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Abstract. Q-permutations are very easy mathematical structures (es-
sentially consisting in a permutation with attached a natural number)
able to encode the basic information concerning any compact and con-
nected orientable surface. At the first place, we introduce the notion
of pq-permutation: an enrichment of q-permutations able to characterize
surfaces in general: not only orientable but also non-orientable. In the
second place, we provide a rewriting system on sets of pq-permutations
in which the handling of topological surfaces throughout their polygo-
nal presentations, is reduced to a pure and very intuitive combinatorial
calculus. The system at issue is shown to enjoy both the properties of
strong normalization and strict strong confluence. Finally, we recover
the classification theorem by using the specific combinatorial tools here
provided.

1 Introduction

The notion of q-permutation has been gradually introduced in a few contributions
concerning theoretical computer science and, in particular, the specific ambit of
linear proof theory [6]. A recent work on the geometry of linear logic proofs
has established an interesting correspondence between logical demonstrations
and orientable surfaces with boundary [10]. The need of reflecting this kind of
geometrical structures at level of logical sequents, has induced to isolate a "syn-
tactical counterpart" of orientable surfaces, called q-permutation [9, 1]. The idea
leading to q-permutations consists in remarking that the basic information con-
cerning any compact and connected orientable surface (possibly with boundary)
can be encoded, modulo isomorphisms, by a very easy mathematical structure
simply consisting in a permutation σ paired with a natural number q. Roughly
speaking, whereas σ denotes, cycle by cycle, each boundary-component, q is a
counter for the number of handles on the surface. The notion of q-permutation
is clearly rooted in the classification theorem which states that any orientable
surface turns out to be homeomorphic to either a connected sum of tori or a
sphere (no tori in the connected sum) [7, 8].

A more general structure able to characterize surfaces in general, not only
orientable but also non-orientable, is once again suggested by the classification
theorem which ensures that any non-orientable surface is always homeomorphic
? Research supported by the Regional Council of île-de-France.



to a connected sum of projective planes. Thus, whereas the part of the structure
encoding the boundary is kept unchanged (orientability does not affect bound-
aries), we replace our single counter with a couple of natural numbers: the first
one for counting, as usual, tori (handles) and the second one for indicating pro-
jective planes. This kind of enriched structures are here called pq-permutations.

A standard result in algebraic topology establishes that any surface S can
be univocally determined by a finite set of polygons WS = {w1, w2, . . . , wn},
each one having edges labeled and oriented (triangularization theorem). The
idea is that a surface S is characterized by a finite set of polygons WS if,
modulo identification of paired edges, the quotient surface turning out byWS is
exactly S . Such a set of polygons WS is said to be a polygonal presentation of
S and it is usually presented as a set of words [7, 8]. An effective procedure for
computing surfaces from their polygonal presentations can be found, for instance,
in [8]. In this classical reference, Massey reports an algorithm for transforming
any given polygon into an equivalent one having the perimeter in canonical
form: a standard shape in which all the fundamental information concerning the
presented surface is explicitly displayed.

In this paper we provide a rewriting system P on sets of pq-permutations
which allows to reduce the handling of topological surfaces to a pure and very
intuitive combinatorial context. The system P should be seen as a computer-
scientific improvement of Massey’s algorithm and, more generally, of all the
treatment of surfaces based on traditional word rewriting. This improvement is
essentially due to the fact that pq-permutations together with their transforma-
tions are able to clearly "mimic", step by step, the process of forming a surface
starting from any its polygonal presentation. The system P is shown to enjoy
both the properties of strong normalization and strict strong confluence [2].

In the last lines of this paper, we recover the classification theorem by using
the specific combinatorial tools previously provided.

2 Polygonal Presentations of Topological Surfaces

2-dimensional connected and compact manifolds are currently called surfaces.
It is a well-known achievement in algebraic topology that any surface S can
be completely characterized by a finite set of polygons forming an its polygonal
presentation [8, 7]. In particular, a presentation WS of a surface S consists in a
finite set of polygons {w1, . . . , wn} whose perimeters are constituted by labelled
and oriented edges, such that:

– no more than two edges can have the same label;
– the quotient of WS , modulo identification of paired edges, is the surface S .

