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Abstract
Voxels near tissue borders in medical images contain useful clinical information, but are subject to
severe partial volume (PV) effect, which is a major cause of imprecision in quantitative volumetric
and texture analysis. When modeling each tissue type as a conditionally independent Gaussian
distribution, the tissue mixture fractions in each voxel via the modeled unobservable random
processes of the underlying tissue types can be estimated by maximum a posteriori expectation-
maximization (MAP-EM) algorithm in an iterative manner. This paper presents, based on the
assumption that PV effect could be fully described by a tissue mixture model, a theoretical solution
to the MAP-EM segmentation algorithm, as opposed to our previous approximation which simplified
the posteriori cost function as a quadratic term. It was found out that the theoretically-derived solution
existed in a set of high-order non-linear equations. Despite of the induced computational complexity
when seeking for optimum numerical solutions to non-linear equations, potential gains in robustness,
consistency and quantitative precision were noticed. Results from both synthetic digital phantoms
and real patient bladder magnetic resonance images were presented, demonstrating the accuracy and
efficiency of the presented theoretical MAP-EM solution.
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I. INTRODUCTION
Image segmentation plays an important role in quantitative analysis of medical images for
various clinical applications. Due to the limited imaging spatial resolution, voxels might
contain more than one tissue type near the tissue borders, termed partial volume (PV) effect.
Traditional hard segmentation algorithms classified each image voxel into one single class,
completely ignoring PV effect and potentially yielding noticeable errors in clinical attempts
of volumetric analysis, such as in the evaluation of multiple sclerosis with cognitive impairment
[1,2]. Although soft segmentation algorithms have been developed for addressing PV effect,
only limited improvements were observed due to the indirect PV model where the assigned
tissue labels were still discrete [2–4].

Considering the insufficient measurements to determine the mixture fractions of different tissue
types [5–6], Leemput et al. [7] proposed a PV image segmentation algorithm, as an
improvement, that directly estimated the tissue components in each voxel via down-sampling.
Theoretically, this discrete down-sampling algorithm approaches to a continuous solution after
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infinite numbers of down-sampling operations, which in practice, however, is not achievable.
Toward that end, directly modeling PV effect as tissue mixture fractions inside each voxel, in
a continuous space, is desirable. In our previous work [8–9], a PV segmentation approach
utilizing expectation-maximization (EM) algorithm has been explored trying to simultaneously
estimate (1) tissue mixture fractions inside each voxel and (2) statistical model parameters of
the image data under the principle of maximum a posteriori (MAP). As such, PV effect was
modeled in a continuous mixture space under the constraint of no more than two tissue types
[8] present in each voxel. Moreover, approximated MAP-EM solutions were taken in exchange
for less computational complexity [9]. In this paper, we endeavored to acquire the theoretical
MAP-EM solution for more general cases, such that the number of tissues considered for each
voxel was extended to three and four. Instead of our approximated MAP-EM solution in a
quadratic format, the closed-form theoretical solution existed in a set of nonlinear equations
up to fifth-order, where numerical equation-solving methods, like Newton and QR, were
employed in our study. Via quantitative performance analysis on the synthetic images, the
derived exact solution displayed advantages in (1) consistency between two consecutive EM
iterations and (2) robustness to data overflow.

The remainder of this paper is organized as follows. Section II firstly reviewed the rationale
behind MAP-EM algorithm by introducing statistics-based mixture models. Section III fully
tabulated the theoretical solution to MAP-EM estimation by discussing different mixture cases,
followed by Section IV and V where synthetic computer simulations and patient magnetic
resonance imaging (MRI) bladder data were conducted respectively for qualitative evaluation
purpose. Finally conclusions were drawn in Section VI.

II. MATERIALS AND METHODS
In this section, MAP-EM segmentation algorithm addressing PV effect is briefly reviewed,
based on the assumption that each voxel i contains up to K tissue types, each of which shared
a certain mixture fraction.

