of approximations of the result in (2). Among them, the first
one assumes an infinitely large buffer size, so that the sum in (2) is dominated by a leading term
obtained for the largest eigenvalue say zg [1] giving

G(z) ~ ag{po, 1)e**, for z — +oo. (4)

This asymptotic approximation has two major drawbacks: the first one is that to calculate the
coefficient ag it is necessary to calculate all the stable eigenvalues z;. The second one, by far
more severe, is that approximation (4) always underestimates the exact result. Moreover, it has
been shown in [7] that under certain traffic conditions, the difference between the exact result
and the approximation is very large even when the buffer size is (unrealistically) very large. In
[9], an upper bound to (4) was derived by simply replacing the factor ag(¢o,1) by 1, leading to

G(z) ~ e, (5)

Although this approximation simplifies substantially the computation of the bandwidth required
for a given CLR target and buffer size, it often leads to an outrageous over-estimation of the
required bandwidth under realistic traffic conditions. To overcome this problem, the authors
introduced an improvement by taking the minimum of this approximation and the Gaussian
approximation of the probability that the input rate exceeds the output channel capacity (for
details refer to the original paper [9] or see [11]). In the same spirit, a new approximation is
proposed in [8]. The factor ag(¢po, 1) is replaced by a new factor Ly obtained from a bufferless
model by using large deviation theory, leading to

G(z) ~ Loe™”. (6)

Ly is actually the Chernoff’s large deviation approximation to the probability that the instan-
taneous input rate exceeds the channel capacity [12]. This factor Ly is very accurate, however,
it constitutes an approximation to the overflow probability instead of an upper bound so that
when the buffer size is relatively small, this approximation may underestimate the exact overflow
probability by a theoretically unknown amount.

III. A NEW APPROXIMATION OF THE INTERCEPT A(C)
A. The MMDP approzimation

In the MMDP approximation, the discrete nature of the arrival and service processes is con-
served and the buffer size is assumed to be finite. In the sequel, we will focus on the superposition
of heterogeneous traffic sources. Let M; be the total number of sources of class i, ¢ = 1,..., L. As
defined above, the process {IN(¢)} defines a finite, irreducible, continuous-time Markov process
with state space

S={n:n=(ny,ne,...,ng), n; =0,1,....,M;,;i=1,....L}

and infinitesimal generator T. Its stationary distribution is given by

L
. M; n; M;—n;
o= e =) <[ ((F ) 0= v). mes
where 7; = )\z/(ﬂz + )\z)

Let & be the k*® transition epoch of N(¢), N, = N (&), Yz = Y (&). Note that, in the MMDP
approach, the process {Yj} denotes the content of the system including the cell being served.
We assume arriving cells are equally spaced during [, £+1) and if a cell is being transmitted at
& it will be retransmitted immediately after. Then {N;} and {(Ng, Y;)} are embedded finite,
irreducible Markov chains of {N(¢)} and {(N(¢),Y (¢))} respectively. The Markov chain {Ny}



nas the statlonary distribution p, = g0 FIIN(GE) = Iy. DENOLE Dy 7Ty ) the Statlonary
distribution of the joint process {(Ng, Yx)}:

Ty = lim Pr{N; =nY; =1}, n€Sandl=0,1,---,K+1

k—+o0

Let my = (ﬂ-(n,O)aﬂ—(n,l)a T 77T(n,K+1)) and wp = (w(n,O)aw(n,l)a T aw(n,K+l)) = 7nAn, where

A, = (a?l h)) isa K + 2 x K 4+ 2 matrix whose elements are given by

afpy =Pr{Yis1 =h|Ny=nY,=l},n€Sand ,h=0,1,-- K +1.

L

Let V be the set of overload states:V = {n:n € S,A, > C}, where A, = ) n;A;. The total
i=1

cell loss probability Pj,ss(C, K) for a given buffer size K and channel speed C is [6]

exp{—m/(An — O)}
ngf (1 —exp{—n/(An — C)}wn,KH)
A, o, (8)

Pn
nesS Tn

Ploss(Ca K) =

and the individual cell loss probability for class i is given by

exp{—"n/(An — C)} n;A;
2 (1 —exp{—7a/(Bn — O)} An "’“*K“>

> ni—Aipil

nesS Tn

nev

Pli)ss(cv K) =

L
with vy = Y [(M; — ny) A + niugl.
i=1
As shown by the results in the original papers [2], [6], these formulae are very accurate and
the computation time is quite small when the buffer size K and/or the total number of sources
are not too large. However, the calculation of wy g1 becomes very difficult for relatively large
sized problems.

