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Abstract
The addition of a pair of magnetic field gradient pulses had initially provided the measurement of
spin motion with nuclear magnetic resonance (NMR) techniques. In the adaptation of DW-NMR
techniques to magnetic resonance imaging (MRI), the taxonomy of mathematical models is
divided in two categories: model matching and spectral methods. In this review, the methods are
summarized starting from early diffusion weighted (DW) NMR models followed up with their
adaptation to DW MRI. Finally, a newly introduced Fourier analysis based unifying theory, so-
called Complete Fourier Direct MRI, is included to explain the mechanisms of existing methods.
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1. Introduction
Nuclear magnetic resonance (NMR) and investigation of diffusion phenomenon have led to
important physical and mathematical discoveries [1] in the twentieth century; the discovery
of material properties via NMR spectroscopy and advances in the theory of stochastic
processes respectively to name two. These research areas come together in the analysis of
the effect of spin diffusion on NMR signal. As the spins move in a magnetic field gradient
(i.e. a changing magnetic field strength dependent on position) their magnetization vector
changes individually according to their paths. This was accounted for in different manners
by the pioneers of NMR: Hahn’s [2] description of diffusing spins’ effects in spin echo
experiment followed by Carr and Purcell’s [3] random walk approach and Torrey’s
incorporation of magnetization diffusion [4] to Bloch equations. Torrey utilized a partial
differential equation (PDE) framework instead of particle methods used by Hahn and, Carr
and Purcell.

In Torrey’s work [4], the effects of diffusion on NMR signal “under conditions of
inhomogeneity in magnetic field” [4] were mathematically formulated. Shortly thereafter,
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moving one step further Stejskal and Tanner intentionally introduced a pair of
(homogenous) magnetic field gradients into the spin echo experiment with the purpose of
accurately measuring the scalar diffusion coefficient of the sample under investigation [5].
When spins diffuse in a magnetic field gradient their transverse magnetizations disperse
because the gradients or inhomogeneity creates a different magnetic field strength at each
location. This changes the rotational speed of each magnetization vector according to its
spin’s diffusion path. Each spin possess a different path thereby creating the dispersion of
the magnetization. In the particle method framework, this principle was also analyzed by
McCall et al. [6]with a statistical approach that refined Hahn’s [2] magnetization’s phase
distribution formulation but departing from the random walk model of Carr and Purcell [3].

Although the pair of magnetic field gradient pulses are conventionally named as diffusion
sensitizing gradients in the pulsed gradient spin echo experiment (PGSE) of Stejskal and
Tanner, they do in fact encode spin motion regardless of its coherence or lack thereof [7]. In
a sense, diffusion NMR has introduced the motion information as an additional dimension
before magnetic resonance imaging (MRI) increased dimensionality with addition of
position of spins as an independent variable. Nevertheless, the techniques involving
diffusion sensitizing gradients whether for NMR spectroscopy or MRI are called diffusion
weighted (DW) methods.

Decades later, the DW technique has been adapted to MRI with great success, with early
detection of ischemia [8] being a very important example. Investigations were based on the
estimation of a scalar descriptor, the so-called apparent diffusion coefficient (ADC) which
represents the equivalent of isotropic diffusivity in an anisotropic environment. In other
words, environments allowing unrestricted and restricted motion of molecules are compared
with ADC. DW magnetic resonance (MR) measurement of anisotropy caused by three
dimensional microstructure’s alteration of spin motion raised an opportunity to infer more
detailed information, specifically about biological tissue. Furthermore, researchers took
advantage of MRI hardware’s capability of producing vectorial magnetic field gradients.
They developed models to express characteristics of spin motion as three dimensional
constructs which traversed beyond the scalar (apparent) diffusion coefficient’s potential. The
most widely known of these models are perhaps the q-space formalism [9] and diffusion
tensor imaging (DTI) [10, 11]. Whereas the former builds a Fourier framework between
DW-MR signal and spin displacement properties, the latter projects the signal onto an
ellipsoid, mathematically described by a symmetric tensor of rank two (which is a quadratic
form).