Since fixed a clockwise or an anticlockwise orientation, any polygon w turns
out to be completely determined by its perimeter, namely by a cycle of oriented
edges. Edges having orientation opposite to the fixed one, are indicated by raising
them at the minus one power. Thus, polygonal presentations are usually written
as sets of words on an alphabet A ∪ A−1, where A = {a, b, c, . . .} and A−1 =



Fig. 1. The polygon abāb̄ becomes a torus.
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{a−1, b−1, c−1, . . .}, considered up to circular permutations. In the sequel of this
paper we will adopt the simplified notation x and x̄ (x ∈ A∪A−1), for meaning
that the pair of edges labeled with x have opposite orientations1.

We recall some basic polygonal presentations: sphere: aāaāaā; torus: abāb̄abāb̄abāb̄ (see
Figure 1); projective plane: abababababab; Klein bottle: abābabābabāb.

Theorem 1 (classification theorem). Any compact connected surface (pos-
sibly with boundary) is homeomorphic to exactly one of the following surfaces:
a sphere, a finite connected sum2 of tori, or a finite connected sum of projective
planes (possibly with boundary). The sphere and connected sums of tori are ori-
entable surfaces, whereas connected sums of projective planes are non-orientable.

Notation. W,U, V, . . . denote sets of words, whereas we adopt small letters
w, u, v, . . . for indicating single words. Moreover, if w = a1a2 . . . an, then w̄ =
ānān−1 . . . ā1. Words of the shape a1b1ā1b̄1 . . . anbnānb̄n and a1a1 . . . anan are
respectively abbreviated with torn and pjpn.

A detailed proof for Theorem 1 can be found in [8], where Massey provides an
algorithm for rewriting any given one-polygon presentation into an equivalent
one (i.e. denoting the same surface) having perimeter in so-called canonical form.
The advantage of dealing with presentations in canonical form consists in the
fact that they make easily understood the fundamental information concerning
the presented surface. In particular, the following three canonical shapes

aāx1u1x̄1 . . . xquqx̄q tornx1u1x̄1 . . . xquqx̄q pjpnx1u1x̄1 . . . xquqx̄q

respectively denote a sphere, a connected sum of n tori and a connected sum of n
projective planes, in all cases with the boundary decomposed into q components:
u1, u2, . . . , uq.

1 The bar-operation (¯) is clearly an involution without fix point, namely, for any
x ∈ A ∪A−1, ¯̄x = x and x 6= x̄.

2 Roughly speaking, the connected sum operation consists in connecting two surfaces
with a tube after cutting out holes in the surfaces where the tubes are attached.



3 A Rewriting System on Words

Definition 1 (rewriting system). A rewriting system R consists of a set of
terms {t1, t2, . . .} closed with respect to a set of transformations {r1, r2, . . . , rn}.

Notation. In the specific jargon of term rewriting, an application of a single rule
is called step of reduction. Consider a generic rewriting system R: we write t→ri

t′ and t →R t′ for meaning that t′ is obtained from t respectively by applying
the (single) specific transformation ri and a (single) generic transformation of R.
t R t′ indicates that t′ is obtained from t throughout a sequence of reduction
steps [2].

Definition 2. The rewriting system W is defined by taking polygonal presenta-
tions as terms together with the following six rules:

– glue: W,wa, āv →W,wv
– split: W,wv →W,wa, āv
– cutting-out: W,waā→W,w
– pump: W,w →W,waā
– invert: W,w →W, w̄
– shift: W,wxux̄v →W,wvxσ(u)x̄, where σ is a cyclic permutation.

The set of rules listed in the previous definition is a slight variant of that one
already proposed in [5]: in particular, the primary list has been here closed
under inversion of rules (e.g., pump is nothing else but the leftward reading of
the cutting-out rule). This kind of closure allows to state that, if W  W W ′,
then W ′  W W , which is a very natural property for the specific topological
context we consider in these pages.

Lemma 1. The following rule is admissible in W: W,wava→Mobius W,wv̄aa.

Proof. The working of this rule is intuitively explained in Figure 2. Nevertheless,
for being more precise, we show that W,wava W W,wv̄aa:

W,wava→split W,waz, z̄va→inv. W,waz, āv̄z →glue W,wv̄zz =rename W,wv̄aa.

Lemma 2. Segments indicating a torus or a projective plane behave as central
elements, namely they can be freely moved inside words.

Proof. The proof consists in detailing the following two chains:

W,waav  W W,wvaa and W,wabāb̄v  W W,wvabāb̄.