A. Review of MAP-EM Segmentation
A.1. Image Data Model—It is assumed that the acquired image Y is represented by a column
vector into the form of {Yi, i = 1,… , I} where I denotes the total number of voxels in the image,
where subscript i indexes voxel of interest and Yi is an observation of current voxel i with mean
Ȳi and variance  , i.e.,

(1)

Suppose that noise {ni, i = 1,…I} is mutually independent and follows a Gaussian distribution
with zero mean and variance  , then given statistical means and variances of {Yi, i = 1,… ,
I} and {ni, i = 1,…I} respectively, the conditional probability distribution of image Y is
described as follows,

(2)

A.2. Normal Statistics Model—There are probably K tissue types simultaneously
occurring inside each voxel, where the contribution of tissue type k to observation Yi is denoted
by {Xik,i = 1,…,I;k = 1,…,K} . It is noted that individual Xik is also a random variable having
mean X̄ik and variance  , i.e.,
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(3)

where noise {nik, i = 1,… , I;k = 1,…, K} again is assumed to be mutually independent and
follows a Gaussian distribution with zero mean and variance . Following the same
arguments, we have

(4)

As a result, the tissue mixture model associated with each voxel Yi by considering the
contribution of Xik is depicted as follows,

(5)

Moreover, Zik is assumed to be the mixture fraction of tissue type k inside Yi subject to

 and 0 ≤ Zik ≤ 1 , and by defining μk and  as the mean and variance of tissue type
k fully filling in voxel Yi , we have

(6)

such that (2) and (4) can be rewritten as:

(7)

A.3. EM Framework for Mixture Quantification—In EM framework, each voxel Yi is
considered as an incomplete observation, while the underlying contribution of each tissue type
k, denoted as Xik , is complete while invisible, related to Yi via the following conditioning
integral,

(8)

A.4. Priori Model for Tissue Mixture Regularization—Maximum-likelihood
expectation-maximization (ML-EM) framework is known to yield noisy estimation as the
iteration proceeds. Many publications have evicted the strength of maximum a posteriori
expectation-maximization (MAP-EM) by introducing a Markov Random Field (MRF) penalty
term to define an a priori distribution for tissue mixture fraction Zik around its neighbors, such
that ML-EM becomes MAP-EM. Applying a Gibbs model on the MRF framework, the penalty
on Zik has the general form of
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(9)

where {Zikεi } are the surrounding neighbors around Zik , C is a normalization constant and β
is an adjustable parameter controlling the degree of the penalty. The exponential energy
function U (.) can be written as a quadratic form like

(10)

where wir is a weighing factor for regularizing different orders of neighbors.

B. Theoretical Solutions to MAP-EM PV Segmentation
In this section, the theoretical solutions to MAP-EM PV segmentation are given by discussing
different tissue mixture cases, i.e., the value of K. The most frequently encountered cases in
medical images like MRI are K = 2 and K = 3 associated with each voxel, although the total
number of tissue types inside the body can be far beyond K. Our proposed MAP-EM estimation
approach can be fully described by an expectation step (E-step) and a maximization step (M-
step) working in an iterative manner. In what follows, formulas of the theoretically-derived
solutions are presented for different cases of K = 2 and K = 3 respectively.

B.1. Theoretical Solutions for K = 2—Beginning with the simplest case of K = 2, our
MAP-EM segmentation algorithm for simultaneously estimating both {Zik} and model

parameters  are summarized as follows.

E-step: Conditional expectation, which is the cost function to be maximized, is shown in (11),
subject to Zi1 + Zi2 = 1 for voxel i

(11)

and

(12a)

(12b)

M-step: Theoretically-derived solution for {Zik} comes from the partial derivations of (11)
with respect to only one parameter, either Zi1 or Zi2 (in our paper, Zi1 is taken for deduction).
Replacing all the Zi2 in (11) with 1 − Zi1 , then
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(13)

which could be reformatted as a non-linear equation like

(14)

where

(15)

To numerically solve this nonlinear equation up to fifth-order with 6 coefficients, we
considered QR factorization method as described in [10] with observable advantage that the
obtained numerical solutions were immune to different initialization schemes.

B.2. Theoretical Solutions for K = 3—Following the same arguments as K = 2, theoretical
MAP-EM solutions for K = 3 are straightforward except that there are two nonlinear equations
up to fifth-order with 16 terms for each.

E-step: Conditional expectation, the cost function to be maximized, is listed as follows

(16)

with Qk, k = 1,2,3 defined by (11) and subject to the condition of Zi1 + Zi2 + Zi3 = 1.

M-step: Theoretically-derived solutions for {Zik} comes from the partial derivations of (16)
with respect to two parameters {Zi1, Zi2} individually.

(17a)

(17b)
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and

(18)

where

(19)

It is noted that  are symmetric, playing equally important role in formulations

of (18–19). Therefore by interchanging the positions of  , replacing all the
 , all the  , and all the Zi1 with Zi2 , we can get exactly the same

polynomial with respect to  , which is omitted here for simplicity. In doing so, getting
theoretical MAP-EM solution is equivalent to solving these two polynomials of fifth-order
simultaneously.