These developments have pushed the initial utilization of ADC to different crucial areas in
research and clinical imaging: early clinical diagnosis of ischemia [12], cancer diagnosis
[13, 14] follow–up on treatment, pre- and post-operative assessment for different organs
(e.g., fiber tracking [15, 16] before brain surgery [17]), monitoring of neurological diseases
and disorders [18, 19], neonatal development [20] and traumatic brain injury [21]. In
consequence, DW–MRI is now an indispensable and versatile tool, widely used in research
with an increasing number of accepted clinical applications.

2. Diffusion Weighted Models for NMR Spectroscopy
2.1 Partial Differential Equations

The mathematical treatment of the diffusion MR signal is confined traditionally to a partial
differential equation (PDE) framework which is used for both diffusion[22] and Bloch
equations. The starting point is Fick’s first equation that describes the rate of transfer, J, of
diffusing magnetization, M, through the unit area in each direction where D is the diffusion
coefficient:
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Equation 1

Whereas Torrey [4] leaves the scalar diffusion coefficient, D, as position dependent (thereby
covering a more general case), Stejskal and Tanner [5] following Abragam’s formulation
[23] treat it as position independent in Fick’s second equation [22] allowing the
commutation of operators in the diffusion equation,

Equation 2

(t denotes time). This formulation, valid for unrestricted diffusion, as in a liquid sample,
describes the Brownian motion. Accordingly, Brownian motion is mathematically modeled
by Wiener process which is defined as the stochastic process with Gaussian distributed
independent increments. By this property the Wiener process equivalently satisfies the
Markovian property [24]. In other words, the spins in Brownian motion are memoryless,
their future positions do not depend on their position history. On the other hand, the
obstacles posed by microstructure determine the future of spin motion according to past spin
interactions with microstructure. Therefore the inclusion of Markovian property is not
necessarily adequate in describing molecular motion in a restricted environment where past
positions shape the future motion2.

Nevertheless, the Bloch-Torrey equation, which phenomenologically describes NMR, takes
this form after neglecting relaxation effects:

Equation 3

with γ and B denoting the gyromagnetic ratio and the magnetic field respectively.
Proceeding with the solution Bloch-Torrey equation for PGSE, Stejs kal and Tanner
rigorously obtained the characterization of the DW signal attenuation of the free induction
decay’s (FID) magnitude as:

Equation 4

Here Si denotes the magnitude of the FID corresponding to the acquisition using the ith

diffusion sensitizing gradient magnitude with i=0 indicating the absence of diffusion
sensitizing gradients (see Figure 1) and b is derived using the duration, δ, the separation, Δ,
times of the (rectangular) diffusion sensitizing gradients and the magnitude of the diffusion
sensitizing gradient pulse g [5]:

Equation 5

Basically, the attenuation is characterized as a Gaussian function of diffusion gradient
strength g. The diffusion coefficient and the diffusion gradient times define the shape of the
Gaussian.

2In the investigations of microstructured environments, this is the reason the term ‘apparent’ appears in front of diffusion coefficient,
which is defined for environments that allow unrestricted or isotropic motion.
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2.2 Displacement Probabilities
Before the appearance of Torrey’s PDE approach [4], initial modeling of diffusion NMR in
spin echo experiments by Hahn [2] was based on the expression of the distribution of
individual spins’ transverse magnetization phase. Carr and Purcell [3] interpreted diffusion
using a random walk model to arrive at Hahn’s result for signal attenuation:

Equation 6

Unlike in the case of PGSE experiment, g represents here a constant magnetic field gradient
rather than the strength of pulsed gradients of Figure 1.

Around the publication time of Stejskal and Tanner’s seminal work [5], another less noticed
work treating diffusion NMR signal via particle methods was published by McCall et al. [6].
The work departed from the random walk formulation of Carr and Purcell [3] which records
the phase of the transverse magnetization during each random walk step in a magnetic field
gradient. The analysis of McCall et al. [6] returned to the initial statistical treatment of Hahn
[2] describing the magnetization phase distribution caused by spin motion. Despite minor
mathematical discrepancies3, the fruitful idea refines Hahn’s [2] analysis by expressing the
individual phase directly as a function of spin displacements and obtains exactly Equation 6.