By the leftward reading of the chain used to prove the previous lemma, we have
the admissibility of wv̄aa→Mob.−1 wava; thus, we can write:

W,waav →Mob.−1 W,aw̄av →inv. W, v̄āwā→Mob. W, v̄āāw̄ →inv. W,waav.
For what concerns the other chain, we have:

W,wabāb̄v →shift W,wavbāb̄→shift W,wb̄avbā→shift

→shift W,wāb̄avb→shift W,wvbāb̄a =rename W,wvabāb̄.



Table 1. Geometrical visualization of the rules in W.
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Fig. 2. Intuitive explanation of the Möbius rule.
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Definition 3. Two polygonal presentations W and V are said to be equivalent,
W ∼ V , if they present the same surface.

Theorem 2. If W and W ′ are two presentations such that W →W W ′, then
W ∼W ′.

Proof. We sketch an intuitive version of the proof (the reader can find more
details in [8]). All the rules listed in Definition 2 are geometrically explained in
Table 1. In algebraic topology surfaces can be considered modulo "reversible"
cuts: roughly speaking, we can arbitrarily cut a surface provided that we leave the
traces for recomposing it without ambiguities (this is the reason for considering
edges oriented and labeled). The two rules of split and pump (together with
their relative inverses glue and cutting-out) exactly express this idea. The rule of
invert just says that the perimeter of a polygon can be read following both the
possible orientations (clockwise or anticlockwise) without changing the presented
surface. The rule of shift is the most meaningful one. The idea is that a segment
of perimeter u included between a pair of opposite letters, xux̄, can be always
"carried inside" the polygon by identifying the edges labeled with x (see the last
figure in Table 1). Since u is an "hole" inside the polygon, it can be once again
"extracted" on the perimeter by performing a new cut on the surface. The shift
rule is induced by the fact this new cut can be performed from an arbitrary
vertex on the perimeter to an arbitrary vertex on the hole u.

Lemma 3 ([8]). The connected sum of a torus and a projective plane is home-
omorphic to the connected sum of three projective planes.

Proof. In terms of words, connected sum is nothing else but concatenation, so
the connected sum of a torus with a projective plane with boundary can be
presented by a polygon of perimeter tor1pjp1w = abāb̄ccw, where w indicates
a generic word encoding boundary. Then, we rewrite our word as follows:

abāb̄ccw →shift acbāb̄cw →Lemma1 abab̄ccw →Lemma1 b̄aab̄ccw →Lemma2 b̄b̄aaccw,

namely pjp3w.



4 Pq-Permutations

If we consider a surface S as the final result of identifying paired edges in
a set of polygons forming an its topological presentation, we have that each
boundary-component will be formed by at least one edge. Let ∂S be the set of
labels occurring on the boundary of S ; since fixed an orientation, we can notice
that S induces a cyclic order on each one of the subsets of ∂S correspond-
ing to boundary-components; in other words, we obtain a permutation on ∂S .
The idea leading to the notion of pq-permutation is that the basic information
concerning any surface S can always be encoded by a very easy mathematical
structure consisting in a permutation σ (denoting cycle by cycle the boundary
∂S ) together with a couple of natural numbers 〈p, q〉 respectively counting tori
and projective planes in the connected sum forming S .

Notation. pq-permutations are denoted with small Greek letters α, β, . . ., where-
as sets of pq-permutations with big Greek letters Σ,Ξ, Ψ, . . . When letters
W,V,U, . . . and w, v, u, . . . appear in pq-permutations they respectively stand
for sets of cyles and series of elements (i.e. w = a1, a2, . . . , an). The support of
a pq-permutation α is denoted with |α|. By abuse of notation, the permutation
having empty support is simply indicated with ∅.

Definition 4 (pq-permutation). A pq-permutation α consists in a permuta-
tion σ written by cycles {(w1), (w2), . . . , (wn)}, possibly the empty one ∅, indexed
with an ordered couple of natural numbers 〈p, q〉:

α = {(w1), (w2), . . . , (wn)}〈p,q〉.

Example 1. The oriented surface illustrated below induces the pq-permutation
{(a, b, c), (d, e)}〈2,0〉.

a b
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e

Example 2. For taking an example of a non-orientable surface, a Klein bottle
without boundary will induce the pq-permutation ∅〈0,2〉 (it is in fact homeo-
morphic to the connected sum of two projective planes [8]).