Finally, as the MAP-EM iteration proceeds, convergence is assumed when the following
stopping rule is satisfied

(20)

where ε is pre-defined thresholds as required by different precision levels.
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There exist various numerical methods, which are based on trial and error scheme working in
an iterative manner to obtain optimum results subject to predefined error rate. However, no
matter what equation-solving method is chosen, we need to provide an initial guess of {Zik},
based on which estimations are updated via feedback or innovation until the final convergence.
Compared with K = 2, QR factorization, the best choice of solving one unknown parameters,
now is replaced by the well-known Newton’s method for K = 3 because of its simplicity [11].
Although Newton’s method is fast, its robustness is impaired by observing the fact that different
initialization schemes may lead to different numerical solutions.

III. EXPERIMENTAL RESULTS
In this section, the theoretical solution to MAP-EM segmentation algorithm for K = 2 and K =
3 outlined by (13–15) and (17–19) were tested on various computer simulated phantoms, as a
comparison to our quadratic approximations reported in [9].

A. Computer Simulations
A.1. Phantoms for K=2 and K=3—Assume that two tissue types, T1 and T2 with

 , are observed in a two-dimensional (2D) spatial
image domain. More specifically, tissue type T1’s mixture fractions {Zi1} gradually decreases
from 1 to 0 in the upper part of the image as shown by Figure 1(a), while {Zi2} vice versa in
Figure 1(b). A horizontal stripe of 10-pixel wide subject to Zi1 + Zi2 = 1 was created to model
PV effect. Therefore, a phantom shown by Figure 1(c) was created by adding two Gaussian
distributed random variables together, which is

(21)

Similarly, a phantom for K=3 was simulated in Figure 2, such that
 respectively with PV effect on

the tissue border satisfying Zi1 + Zi2 + Zi3 = 1 .

As simple and synthetic as Figure 1–Figure 2, the performance of theoretical MAP-EM
solutions can still be fully evaluated in terms of both quantitative accuracy and computational
complexity, since each voxel is assumed to be a conditionally independent Gaussian variable
regardless of spatial variations.

A.2. Simulations Results

Quantitative Analysis:  need to be initialized to startup MAP-EM iteration.
Simple initialization scheme such as hard thresholding could possibly lead to deviated
estimations far from the truth, considering the sensitivity of EM algorithm to the initials. To
fully evaluate the estimation performance of both theoretical and quadratic MAP-EM solutions
under different initialization schemes, we define three error rates corresponding to {μ k, σ k,
Z ik} respectively

(22)

For K = 2, Table 1 presented quantitative reports in terms of error rates based on three different
initialization schemes.
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It is noticed that with accurately given  , the error rates for  were obviously

smaller than those with accurate  , taking either theoretical or quadratic solutions.

This demonstrated the overwhelming role that  played in determining the final estimation

performance over  . For K = 3 where computational complexity was much higher

than K = 2, only comparison results corresponding to randomized  were listed
in Table 2 right below.

No matter K = 2 or K = 3, it is noticeable that there was no sharp difference in estimation
precisions between theoretical and quadratic approximated MAP-EM solutions. More
specifically, theoretical solutions perform slightly better than quadratic approximations in
estimating Zik , while comparable to each other in estimating {μ k,σ k} .

Computational Complexity: Although theoretical solution involved nonlinear equations up
to fifth-order compared with quadratic approximation, their computational complexities were
comparable to each other. As an illustration, both of them were running by C++ code on a PC
platform of 2.4GHz Core(TM)2 CPU and 3.5GB RAM, and computing time versus increasing
number of EM iterations for segmenting a double-precision image of size 256 × 256 was
recorded in Figure 3. It only took several minutes for running both methods on a real CT image
of 512 × 512 × 400 array size.

Robustness: Although quadratic approximation significantly simplified the mathematical
formulas, its robustness was noticed to be impaired by setting the terms of  in the
denominator of (11) as a prior from the former iteration. Two factors accounted for the limited
robustness of quadratic approximation during EM iteration: (1) it cannot handle very small

 values. Once it occurs, singularity is inevitable, and (2) the estimated  is probably out
of the range [0, 1], which becomes unstable for (n+1) iteration. However for theoretical
solution, robustness was significantly improved without having to specify the lower-bound of

 during iterations. Meanwhile, the chance of overflow was much lower, as illustrated by
Figure 4 for K = 2. For K = 3, the difference almost vanished.