More than two decades after the publication of McCall et al. [6], Callaghan modeled the
PGSE signal using techniques of scattering theory in the spirit of particle methods. In the
model, an analogy between the probability of “finding any scattering center” [9] and the
probability of spin displacements creates the so-called q-space model. With the narrow pulse
assumption, i.e. negligible diffusion gradient pulse duration in comparison to the separation
time, δ ≪ Δ, Callaghan computes the amplitude of the echo at Te as

Equation 7

with ρ and GD denoting the spin density and the three dimensional diffusion sensitizing
magnetic field gradient vector respectively. Ps is the probability of a particle initially at x to
be found at x′ after the pulse separation time, Δ. Relying on Markovian property, Callaghan
rewrites Equation 7 using the “dynamic displacement”: R=x′–x, and the average propagator
[9], P̄ (R, Δ), which “gives the average probability for any particle to have a dynamic
displacement R over a time Δ″ [9]. Accordingly the signal at echo time is calculated as:

Equation 8

where q =(2π)−1 γδ G, giving the name q-space.

The derivations of these results are strongly dependent on the single point measurements at
echo time (see Figure 1). However, the same reasoning is not applicable to DW-MRI for the
reasons that will be explained in Section 4.

3The assertion that the integrals of sample paths of a Gaussian distributed stochastic process are Gaussian does not exist in the
reference provided in the manuscript [25. M. E. Munroe, Theory of probability, McGraw-Hill, New York, 1951.]. In fact its proof
does not exist in the literature to the best of the authors’ knowledge.
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Finally, it is worth pointing out that particle methods and PDE’s are equivalent
mathematically [26]. Accordingly, both PDE and particle methods based derivations are
valid for DW methods.

3. Diffusion Weighted Magnetic Resonance Imaging Models
In comparison to NMR spectroscopy, MRI scanner hardware creates three dimensional
magnetic field gradients that allow the measurement of spin density as a function of
position. The spin density, usually weighted by relaxation times (T1, T2) is presented as an
image. In other words, as an improvement to obtaining an average measurement from the
whole sample of NMR spectroscopy, MRI augments the signal dimensionality by adding
positional information. Beginning in the late 1980s, diffusion methods were adapted to MRI
using the mathematical models of DW-NMR described in Sections 2.1 and 2.2. An
important leap occurred when researchers moved from the investigations of the scalar
quantity (ADC) to the estimation of more general three dimensional geometric constructs.
For example, DTI estimates ellipsoids defined by a quadratic form (diffusion tensor), D,
which is basically a symmetric 3 × 3 matrix. The scalar quantity ADC is equal to the mean
of the eigenvalues of the matrix D.

DW-MRI methods can be grouped under two general categories:

1. Model Matching Methods initiated by diffusion tensor imaging (DTI) [10, 11]
and refined with high angular resolution diffusion–weighted imaging (HARDI)
[27], composite hindered and restricted model of diffusion (CHARMED) [28],
spherical deconvolution [29], diffusion orientation transform (DOT) [30] two
versions of the generalized DTI (GDTI) [31, 32]and diffusional kurtosis imaging
(DKI) [33].

2. Spectral methods originating from Callaghan’s q–space [9] followed by the
diffusion spectrum imaging (DSI) [34], Q-ball imaging [35].

3.1 Model Matching Methods
DW-MRI model matching methods are direct adaptations of signal attenuation modeling in
DW-NMR spectroscopy. The models assume that images obtained with diffusion sensitizing
gradients demonstrate different attenuation levels at different pixels as a function of
diffusion gradient vectors. This reflects characteristics of spin motion dictated by the
microstructure. The model matching method is described by the following generic equation
adopted from Equation 4:

Equation 9

Here, the model is no longer for the FID but its Fourier transform, which is in the image
domain: Ii is the intensity (magnitude in most cases) of a given pixel from the image
obtained with the ith diffusion gradient vector GDi. The methods are defined by the
functional presentation of the model, H. The data are projected onto H which also
incorporates the unknown to be estimated, namely the spin motion descriptor.