Remark 1. Pq-permutations can be also seen as a way of making the structure of
canonical words more perspicuous, by avoiding useless bureaucracy. In particular
segments of the shapes torp and pjpq, respectively used for storing tori and pro-
jective planes, are discarded throughout the two indices 〈p, q〉 and the part con-
cerning the boundary is considered modulo shift rule: x1u1x̄1x2u2x̄2 . . . xrurx̄r
becomes the set of cycles {(u1), (u2), . . . , (ur)}.



It is now clear that the structure of pq-permutations provides an invariant for
considering surfaces modulo isomorphisms, namely modulo homeomorphisms
preserving orientation. In the remaining part of this section, we will show that
the specific combinatorial framework provided by pq-permutations allows to han-
dle surfaces in a much more perspicuous and efficient way with respect to the
approach based on words. We underline again, that this efficiency is due to
the fact that pq-permutations admit transformations able to "mimic", step by
step, the whole process of forming a surface S starting from any its polygonal
presentation WS .

Definition 5. We define the rewriting system P by taking sets of pq-permutations
as terms together with the following six rules:

– gluing: Σ, {W, (w, a)}〈p,q〉, {V, (v, ā)}〈p′,q′〉 → Σ, {W,V, (w, v)}〈p+p′,q+q′〉
– invert: Σ, {(w1), . . . , (wn)}〈p,q〉 → Σ, {(w̄1), . . . , (w̄n)}〈p,q〉
– cylinder: Σ, {W, (w, a, v, ā)}〈p,q〉 → Σ, {W, (w), (v)}〈p,q〉
– torus: Σ, {W, (w, a), (ā, v)}〈p,q〉 → Σ, {W, (w, v)}〈p+1,q〉

– Möbius: Σ, {W, (w, a, v, a)}〈p,q〉 → Σ, {W, (w, v̄)}〈p,q+1〉

– Klein: Σ, {W, (w, a), (a, v)}〈p,q〉 → Σ, {W, (w, v̄)}〈p,q+2〉

– sieve: Σ, {W}〈p,q〉 → Σ, {W}〈0,2p+q〉.

Gluing and invert rules are nothing else but the conterpart of their homonymous
rules inW. Cylinder says that the effect of identifying two opposite edges occur-
ring on the same piece of boundary, is that one of decomposing this boundary-
component into two components. As far as the torus rule is concerned, if oppo-
site paired edges occur on two different boundary-components, for identifying
them we have to merge the two pieces into one by forming a new handle (one
torus added to the connected sum). The Möbius rule comes straightforwardly
from Lemma 1, whereas the Klein rule should be interpreted as a kind of "non-
orientable torus" whose effect, as its own name suggests, consists in producing
a Klein bottle (two projective planes added to the connected sum). Finally, the
rule of sieve just expresses the property stated in Lemma 3.

Definition 6. We associate with any pq-permutation α a word wα defined as
follows:

α = {(w1), . . . , (wn)}〈p,q〉 7→ wα = torppjpqx1w1x̄1 . . . xnwnx̄n.

If Σ = {α1, α2, . . . , αn}, then WΣ = {wα1 , wα2 , . . . , wαn}; so, the equivalence
relation "∼" can be extended to sets of pq-permutations in a very natural way:
Σ ∼ Ξ ⇔WΣ ∼WΞ .

Theorem 3. Given two pq-permutations α and β, if α→P β, then α ∼ β.

Proof. The proof consists in showing that any chain of pq-permutations Ξ  P
Ξ ′ has a precise counterpart in terms of wordsWΞ  W WΞ′ . Just a preliminary
remark on notation: when a set of cycles W = {(u1), . . . , (un)} occurring in a



pq-permutation is "translated" into a word, its notation is kept unchanged but
it is meant to be W = x1u1x̄1 . . . xnunx̄n. Thus, it is clear that a segment like
W can be freely moved inside a word throughout a series of shift rules.

– Gluing: The set Σ, {W, (w, a)}〈p,q〉, {V, (v, ā)}〈p′,q′〉 becomes
WΣ , torppjpqWx1wax̄1, torp′pjpq′V x2vāx̄2. Then we have:
WΣ , torppjpqWx1wax̄1, torp′pjpq′V x2vāx̄2 →glue

→glue WΣ , torppjpqWx1wx̄2torp′pjpq′V x2vx̄1  Lemma2

 Lemma2 WΣ , torptorp′pjpqpjpq′Wx1wx̄2V x2vx̄1 ∼
∼WΣ , torp+p′pjpq+q′Wx1wx̄2V x2vx̄1  shift

 shift WΣ , torp+p′pjpq+q′WV x1wx̄2x2vx̄1 →cut

→cut WΣ , torp+p′pjpq+q′WV x1wvx̄1;
in terms of pq-permutations: Σ, {W,V, (w, v)}〈p+p′,q+q′〉.