As a concluding remark to this section, some differences between theoretical and quadratic
solutions in terms of robustness, estimation precision and computational complexity have been
observed when K = 2, with their differences becoming invisible as K went beyond 2. We attempt
to support our conclusions by providing the following interpretations: (1) for K = 2, the
robustness acquired by QR factorization made theoretical solution immune to the initials, while
setting  as a priori from the former iteration in quadratic approximation degraded
itself reliable to the n-th iteration somehow, and (2) for K > 2, such advantage of theoretical
solution disappeared as QR factorization was no longer applicable and when replaced by
Newton’s method, both theoretical and quadratic-approximated MAP-EM solutions
demonstrated comparable numerical performance in many aspects. Therefore if a set of
polynomials up to fifth-order of (19) can be accurately solved, theoretical solution could
outperform quadratic approximation for K > 2 excluding other impacting factors.

B. Bladder MRI Real Data Study
B.1. Bladder MRI Data—In our study, T2-weighted MRI bladder sessions were performed
using a 1.5 Tesla Marconi Edge scanner with 1.5mm slice thickness, 90° flip angle and 256 ×
256 image size. For repetition and echo time parameters, TR =12167ms and TE =96ms.
Compared to T1-weighted images, the image intensity of urine or fluid inside the bladder
against that of the bladder wall is enhanced in the T2-weighted case due to the use of the T2
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relaxation time. Throughout our experiments, the transverse T2-weighted bladder image was
utilized, and one typical case with a large-sized tumor on the right bottom part of bladder was
illustrated by Figure 5 with its corresponding image intensity histogram shown on the right
side.

B.2. Initialization Procedure—For real data applications, a more practical initialization
strategy was taken to startup EM algorithm considering the fact that poor initials not only
increase the time to converge, but also might lead to local optima which would never be steered

back. Although the obtained  would still have certain deviations from their truth,
the initialization strategy is considered to be more realistic, efficient and could be summarized
into the following steps.

1. Guided by the histogram shown in Figure 5, each voxel i was pre-assigned a discrete
label from {1, 2, 3} denoted by Li , which was in proportional to the image intensities
such that “3” represents the enhanced urine/fluid inside bladder against bladder wall
via hard thresholding.

2. Given  were initialized respectively by grouping voxels which belong

to the same tissue type k. Although  obtained in this way could not exactly

reflect the true statistics properties, especially for , they could still be refined

after sufficient EM iterations steered by  which is the most important impacting
factor as demonstrated before.

3. The final and crucial step is to initialize  . For each voxel i, the number of
contributing tissue types {Ni} was roughly determined via its first- or second-order
neighbors. For the purpose of segmenting bladder in MRI where image quality
significantly limits the use of large neighboring window size, only 8-connected
neighbors were considered in our study, as illustrated by Figure 6. Generally speaking,
the neighboring window size varies with different clinical applications. More
specifically, it could be extended to second-order neighbors when applied to high-
resolution images, like CT. As illustrated in Figure 6(a–b) where numbers 1 to 3
represent different tissue types, voxel i is considered to be mixed up by two and three
tissue types respectively by inspecting the tissue labels of its 8-connected neighbors.
More specifically, we set Ni = 2 for Figure 6(a) simply because the tissue numbers
“1” and “2” were simultaneously observed within the 8-connected neighbors of voxel
i, and therefore Ni = 3 for Figure 6(b). Once {Ni} have been determined, it is

straightforward to initialize  in such a way that if Ni = 2 , i.e., voxel i contains
mixture of two tissue types, classes “1” and “2” for instance and they are uniformly

distributed, then  , otherwise  is defined as the normalized frequency
of tissue type k occurring among 8 neighbors.

However, double-checking the initially labeled region of enhanced urine/fluid inside bladder
lumen led to the findings of pseudo-enhanced (PE) tissues as illustrated in Figure 7, where the
intensities of the highlighted tissue (actually part of tumor) were enhanced out of the range of
normal tissues. The use of enhancement that have high intensities tend to artificially elevate
the observed intensities of nearby materials toward that of enhanced urine, called pseudo-
enhancement (PE) according to Nappi, et al., [12–13]. More importantly, ignoring the PE effect
will undoubtedly underestimate the actual size, and distort the shape of tumors because of the
incorrect initial labeling, while the utility and effectiveness of PV segmentation in developing
volume-based geometrical feature analysis like curvature and shape index for the detection of
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polyps in virtual colonoscopy has been evidenced in [14]. What we proposed here to deal with
PE is the application of vector quantization (VQ) below.