3.1.1 Diffusion Tensor Imaging—In the original formulation of model matching
pioneering work, DTI [10, 11], the function is

Equation 10
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The descriptor is the diffusion tensor D to be estimated from the (now 3 dimensional) Bloch-
Torrey equation (Equation 3). B is a matrix valued function of GDi,δ,Δ [11]and it multiplies
D element by element. This formulation is refined to a natural linear algebraic framework by
Papadakis et al. [36] who noticed that in fact

Equation 11

The constant coefficient , introduced later in [37] delineates the gradient
duration and separation times (δ, Δ) from their vector part GDi in contrast to b of Equation
5. Conventional diffusion gradient schemes (DGS, the list of diffusion sensitizing gradient
vectors used in a DW experiment) are specified using a single b-value for the entire
diffusion gradient vectors GDi thereby confining all of them onto a sphere. The introduction
of bt made possible the design of new DGS via optimization methods. In [38], the effect of
imaging gradients is minimized with DGSs containing vectors of different magnitudes
optimally placed with respect to the imaging magnetic field gradients.

At a basic level, Equation 11 implies that D estimated from DTI experiments is forcefully a
symmetric matrix because for any vector, G, GTDG = GDTG and

Equation 12

In other words, DTI can only measure the symmetric part of the diffusion tensor: .
Symmetric matrices form, a subspace and 3 × 3 symmetric matrices are represented as six
dimensional vectors, d = [d1, d2, d3, d4, d5, d6]:

Equation 13

This allows rewriting Equation 11 in a linear form following the steps of Papadakis et al.
[36] and the refinements in [37]:

Equation 14

with

Equation 15

where GDi = [gix, giy, giz].

To solve for six elements of d, a minimum of six DW images plus one unattenuated image,
I0, are acquired, m ≥ 6 (see Figure 2) and the logarithm of Equation 9 is taken to give a set
of linear equations:

Equation 16
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The list of the gradient vectors used for the acquisition of DW images is called the diffusion
gradient scheme (DGS) [39, 38, 40]. An example of DGS with the corresponding images is
shown in Figure 2. It follows from elementary linear algebra that for Equation 16 to have a

unique solution, the coefficient matrix, , must have full rank. Vg is a function of
DGS vectors (see Equation 15) and therefore the vectors must be chosen appropriately to
guarantee the uniqueness of the solution. A set of mathematical necessary conditions for the
choice of diffusion gradients that would guarantee the full rank condition were given in [37]
a decade after the introduction of DTI.

Once the solution for d is found, the symmetric matrix D is reconstructed as in Equation 13
at each pixel. A standard theorem in linear algebra proves that symmetric matrices, thus the
diffusion tensor, have orthogonal eigenvectors and real eigenvalues (λ1 ≥λ2 ≥ λ3). The
setup is general in the sense that ADC can be calculated as the mean of the eigenvalues.

In this three dimensional structure, whereas the eigenvectors indicate the principal directions
of the motion, corresponding eigenvalues describe the tendency of the spins to move in each
direction. If all the eigenvalues are equal, the medium is isotropic as in a liquid. However, if
the microstructure favors motion in a given direction, causing anisotropy, the eigenvalues
will reflect that by differing from each other. Functions of the three eigenvalues describing
their dispersion are called anisotropy measures, fractional anisotropy (FA) being one of the
most used ones [41]:

Equation 17

Usually, an anisotropy map describing the microstructure is shown as an image with the
value of anisotropy index at each pixel. The directional information might be added by
displaying the eigenvector corresponding to the largest eigenvalue at each pixel as a
‘whisker ’ (thus the name whisker plot). The directionality is also shown with a color image.
A different color channel is assigned to each direction to display three components of the
eigenvector accordingly. There are different applicable schemes depending on the properties
of the spin motion [42]. The combined directional and motion tendency can also be shown
by overlaying ellipsoids defined by the diffusion tensor (xT Dx=constant) on each pixel of
an anatomic image. The equation of an ellipse requires that the eigenvalues of are all greater
than or equal to 0. Otherwise, the diffusion equation, Equation 2, contradicts the
conservation of mass. This physical constraint is sometimes violated in the estimation
obtained from experimental DTI data. The reasons for the occurrences of negative
eigenvalues from experimental data constitute currently an open question.

3.2 High Order Model Matching Methods
DTI can be considered as a second order approximation to the attenuation function H of
Equation 9. Different expansions of the attenuation function result in different model
matching methods. In high angular resolution diffusion–weighted imaging (HARDI) [27]
the attenuation is expanded using the spherical harmonics  [27]

Equation 18
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where (θ, ϕ)are the azimuthal and polar angles in the spherical coordinates. The coefficients,
alm, are computed from Equation 18 using the experimental data. The odd numbered
harmonics l = 1,3,5 … are discarded on the basis that they are asymmetric [27].