– Invert: easy.
– Cylinder: Σ, {W, (w, a, v, ā)}〈p,q〉 → Σ, {W, (w), (v)}〈p,q〉. Two cases.

– v is not the empty word.
Σ, {W, (w, a, v, ā)}〈p,q〉 becomes WΣ , torppjpqWxwavāx̄ and so:
WΣ , torppjpqWxwavāx̄→shift WΣ , torppjpqWxwx̄avā,
namely Σ, {W, (w), (v)}〈p,q〉.

– v is the empty word: instead of a shift rule, we apply a cutting-out.
– Torus:Σ, {W, (w, a), (ā, v)}〈p,q〉 corresponds toWΣ , torppjpqWx1wax̄1x2āvx̄2.
WΣ , torppjpqWx1wax̄1x2āvx̄2 →shift WΣ , torppjpqWx1wvx̄2ax̄1x2ā

→shift WΣ , torppjpqWx1wvāx̄2ax̄1x2 →shift

→shift WΣ , torppjpqWx1wvx̄1x2āx̄2a ∼WΣ , x2āx̄2atorppjpqWx1wvx̄1 ∼
∼WΣ , torp+1pjpqWx1wvx̄1, in terms of pq-permutations:
Σ, {W, (w, v)}〈p+1,q〉.

– Möbius: Σ, {W, (w, a, v, a)}〈p,q〉 becomes WΣ , torppjpqWxwavax̄.
WΣ , torppjpqWxwavax̄→Lemma1 WΣ , torppjpqWxwv̄aax̄→Lemma2

→Lemma2 WΣ , torppjpqaaWxwv̄x̄ ∼WΣ , torppjpq+1Wxwv̄x̄,
namely Σ, {W, (w, v̄)}〈p,q+1〉.

– Klein: Σ, {W, (w, a), (a, v)}〈p,q〉 becomes WΣ , torppjpqWx1wax̄1x2vax̄2.
WΣ , torppjpqWx1wax̄1x2vax̄2 →Lemma1 WΣ , torppjpqWx1wv̄x̄2x1aax̄2

→Lemma1 WΣ , torppjpqWx1wv̄āāx̄1x̄2x̄2 →Lemma2

→Lemma2 WΣ , torppjpqāāWx1wv̄x̄1x̄2x̄2 →Lemma2

→Lemma2 WΣ , torppjpqāāx̄2x̄2Wx1wv̄x̄1 ∼WΣ , torppjpq+2Wx1wv̄x̄1.

In terms of pq-permutations: Σ, {W, (w, v)}〈p,q+2〉

– Sieve: immediately by applying Lemma 3.

In the next definitions we recall same fundamental properties of rewriting sys-
tems (for more details the reader can consult [2]).



Definition 7 (normal form, weak and strong normalization proper-
ties). In a rewriting system, terms which cannot be written any further are
called normal forms. A rewriting system enjoys the weak normalization property
if, for every term t of the system, there exists a rewriting sequence which trans-
forms t into a normal form. If any rewriting strategy is able to carry t into a
normal form, our system is said to be strongly normalizing.

Remark 2. According to the previous definition, we remark that a pq-permuta-
tion α is in normal form if |α| does not contain paired edges and at least one of
the two indices is null (three admitted situations: 〈p, 0〉, 〈0, q〉 and 〈0, 0〉).

Theorem 4. The rewriting system P strongly normalizes.

Proof. For proving this property, one usually attaches a convenient size to terms
and shows that it decreases at each single step of reduction. In case of pq-
permutations, we associate to each α a size [α] = i− j, where i is the number of
paired edges occurring in |α| and j the number of stored tori (namely, the first
index of α). Now it is sufficient to remark that, if α→S α′, then [α′] < [α].

Definition 8 (confluence, strict strong confluence). A rewriting system
R is said to be confluent if, for any three terms a, b, c ∈ R such that a  R b
and a  R c, there exists a fourth term d ∈ R such that b  R d and c  R d.
R enjoys the strict strong confluence property if in definition of confluence the
arrow " " can be replaced everywhere by the single step arrow "→".

Lemma 4. If we consider pq-permutations modulo sieve rule, then P is strictly
strongly confluent.