As an image processing technique, VQ has received considerable interest and been used in
various applications such as image and voice compression and classification, statistic pattern
recognition, etc [15]. Since each voxel here has only one intensity value, we have been
exploring strategies to reinterpret and reform the bladder MR images to fit the VQ framework.
One example is the novel method of grouping each voxel’s 22 neighboring (or even less) voxels
to form a 23-dimensional (23-D) local intensity vector and then classifying all the vectors based
on the intensity similarity within certain spatial range [16] for CT images. As a result, each
voxel is uniquely reinterpreted as a 23-D local intensity vector to catch the local anatomical
information. However, classifying the vectors is computationally complex. To reduce the
computing burden, principal component analysis (PCA) was applied to the local vector series
to determine the dimension of their feature vectors [16]. By applying the PCA on a large
database, we observed that a reasonable dimension of the feature vectors was five, where the
summation of the first five principle components’ variances was more than 92% of the total
variance. In the implementation, we adapted this VQ strategy to initialize the tissue mixture

percentages  for the image intensity ranges which has been pseudo-enhanced due to
surrounding enhanced tissue intensities.

Therefore, our initialization strategy as stated earlier is improved by incorporating VQ as a
two-stage procedure. Inheriting the summarized steps (1–2), three extra steps associated with
VQ are merged into step (3) for the purpose of providing more inhomogeneous intensity
information about different tissues under PE.

• For each voxel that is initially labeled as “3” (enhanced urine/fluid inside bladder),
its 8 neighbors were grouped together for MRI use (compared against 22 in CT scans)
as a re-interpreted 8-D local intensity vector, followed by PCA on the intensity vectors
through eigenvalue decomposition. The first 5 principle components were chosen to
represent the original 8-D local intensity vector. In other words, each of those voxels
of class “3” now has a 5-D feature vector, where each dimension reflects a distinct
principle component.

• Via unsupervised self-adaptive VQ classification [16] scheme, the 5-D feature vectors
of class “3” were further sub-classified into 10 small classes, where the number of
“10” was determined based on the criterion of maximally distinguishing among the
sub-divided classes from label “3”. Considering the inhomogeneous MRI intensity
distribution, it is sufficient to claim that the 10 sub-divided classes from label “3” best
capture the characteristics of enhanced urine/fluid and pseudo-enhanced soft tissues.

• Instead of obtaining a single mean value for class “3”, ten mean values associated
with the 10 sub-divided class “3”, denoted by mk , k = 1,…10 , were accordingly
calculated and sorted in an increasing order. Therefore, 10 labels were assigned to
these newly-classified class “3” voxels with a smaller label value corresponding to a
smaller value of mk. More specifically, if we originally labeled the image voxels into
classes “1”, “2” and “3”, then label 3 was sub-divided into 10 new classes via VQ
quantization, resulting in 12 labels in total as documented in Table 3 as follows.

The final step is to initially guess  subject to . We follow roughly the same

philosophy as step (3) did that  were determined by the number of contributing tissue
types {Ni} via its 8-connected neighbors, as well as the occurring frequency of tissue type k
inside current voxel i among its 8 neighbors. However, this strategy was only applied to those
voxels labeled as “1” or “2”. For class “3” voxels, we treated them slightly differently that its
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sub-divided class labels from “3”–“12” further refined the values of  , either increasing
or decreasing in the sense that, the larger the sub-divided class label, the higher the refined

 , and vice versa. More specifically, if a voxel originally labeled by “3” and sub-labeled by
“3” is observed, it is more likely to be a pseudo-enhanced soft tissue compared to the voxel
originally labeled by “3” but sub-labeled by “12”. Therefore for the former case of “3-3”

combination, assigning more weights to  while reducing  proportionally, and altering
them reversely for the latter case of “3–12” could effectively overcome PE.

B.3. Segmentation of Bladder and Estimation of PV—Not provided with the ground
truth of segmented bladder, both theoretical and quadratic MAP-EM solutions were evaluated
from the prospect of describing the PV effect. In what follows, the original raw images,
segmented bladders by both quadratic and theoretical solutions after 50 EM iterations were
depicted in Figure 8(a–c) respectively, where the PV effect in the segmented bladders were
accordingly highlighted in Figure 8(b–c) as well.