B. A new approzimation of A(C)

In [5] it is shown that, like the overflow probability, the cell loss probability behaves asymptot-
ically as A exp{zoz}, where x is the buffer size. Moreover, it is shown that the asymptotic slope
zp of the cell loss probability in a logarithmic scale is governed by the same largest eigenvalue
zp as the overflow probability, however the intercept A(C) is smaller than the intercept of the
overflow probability. Our main objective in this paper is to derive a new accurate closed form
formula for the intercept of the cell loss probability, based on the following facts:

o when the buffer size is small the approximation should be exactly equal to the cell loss prob-
ability in a bufferless system;

o when the buffer size increases towards infinity, the slope of the cell loss probability (in log
scale) becomes closer to zg.

Based on these two facts, the approximation we propose for the cell loss probability in a system
with buffer size K is of the form P,z ~ A(C)e*(C)K  where A(C) is the cell loss probability
in a bufferless model, obtained from (8) and zy is the largest eigenvalue obtained from (3). The
determination of the eigenvalue zp has been the subject of thorough research, such as [1] [4]
[13]. In the following, we will focus mainly on the determination and the evaluation of a more
accurate approximation of the intercept A(C'). For more details on the determination of 2z the
reader is referred to [4].



1 Nne largest negative €igenvalue oI tne matrix 1L1J - 1n (J9) Can DE determined as SNoOwn 11 %)
as the largest negative solution of the equation

L
S Migi(z) = C, (10)
i=1

where

(Biz + N+ i) =/ (Aiz + X+ ) — 4Didz
9i(z) = ,i=1,---,L.
2z
Particularly, when all the sources have the same characteristics, a closed form solution for z is

obtained in [1]

MA(Cp+ \C — MAN)
Cu(MA—-C)

To calculate the intercept A(C), we have to notice that for a bufferless system (K = 0), in
(8) and (9), wn,1 = pj- This can be obtained by first writing explicitly wn 1 in terms of my
as wp,1 = 7,1 since for alln € V, m, 9 = 0 and second by noting that for a bufferless system,
using the total probability formula, we have pj, = m, 0 + 7y 1. Noting again that for alln € 'V,
o = 0, we deduce w1 = pj;. Hence, from (8) the exact intercept for the overall cell loss
probability is given by

20 = —

exp{—m/(An - C)}
,;, (1 — exp{—7a/(Bn — c>}p“>
A(C) = Pioss(C,0) = - (11)

n
nesS Tn

and from (9) the exact intercept for the individual cell loss probability is

exp{—m/(An — C)} niA;
) HGZV (1 —exp{—Yn/(An — C)} Ap pn) )
Ai(C)=P.,,(C,0) = , t=1,--- L. (12)

A
PPt

nes Tn

Assume now that A, — C' > ~y; this can be justified intuitively by the fact that, first the
units of Ay, — C are in cells per second, so that when the system is in an overload state,
n € V, this quantity is large; second, the system we are considering takes into account the
fluctuations of the traffic only in the burst scale and neglects the cell scale, in other words, these
traffic fluctuations occur in a larger time scale than the cells interarrival time, so that 1/,
is a large number and thus v, is a small quantity. With this reasonably accurate assumption,
Yn/(Ap—C) — 0, and the Taylor series expansion can be invoked to approximate the exponential
terms in (11). Particularly, when these exponential terms are replaced by their second order
Taylor approximation around 0, Equation (11) becomes

> (éﬁfgp;)

A(C) ~ 2EY (13)
X, (i)

Noting that the stationary state probability p} of the embedded Markov chain {N(k)} is related
to the stationary state probability p, of the Markov process {N(¢)} by

P/ n

Pn = = .7 —
" Y. Din/Ym ’
meS

(14)



the Iinal vaiue I0r tne Intercept in \1o) becomes

>, (An—C)pn >, (An—C)pn

A(C) ~ 1[16VZ X . _ nEVL ) (15)
ncs > MiAT;
=

Applying the same assumptions and approximations above to the intercept of the individual cell
loss probability in (12), we obtain