Proof. With α →a α
′ we mean that the pq-permutation α′ has been obtained

from α by identifying edges labeled with "a". By considering all the possible
cases it is (long but) easy to see that, if α →a β and α →b γ, then there exists
a δ ∈ P such that β →b δ and γ →a δ.

Remark 3. Strict strong confluence implies both confluence and the uniqueness
of normal forms (namely, any pq-permutation has exactly one normal form) [2].
In other words, P is shown to be a deterministic system, not only in terms of
outputs, but also in terms of computations. Strict strong confluence extends
in fact determinism to computational processes by asserting their equivalence
modulo permutation of rules (in case of pq-permutations, modulo permutations
of identified edges).

Given all the technical details about P, here we propose some example in which
this system is used for computing the surface presented by a certain polygonal
presentation.

Example 3. We show that the connected sum of a torus with a projective plane
is effectively homeomorphic to a connected sum of three projective planes. The
polygon denoting the surface at issue has perimeter: abāb̄cc. Any polygon is



topologically nothing else but a disk, so we start rewriting the pq-permutation
{(a, b, ā, b̄, c, c)}〈0,0〉:

{(a, b, ā, b̄, c, c)}〈0,0〉 →cyl. {(b), (b̄, c, c)}〈0,0〉 →Mobius

→Mobius {(b), (b̄)}〈0,1〉 →torus ∅〈1,1〉 →sieve ∅〈0,3〉.

Or, alternatively:

{(a, b, ā, b̄, c, c)}〈0,0〉 →Mobius {(a, b, ā, b̄)}〈0,1〉 →cyl.

→cyl. {(b), (b̄)}〈0,1〉 →torus ∅〈1,1〉 →sieve ∅〈0,3〉.

Example 4. We show that the polygon abāb presents a Klein bottle:
{(a, b, ā, b)}〈0,0〉 →cyl. {(b), (b)}〈0,0〉 →Klein ∅〈0,2〉.

Or, alternatively:
{(a, b, ā, b)}〈0,0〉 →Mobius {(a, a)}〈0,1〉 →Mobius ∅〈0,2〉.

Corollary 1. The rewriting system W enjoys the weak normalization property
and the uniqueness of the normal form.

Proof. In case of words, we make coincide normal and canonical forms. Given any
presentation W , the proof of Theorem 3 clearly provides a strategy for reducing
W into a normal form. The uniqueness of normal forms in P yields the same
property for W.

Proof of the classification theorem. By considering canonical form as syn-
onym of normal form, the already mentioned proof of the classification theorem
provided by Massey can be seen as a proof of weak normalization (for a set
of transformations on polygons which is here essentially that one expressed by
W3), together with the uniqueness of the normal form. But, it is exactly what
Corollary 1 affirms.

5 Future Work

Many directions of research are opened, not necessarily in convergent directions.
In the final lines of this contribution, the classification theorem has been re-

covered inside the specific framework here proposed and other standard achieve-
ments in topology of 2-dimensional manifolds are expected to be reinterpreted
throughout pq-permutations: in primis, a combinatorial treatment of the Jor-
dan curve theorem for closed surfaces. More generally, we uphold the idea that
pq-permutations provide an optimal context for studying the decomposition of
surfaces, especially in presence of specific constraints. Moreover, because of the
3 The shift rule constitutes an exception: the algorithm reported by Massey in [8] works
in fact on polygons presenting surfaces without boundary. Surfaces with boundary
are later classified by introducing some supplementary remarks on the triangular-
ization theorem, essentially aside from the inner mechanism of the procedure.



strict locality of computation, the system P turns out to be particularly adapt
for studying the possibilities of relaxing sequentiality during the processes of
forming surfaces.

In order to improve its computer-scientific status, a categorical formaliza-
tion of P should be provided. In this direction a possible way could be that
one of considering pq-permutations as objects, surfaces as morphisms and their
composition as composition (gluing) of surfaces.

Finally, we hint at some possible applications in the framework of process
calculi applied to biological systems. In particular, we are thinking to Brane
Calculi introduced by Cardelli and their later developments [3, 4], in which a
topological context is imposed by the fact that membranes are two-dimensional
fluids which interact embedded in a three-dimensional fluid. The structure of
pq-permutations recall that one of membranes (trivially, in case of cyclic per-
mutations) and some transformations considered by the system P would seem
to be very close to Cardelli’s bitonal interactions.
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