Simply by visual judgment, we could not tell which one is superior to the other without ground

truth. By tracing the decreasing of  from 1 down to 0 versus the increasing of PV layer
thickness, a profile along vertical direction from the top lesion in Figure 8 was plotted in Figure
9, where we noticed that theoretical solution appeared to provide relatively smoother PV layer.

B.4. Performance Analysis—In this section, performance of theoretical MAP-EM solution
was evaluated from two aspects, converging speed and robustness.

Equation (20) was formulated to trace the decreasing of the maximum ratio of class mean
difference between (n+1)th and nth to the nth, versus the increasing number of EM-iteration.
Toward that end, a curve investigating converging speed was plotted in Figure 10. It is apparent
to see that the y-label, the maximum ratio of class mean difference, dramatically dropped to
the level no more than 1% after 5 iterations. Therefore a good set for threshold ε was 0.01 in
this case, although iteration could be stopped at any level of accuracy by varying ε . Generally
speaking, the number of EM iterations fluctuates between 10 and 20 according to different
applications.

In terms of robustness, we traced the penalty term β in (11) for K=2 and (16) for K=3, which
directly controlled the degree of MRF penalty term. The larger the β , the better continuity to

be expected in the estimated  . We intentionally chose different β values for analyzing the
impacts on PV segmentation. However, the risk was that when β was too large and therefore
dominating in (11) or (16), theoretical MAP-EM solution was going to fail by connecting other
tissue regions as a whole (leaking outside bladder lumen). The comparison results were
presented in Figure 11 which showed that proper choice of β was between [0, 1].

Compared to CT scan where better image quality ensures the intensity continuity within
spatially-connected voxels, MR images suffer from heavily scattered motion noise including
various artifacts like inhomogeneity, which generally demands much lower values of MRF
penalty term β according to our experiments.

IV. DISCUSSIONS
In this paper, we presented theoretical PV-EM solutions for estimating tissue mixture
percentages based on MAP principle and Gaussian mixture model. Through massive
validations on both synthetic square phantom as well as T2-weighted bladder MRI, this
continuous mixture model is found to be applicable to MRI medical imaging modalities,
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although the image noise may not strictly follow a Gaussian distribution due to various causes
during data acquisition and processing.
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Figure 1.
(a) ground truth of tissue T1, (b) ground truth of tissue T2, and (c) phantom for K=2 with
simulated PV effect.
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Figure 2.
(a) ground truth of tissue T1, (b) ground truth of tissue T2, (c) ground truth of tissue T3, and
(d) phantom for K=3 with simulated PV effect..
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Figure 3.
Comparison of computing time (seconds) against iteration number between the theoretical
(solid line) and quadratic (crosses) solutions.
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Figure 4.
Number of tissue mixture fractions out of [0, 1] versus iteration for both theoretical and
quadratic solutions when K = 2, (a) number of tissue mixture fractions greater than 1, and (b)
number of tissue mixture fractions below 0.
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Figure 5.
A T2-weighted bladder data and its corresponding histogram.
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Figure 6.
Illustration of how to determine the number of contributing tissue types inside each voxel, (a)
voxel i is mixed by tissue classes “1” and “2”; and (b) voxel i is mixed by tissue classes “1”,
“2” and “3”.

Wang et al. Page 18

Int J Imaging Syst Technol. Author manuscript; available in PMC 2009 September 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 7.
Illustration of pseudo-enhancement phenomenon. The highlighted and pointed area is actually
part of the reported tumor.
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Figure 8.
Quadratic versus theoretical MAP-EM solutions in terms of describing the PV effect, (a) the
original T2-weighted raw bladder data, (b) the segmented bladder by quadratic MAP-EM
solutions, and (c) the segmented bladder by theoretical MAP-EM solutions.
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Figure 9.

The decreasing of tissue mixture percentages of  from 1 down to 0 versus the increasing of
PV layer thickness.
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Figure 10.
Converging speed described as the maximum class mean changes as iteration number increases
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Figure 11.
Investigation of the robustness of theoretical MAP-EM algorithm to penalty term, (a) β =0.1,
(b) β =1, and (c) β = 10.
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Table 3
Initially classified labels versus sub-classified labels by VQ.

Before VQ After VQ

1 1

2 2

3
Enhanced
urine/fluid

and soft
tissues

Sub-divided class 1 3

Sub-divided class 2 4

Sub-divided class 3 5

Sub-divided class 4 6

Sub-divided class 5 7

Sub-divided class 6 8

Sub-divided class 7 9

Sub-divided class 8 10

Sub-divided class 9 11
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