7AY]
Z (An - C)pn nAn

Ai(C) = P, (C,0) ~ ¥ 16
l( ) loss( ’ ) MzAsz ( )
The new approximations to the aggregate and individual cell loss probabilities we propose are
then
Z (An - C) DPn
JDloss ~ nGVL eZOKa (17)
> MiAT;
i=1
and N
ZV(An - C)pn ninl
i nec .
Plzoss ~ M;A;7; eZOKaz =1,---,L. (18)

C. Numerical evaluation of the intercept A(C)

In Equations (15) and (16), it is obvious that when the number of sources is very large,
the computation of the intercept becomes time consuming because the intercept is defined as
a convolution. Especially when the source peak rates are not prime numbers, the number
of different combinations of sources leading to an overload state becomes very large. In the
following, we propose to approximate the intercept by an upper bound which can be expressed
in terms of the generating function of the intercept as a function of the capacity. The generating
function is then inverted numerically by using the method proposed in [14].

Let A(C) be the intercept defined in (15), and define a sequence {4} }cn such that, for every
C, there exists an integer k£ with A(C) ~ Aj. The sequence {A}}ren can be constructed by

writing S (A o)
n— DPn
An>C
AC) = 7
MzAsz
i=1
>, (An—[C])pn >, (C—1[C])pn
_An>|C] An>|[C|
- L - L ’
> MiAT; > M AT
i=1 i=1

and noting that the second term of the right hand side of the above equation is negligible
compared to the first term. We obtain the following definition of the sequence of numbers { A7}

> (An—[C])pn
A(C) ~ 22

A
i=1

So far, we have transformed the computation of the function A(C) to its lattice approximation
A7. We have to notice, however, two facts: first, the term neglected in discretizing the function
A into the stepwise function A* is indeed negligible, which makes the approximation accurate;
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prevents the approximation from underestimating the cell loss probability. We nevertheless need
to compute Aj. For this purpose, let G(z) be the generating function of the sequence {A}}1>0

) = 5 Ak,
k=0
1 o0
= 2| 2 Aa—k)pa st
M;A;7; k=0 \An>k

=1

which may be rewritten as

An—1

1
G(z)=7T—— an Z (Ay — k) 2.
Z M;A;; 70 k=0
i=1

By separating the terms inside the inner summation, and noting that A, = 0 for n = 0 we can
find readily that

1 JANN z ZAntl
Gz =3 Z1"’(1—z_(1—2)2+(1—z)2)‘
Z MzAsz all n
i=1

After evaluation of the sum above, G(z) can be written as

ur z(1—ﬁ(1+n(zAi—1)Mi)>

B i=1
1—=z L

(20)
(1-2)

)

MzAsz
1

To invert the generating function G(.), we invoke a useful result proved in [14]. According to
[14], for any given sequence of numbers bounded by 1, such as {A;}x>0, |4f| < 1, there exists
r, 0 < r < 1 such that, for all £k > 1 there exists a number A, such that

2k

* - r
‘Ak —Ak‘ < 12k (21)

and
_ 1 2k . i
= —1) L
A, TS ;1:( 1) §R(G(re ))

(22)
1

k-1
=k G(r)+ (-1DFG(—r) +2)  (-1)% (G(reijvr/k))
=1

where i = v/—1 and R(z) is the real part of the complex number z.

By using (22), we have transformed the computation of A(C) from a convolution on C,
involving a combinatorial sum, to a linear sum in C. However, if C' is expressed in a very small
unit, the linear sum can be time consuming. To use efficiently approximation (22), it is necessary
to find a unit by which the peak rates and the channel capacity can be normalized to reduce the
CPU time requirement. For practical computation of Ay, we chose, for example, the smallest
peak rate as the unit.



1v. ESTIMATION OF 1HE AGGREGATR BRFFROTIVE BANDWID1TH

Usually, the effective bandwidth for heterogeneous traffic classes is determined by equating
the CLR relation in (5) to an overall cell loss requirement commonly assumed to be the most
stringent individual requirement, and then solving the equation for C'. This approach can guar-
antee a conservative bound on the required bandwidth because approximation (5) overestimates
the actual CLR by a significant amount. When a tight bound on the aggregate CLR such as
(17) is used, this approach becomes invalid. That is, depending on their burstiness, the different
traffic classes see different CLRs in the FIFO buffer, and thus the aggregate CLR approximation
may underestimate the CLR of one or more classes, particularly when the buffer size is small
and the CLR requirements are sufficiently close to each other. Many researchers argued on this
issue in the past (e.g. [15] [3]) and the conclusion is that the individual CLRs in the FIFO buffer
are generally in the same order of magnitude, so that the aggregate CLR can be considered.
However, they generally assume the use of an approximation of the CLR as conservative as (5).
Our approach to determine the effective bandwidth relies on the individual CLR relation in (18).