A generalization of HARDI is provided by Tournier et al. in spherical deconvolution [29],
utilizing concepts from linear systems theory with the use of a response function (also
known as point spread function or transfer function in control theory) in spherical
coordinates. The response function, equivalent to impulse response of a linear time invariant
dynamical system, describes the signal originating from a single nerve fiber. In order to
assess the distribution of multiple fibers within a voxel, the full set of measurements is
deconvolved with the response function. The result is the fiber orientation density function.

In diffusional kurtosis imaging (DKI) [33], a higher order expansion using the concept of
excess kurtosis is implemented. H is expanded by adding the kurtosis tensor to the diffusion
tensor D [33]:

Equation 19

The kurtosis tensor D(4) is a symmetric tensor of rank 4 and the method is a generalization
of DTI4. The expansion strategy of Equation 19 appeared before the work of Jensen et al.
[33]. Özarslan and Mareci [31] integrated higher rank tensors into the Bloch-Torrey
equations. The odd ranked tensor elements result in negative diffusion coefficients [31].
Özarslan and Mareci [31] argue that “since negative diffusion coefficients are non-physical,
the rank is forced to be an even number” (see also the discussion about the negative
eigenvalues in Section 3.1.1). Consequently the generalized diffusion tensor (GDT)
approximation of H is given as:

Equation 20

The n arguments each of D(n) s operates on is GDi, e.g. in the last term of Equation 19 where
n = 4. About a year after the publication of [31], Liu et al. [32] published another GDT
imaging model that incorporates higher order tensors of all ranks:

Equation 21

Where Equation  and ’s are higher order integrals of the diffusion sensitizing
gradient’s time course. The inclusion of higher rank tensors is made possible by allowing the
signal to be complex valued. In Equation 19, odd ranked tensors form the imaginary part of
the signal. In addition, they are asymmetric terms and this covers physically a more general
situation.

The general aim of these model matching methods is to estimate the descriptors of diffusion
that would minimize the model matching error originating from the measurement values,

:

4For example, D is a rank two tensor and both of its arguments are equal to GDi. Therefore, it is a quadratic form that can, be
represented as a matrix. Its value at GDi is found by left and right vector-matrix multiplication i.e. D (GDi,, GDi)= GDiTDGDi.
Higher rank tensors have more complicated representations than vector-matrix multiplication.
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Equation 22

The solution of the minimization problem of Equation 22 for each model matching method
results in the determination of a number of unknowns (e.g. 6 for DTI) specified by the
model equations presented in this section. Naturally this number is also the minimum
number of diffusion gradient vectors in DGS. Furthermore, in a parallel observation to the
DTI estimation equations, the conditions on DGS guaranteeing the uniqueness of solution
for different model matching methods have not been investigated and remain as an open and
untouched subject of discussion.

In addition to the aforementioned methods that are using the attenuation model of Equation
9, there are two techniques that are compartmentalizing and approximating the q-space
signal of Section 2.2. The first one, composite hindered and restricted model of diffusion
(CHARMED) [28], divides the signal into two compartments as “hindered water diffusion in
the extra-axonal space and restricted water diffusion in the intra-axonal space”. Accordingly
the q-space signal originating from multiple compartments at the echo time is given as

Equation 23

where “L is the number of distinct hindered compartments and N is the number of distinct

restricted components” [28], fh and  are volume fractions of the compartments. Each of
the compartments are further dissected to divide the signal into parallel and perpendicular
(e.g. to axons) sections to obtain a final model. The second technique, diffusion orientation
transform (DOT) of Özarslan et al. [30], takes the different path of expanding theoretically
the Fourier Transform in Equation 9 using spherical harmonics. The propagator, P̄ of
Equation 8, is expressed in the basis formed by the spherical harmonics. The expression, in
essence, is the same as Equation 18 but it is the propagator, rather than the attenuation, that
is approximated.