Let a;, ¢ = 1,---, L, be the cell loss requirement for traffic class i. Based on the results in
Section 3, we can estimate the aggregate effective bandwidth C as the minimum C needed to
satisfy the CLR requirements of all traffic classes for a fixed buffer size K as follows:

C =min{C: P} ,(C,K) < os,i=1,---,L}. (23)

Since for all 4, P!

" ss(Cy K) is a decreasing function of C, it is easy to see that

C =max{C;: P} (Ci,K) = aj,i=1,---,L}. (24)

Let C; be defined as the aggregate required bandwidth to guarantee a CLR «; to class . Then
we have the following proposition.
Proposition 1: Let g(z) = Zle M;gi(z) as defined in (10)

(i) C > Ci if and only if C > g (mai - 1nAz'(C)>

I

K
Ina; — lnAi(C’)>

K
Proof Since (i) and (i) are symmetric, it is sufficient to prove only (i). P{_(C,K) is a
decreasing function of C. We thus have

(i) C < C; if and only ifCSg(

C>C; < AC)e™OK < o

Ina; —In4;(C)

— 2(C) < 7

Since ¢(z) is a monotonically decreasing function of z, we have

Ina; — In A;(C)
K

(0 < ( x

) — () > g (1““" - 1‘“‘“(0))

and with (10)

C>g <1nai — lnAi(C’)> ,

K
which proves (i) O N

Let A =Y M;A;7; and A =) M;A; be the aggregate mean and aggregate peak input rates
respectively. We have C e [Z, 5} For a given relative error e, C can be calculated by the
simple bisection algorithm below based on Proposition 1.



Cr = A, Cr = A {Initialize the upper and lower bounds of the solution}
repeat

O — Cr + CU;
2 ~
e A Ina; —In 4;(C)
— >
if ¢ i:nll;a.)ng ( e > 0 then
Cy=C
else R
Cr=C
endéf o
until % <€

Algorithm 1: Simple bisection algorithm to calculate C

This algorithm requires only logy(A — A) — log, () iterations. In each iteration, at most L
values of the simple and explicit function g(.) are calculated.

From the definition of C, it is clear that it will guarantee the most stringent CLR requirement.
In other words, the class corresponding to this stringent CLR will experience a CLR exactly
equal to this requirement while the other less stringent classes will observe better performance
than required. This obviously results in a waste of bandwidth. Besides, it is well known that
FIFO discipline cannot guarantee different CLRs. As argued in [15] and [3] the individual CLRs
experienced by the different classes in a FIFO buffer are roughly the same for all classes and are
more or less within one order of magnitude around the aggregate CLR. Based on this argument,
to reduce further the complexity of the algorithm above, we propose to take the most stringent
CLR «a, a = min; o; as the target requirement for all the sources and approximate C by C, the

solution of the equation
- Ina—InA(C
ey (MTH()) o (25)

With this approximation, the function g(.) is evaluated only one time in each step of the algo-
rithm instead of L times.

To reduce the waste of bandwidth, we suggest that the traffic classes are segregated into
different FIFO buffers each of which guarantees a given QoS requirement. By guaranteeing the
same CLR for all the traffic sources sharing each FIFO buffer, none of the traffic sources will
experience better performance than required. Besides, since the requirements of the sources in
each buffer are the same, the above algorithm can be used to determine C to guarantee the
aggregate CLR in each buffer. In the resulting multi-buffer architecture, the waste of statistical
multiplexing gain due to the segregation of the different traffic streams can be accounted for by
using a round-robin like scheduling algorithm (e.g. [16]).

Equation (25) can be solved numerically using a bisection algorithm similar to the one Algo-
rithm 1 above. In addition to these approximations, we provide in the following a direct and
closed form formula for an upper bound to C.

Let C be the solution of (25), we thus have

AC)e*X =a  and g(z) =C.
Since A(C) is a decreasing function of C and C € [A, A],

In(a) — In(A(C))
K _
In(a) — ln(A(A))‘

K

zZ0 —

Y




olnce gi.) 1Is a decreasing iunction,

and thus we have

In(a) — In(A(A))

)

).

¢

M%)§g<

In(a) — In(A(A))
K

1>

é§g<

where by definition, C' is an upper bound to C.

V. NUMERICAL RESULTS

A. Accuracy of the bounds on Pyss and Pfoss

Fig.
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we show the accuracy of the approximations proposed for the aggregate

and individual CLRs. We present in the following a sample of figures representing the cell loss
probability as a function of the buffer size. On these figures, our results are compared to those
obtained from a simulation and to those obtained from approximation (6) proposed in [8].
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independent on/off sources with exponentially distributed on and off periods. The peak bitrate
is 2 Mbits/s, the mean bitrate is 0.087 Mbits/s and the mean burst size is 5000 cells. The
channel capacity is equal to 12 Mbits/s. In this figure we compare our approximation to the
simulation results on one hand and to the “Chernoff’s largest eigenvalue” approximation (CLE)
(6) on the other hand. As expected, our approximation proves very tight and outperforms the
CLE approximation. The CLE gives in fact an approximation of the overflow probability instead
of the cell loss probability. The intercept of our approximation is almost exactly the same as
that given by simulation.

To illustrate the accuracy of the proposed bounds and approximations for a superposition of
heterogeneous traffic sources, we present in the following a sample of figures where we compare
our results to those obtained from simulation and/or the other alternative methods. The traffic
characteristics used in this case are depicted in Table I.

Class | Peak rate | Mean rate | Burst
(Mb/s) (Mb/s) | (Cells)

1 10 1 2000
2 0.087 400
3 0.064 0.021 53
TABLE I

TRAFFIC CHARACTERISTICS FOR THE HETEROGENEOUS CASE
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Fig. 3. Individual cell loss vs. buffer size: Heterogeneous sources

Figures 2 and 3 show the overall and the individual cell loss probabilities respectively, for a su-
perposition of three different traffic streams, all with exponentially distributed and independent
on and off periods. The traffic characteristics are shown in Table I and the channel capacity is 40
Mbits/s. Similar to the homogeneous case, Figure 2 shows that our approximation outperforms
the CLE approximation for a superposition of heterogeneous classes of sources, by at least one
order of magnitude.

B. Accuracy of approximation ALCJ

In this subsection we want to show the accuracy of approximation (22). The input traffic is
a mix of 30 class-1, 30 class-2 and 40 class-3 sources with the traffic characteristics as given in
Table I. As shown in Table II, the proposed approximation proves very accurate. Besides, the



Lhannel capacity O | BEXxact 1ntercept A(C) | Approximation Ac|
Mbits/s
20 4.508e-01 4.516e-01
40 1.216e-01 1.216e-01
60 1.840e-02 1.847e-02
80 1.581e-03 1.581e-03
100 7.938e-05 7.983e-05
120 2.393e-06 2.392e-06
160* 4.953e-10 1.036e-09

TABLE 11
COMPARISON OF THE EXACT A(C') TO THE APPROXIMATION ALCJ

evaluation of ALC | requires only a linearly increasing computation time in C', while the calcula-
tion of the exact value of the intercept A(C) requires an exponentially increasing computation
time in C.

In Table II, we notice that the approximation ALC | begins to be inaccurate when C is large
(entries marked with a % symbol). This is mainly due to two reasons. First, the absolute error
bound we choose 10~ ¢ is larger than the exact value of A(C); and second, the load of the system
for the corresponding values of C is very low. For more practically interesting cases, when
the system load is reasonable, the intercept should be large (e.g. > 107%), in which case our
approximation is quite accurate.

C. Accuracy of the required bandwidth estimates

In the following, to illustrate the performance of the proposed upper bounds for the effective
bandwidth, some numerical examples are given. Our results are compared to the alternative
solutions based on approximations (5), (6) and to the Gaussian approximation of the stationary
input rate tail proposed in [9].