3.3 Spectral Methods
The basis of the spectral methods for DW-MRI is the adaptation of NMR q-space equation,
Equation 8, to magnetic resonance imaging.[9]:

Equation 24

where k is the usual MRI k-space variable and E(q) is the adaptation of its NMR definition
in Equation 7

Equation 25

Clearly, in this equation E(q) is a function of position x. Accordingly, it must be taken into
account for the evaluation of the integral in Equation 24. To obtain Equation 24, on p.440 of
[9] it is asserted that “despite the fact that both Ps and ρ may depend on x, the effect of the
PGSE sequence is quite separable…”. It is also indicated that the signal comes from the
finite volume element corresponding to the imaging voxel. In consequence, E(q)should be

Özcan et al. Page 9

Int J Imaging Syst Technol. Author manuscript; available in PMC 2013 May 07.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



seen as “the Fourier transform of local dynamic profile” according to Equation 8.7, p.440,
[9]:

Equation 26

The goal of the method is the reconstruction of the average propagator using the Fourier
transform from the measurements after their normalization. This is explicitly formulized in
diffusion spectrum imaging (DSI) method of Wedeen (Equation 4, [34]):

Equation 27

Here, I(q) is the (complex) pixel intensity corresponding to diffusion sensitizing gradient
that produces q. In other words, I(q)=Ii which is the image obtained with GDi such that q=
(2π)−1 γδGDi The magnitude is taken “to exclude phase shifts arising from tissue motion”
(paragraph preceding Equation 4, [34]). In DSI the main interest is the angular structure of
the diffusion spectrum. The final product is the orientation distribution function defined as
‘a weighted radial summation of, P̄(R,Δ) [34]:

Equation 28

It is important to note the derivations in [34] rely on Markovian property and the narrow
pulse approximation. Moreover, the magnitude of the signal is used on the basis that “the
MRI signal is positive for any type of spin motion without net flux” [34]. Under these
assumptions, the model is not completely unconstrained.

The Fourier reconstruction in general requires a large number of DW acquisitions compared
to model matching methods. In DSI, the sampling of q-space is realized within a sphere. The
issue of large number of acquisition is addressed by the use of the so-called Q-ball imaging
(QBI) technique[35]. As in DSI, in QBI the quantity of interest is the orientation distribution
function which is defined slightly different that DSI-ODF:

Equation 29

By utilizing of the Funk-Radon transform (FRT), QBI estimates ψ with measurements
obtained on a ball (hence the method’s name, QBI) in q-space, with significantly smaller
number of acquisitions.

4. A Higher Dimensional Fourier Relationship
The methods described in previous sections are just representatives of many existing
variations of DW-MR methods and techniques that were not listed here due to space
restrictions. An exhaustive list can be found in the publication by Jian et al. [43] in 2007.
The sheer number of methods could be considered as an indication of dissatisfaction with
the performance of existing methods, especially originating from inadequacies that arise
when identification of the microstructure of geometrically complex regions (e.g. fiber tract
crossings) is attempted. One reason behind the inadequacy is the creation of DW-MRI
models of Section 3 by direct adoption of DW-NMR models.

The following important considerations arise in the course of the adoption:
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1. In contrast to DW-NMR, in MRI the signal does not originate from a single point at
echo time (see Section 2). Even in MRI without diffusion weighting, all of the
points in FID fill up the k-space and therefore all of them are necessary to construct
the image or the volume.

2. Imaging gradients, which are naturally absent in NMR, are usually ignored in DW-
MRI models. Attempts to integrate imaging gradient effects have unveiled
significant problems in the derivation of DTI model [39]. Moreover, these
problems cannot be remedied neither with optimization [38] nor with nonlinear
estimation [40].

3. With the exception of Torrey’s approach [4], D is treated as a position independent
quantity within all of the models. For example, DTI relies on the assumption that
“the diffusion coefficients are independent of space (position) within a voxel” (p.
253, [10]). Otherwise, DTI estimation equations cannot be derived. Position
dependence complicates severely the solution of PDEs for DW imaging models.

4. The narrow pulse approximation is unrealistic. Considering that Wiener process has
non-differentiable continuous sample paths, the irregularities of the spin motion are
at a level of complexity which is unresolvable at any time scale regardless how
short are the duration of the pulses.