Buffer size (cells) | C C C (5) (6) | Gaussian
2500 100.7 | 104.9 | 243.8 | 249.4 | 112.1 102.1
5000 93.3 | 96.9 | 194.1 | 202.4 | 103.9 102.1
10000 80.3 | 83.7 | 1459 | 152.8 | 89.9 102.1
TABLE III

AGGREGATE REQUIRED BANDWIDTH WITH DIFFERENT ALGORITHMS (IN MBITS/S)

In Table III, we show the required bandwidth estimated by different methods, for different
buffer sizes. The input traffic is a mix of 20 class-1 sources with a CLR requirement equal to
1073, 50 class-2 sources with a CLR requirement equal to 10~7 and 100 class-3 sources with a
CLR requirement equal to 1073. The results show that our bounds C and C outperform the
alternative methods in terms of tightness.

As we argued in the previous section, we believe it is more valuable to segregate the traffic
streams in different buffers based on their CLR requirements (more generally based on the CLR
and the delay). In this case our bounds give a very accurate estimate of the required bandwidth.
To show the accuracy of our approximation under this kind of situation, we compare our bounds
to the exact result obtained from simulation, we chose different cases with different traffic mixes
and buffer sizes. Besides, we set the QoS requirement for each class of traffic exactly equal to
the individual cell loss probability observed in the simulation. The four different traffic mixes
we used are depicted in Table IV.
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(Cells) Sources (Mb/s) (Mb/s) | (Cells)

1 110
1 30 10 1 2000 | 0.118782
30 2 0.087 400 0.073950
3 40 0.064 0.021 52 0.063790

2 9910
1 30 10 1 2000 | 0.024103
30 2 0.087 400 | 0.013984
3 40 0.064 0.021 53 0.011924

3 9910
1 50 1 0.1 400 0.000739
50 2 0.1 600 0.001040

4 4600
1 20 10 2 2000 | 0.000028
40 2 0.1 600 | 0.000014
3 40 0.064 0.021 60 0.000010

TABLE IV

TRAFFIC CHARACTERISTICS FOR THE DIFFERENT CASES

Cases | Buffer size (cells) | Exact | C C C (5) (6) | Gaussian
1 110 40.0 | 40.7 | 47.3 | 332.1 | 349.5 | 62.7 65.2
2 9910 40.0 | 42.7 | 45.7 | 55.6 | 79.4 | 53.9 774
3 9910 12.0 | 123 | 124 | 13.0 | 146 | 135 23.3
4 4600 90.0 | 99.1 | 103.4 | 181.0 | 194.3 | 113.1 128.1
TABLE V

AGGREGATE REQUIRED BANDWIDTH WITH DIFFERENT ALGORITHMS (IN MBITS/S)

As shown in Table V, the bound C obtained from the individual cell loss requirements proves
very accurate and, as expected, performs better than all the other approximations. Extensive
calculations have shown that the bound C is always close to C. This is expected since the
overall cell loss probability is always close to the individual ones (see for example [15]). The
approximation C overestimates the exact aggregate bandwidth. This is due to the fact that
like approximation (5), C is obtained from the largest upper bound one can choose for the cell
loss probability. Intuitively, we conjecture that the difference between these two approxima-
tions, namely, C' and (5), is proportional to the difference between the exact aggregate cell loss
probability and the overflow probability in the same system.

Table VI shows computation times required to obtain the values in Table V. The elapsed
computational times in the simulation have been omitted in this table as these are obviously
much larger (many orders of magnitude) than those required by the different approximations.
The computation time for every algorithm is in general too small to be accurate enough, since
most of the approximations have very low complexity. In order to compare the computation
times required by the different methods, each algorithm had to executed a certain number of
times and the execution time is averaged over the number of iterations. For instance, the value
34e—6 means that the algorithm has been executed (in a for loop) 10® times in 34 seconds. From
Tables VI and V, it can be seen that C is probably the most attractive approximation among all,
as it balances between computational complexity and accuracy of the approximation. In heavy
traffic conditions, when the conditions for applying the central limit theorem are satisfied, it



Lases U U U (9) (0) | Gaussian
182e-3 | 48e-3 | 3e-3 | 34e-6 | 44e-3 15e-6
212e-3 | 55e-3 | 3e-3 | 33e-6 | 43e-3 15e-6
16e-3 | 6e-3 | 2e-4 | 24e-6 | 31le-3 14e-6
268e-3 | 83e-3 | Te-3 | 33e-6 | 45e-3 16e-6

TABLE VI
REQUIRED PROCESSING TIMES (SECONDS) FOR DIFFERENT ALGORITHMS

| DN =

is worth considering the Gaussian approximation. That is, under heavy traffic, the Gaussian
approximation is quite accurate, while, as shown in Table VI, it requires a negligibly small
computation time.

VI. CONCLUSION

In this paper we proposed tight and simple upper bounds to the aggregate and individual
cell loss probabilities in an ATM multiplexer. To evaluate these bounds, a long CPU time is
sometimes required. An approximate method for evaluating the bounds had been given. This
approximation reduces the complexity from a combinatorial to a linear function of the channel
capacity. Based on our proposed bounds, a fast and accurate algorithm to estimate the aggregate
required bandwidth is provided. Numerical results show the better performance of our algorithm
when compared to the alternative methods in terms of both accuracy and efficiency.

REFERENCES

[1] D. Anick, D. Mitra, and M. Sondhi, “Stochastic theory of a data handling system with multiple sources,”
Bell Systems Technical Journal, vol. 61, no. 8, pp. 1871-1894, 1982.

[2] T. Yangand D. H. K. Tsang, “A novel approach to estimating the cell loss probability in an ATM multiplexer
loaded with homogeneous sources,” IEEE Transactions on Communications, vol. 43, pp. 117-126, January
1995.

[3] N. Baiocchi, N. Blefari-Melazzi, A. Roveri, and F. Salvatore, “Stochastic fluid analysis of an ATM multiplexer
loaded with heterogeneaous on-off sources: an effective computational approach,” in IEEE INFOCOM’92,
pp. 405-414, 1992.

[4] A.IL Elwalid and D. Mitra, “Effective bandwidth of general markovian traffic sources and admission control
in high speed networks,” IEEE/ACM Transactions on Networking, vol. Vol. 3, pp. 329-343, 1993.

[6] D. Sykas, K. M. Vlakos, K. P. Tsoukatos, and E. N. Protonotarios, “Performance evaluation of analytical
models for effective bandwidth allocation in atm networks,” European Transactions on Telecommunications,
vol. 5, pp. 391-396, May/June 1994.

[6] J.H.S. Chan and D. H. K. Tsang, “Bandwidth allocation of multiple QoS classes in ATM environment,” in
IEEE Infocom’9/, pp- 360-367, 1994.

[7] B. Bensaou, J. Guibert, J. W. Roberts, and A. Simonian, “Performance of an ATM multiplexer queue in the
fluid approximation using the Benes approach,” Annals of Operations Research, vol. 49, pp. 137-160, 1994.

[8] A. I Elwalid and D. Mitra, “Analysis, approximations and admission control of multi-service multiplexing
system with priorities,” in IEEE Infocom’95, pp. 463-472, 1995.

[9] R. Guérin, H. Ahmadi, and M. Naghshineh, “Equivalent capacity and its application to bandwidth allocation
in high-speed networks,” IFEE Journal on Selected Areas in Communications, vol. 9, pp. 968-981, September
1991.

[10] J. W. Roberts, “Queueing models for variable bit rate traffic streams,” International Journal of Electronics
and Communications, vol. 47, no. 5/6, pp. 435-439, 1993.

[11] F. P. Kelly, “Effective bandwidths at multi-class queues,” Queueing Systems, vol. 9, pp. 5-16, 1991.

[12] J. Y. Hui, “Ressource allocation for broadband networks,” IEEE Journal on Selected Areas in Communica-
tions, vol. 6, pp. 1598-1608, December 1988.

[13] G. Kesidis, J. Warland, and C. S. Chang, “Effective bandwidths for multiclass Markov fluids and other ATM
sources,” IEEE/ACM Transactions on Networking, vol. 1, pp. 424-428, August 1993.

[14] J. Abate and W. Whitt, “Numerical inversion of probability generating functions,” Operations Research
Letters, vol. 12, pp. 245-251, October 1992.

[15] L. Norros and J. Virtamo, “Who loses cells in the case of burst scale congestion?,” in Teletraffic and Datatraffic
in a Period of Change. Proceedings of the Thirteenth International Teletraffic Congress, 1991.



116 K. 1. CUhan, b. bensaou, and D. . K. lsang, “Credit-based Iair queueing Ilor packet networks,” [0

Electronics Letters, vol. 33, March 1997.