5. With the exception of GDTI proposed by Liu et al. [32], the models obtain
symmetric quantities either by projecting the data onto symmetric constructs (e.g.
ellipsoids of DTI), pruning the asymmetric structures (see Section 3.2 with
spherical harmonics of HARDI or odd ranked tensors of DOT) or by using the
magnitude of the signal in spectral methods which forces the Fourier transform to
result in (Hermitian) symmetric outcomes. An appropriate model must be
unconstrained so that any property such as symmetry should be revealed by the
data themselves establishing an evidence based methodology. Modeling
presumptions constrain the outcome of the investigations.

6. Models rely on Markovian property which is not justifiable in restricted
environments such as biological tissue (see Section 2.1).

Motivated by these concerns, a new accurate and unifying Fourier based theory of DW-MRI
has been developed by returning to the first principles of DW-MR signal formation in [44,
45, 46]. The DW-MRI signal is modeled by expressing the evolution of the phase (Ωi) of the
ith spin’s transverse magnetization,

Equation 30

(Equation 30 is the Bloch equation obtained when relaxations are neglected). The
magnetization changes according to the displacement wi from the initial position xi(t0):

Equation 31

because of the diffusion sensitizing magnetic field gradients (see Section 1). When the
signal formation is derived for the PGSE experiment [44] using Equation 32 and Equation

33, the initial position xi(t0)and the ith spin’s displacement integral, ,

Equation 32
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(see Figure 1 for the definition of tdi) appear in the formulations. Furthermore, the
derivations in [44] show that the complex valued DW-MRI signal that comes out of the MR
scanner is the Fourier transform of the joint distribution of the number of spins starting from
the initial position x and possessing Wd displacement integrals: Pcfd(x, wd)

Equation 33

Accordingly, the method is named Complete Fourier Direct (CFD) MRI because the entire
(complex valued) data constitute the Fourier transform of the distribution function Pcfd(x,
Wd) In Equation 33, the Fourier variables Kmr and KD are the usual MR imaging k-space
variable (read-out and slice select) and the diffusion sensitizing gradient vector KD =GD
respectively. Basically, CFD-MRI augments the dimension of MR imaging by adding, on
top of position information of MRI (see also the discussion on paragraph 3 in Section 1),
three more dimensions corresponding to displacement integrals. In contrast to the existing
methods, the unifying CFD-MR framework does not separate position and displacement
portions. In fact, in the derivations of CFD model, Pcfd(x, Wd) comes up naturally as a joint
distribution function.

It is very important to note that Equation 33 is the final product of intermediate steps that
guarantee the preservation of Scfd’s Hermitian symmetry [44]. This property is the only
physical evidence at hand because the only known fact is that Pcfd is a real valued function
being the count of (large but) finite number of spins. This implies that its Fourier transform
in Equation 33 must be Hermitian,

Equation 34

(* denotes the complex conjugation).

Pcfd is reconstructed by taking the inverse Fourier transform of the entire data:

Equation 35

CFD-MRI addresses the concerns raised in the beginning of this section as follows:

1. CFD-MRI calculations incorporate all of the data. The signal is not calculated from
a single point but from all the points of augmented CFD k-space defined by KCFD
=(Kmr, KD. KCFD is either 5 or 6 dimensional depending on the slice or volume
imaging is conducted. The last 3 dimensions come from 3 dimensional
displacement integral vectors defined in Equation 32.

2. Imaging gradients are included by means of Kmr.

3. CFD-MRI expresses position dependence inherently in the first argument of joint
distribution function Pcfd(x, Wd) which is the initial position.

4. There is no need for the narrow pulse assumption. In Equation 32, the integrals are
evaluated during the diffusion sensitizing gradient times.

5. The signal is treated as a complex valued quantity in contrast to using the
magnitude. By preserving the Hermitian symmetry during the evaluation of
Equation 35, asymmetry is allowed in Pcfd(x, Wd). This guarantees an evidence
based approach: if there is asymmetry or symmetry in the motion characteristics,
data will show it.
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6. The only assumption in Equation 31 is the continuity of the displacement wi since a
spin cannot disappear at one point and reappear at a different one. In addition, the
displacement integral, Wd, is not a stochastic processes. Therefore any property
thereof, such as being Markovian, is not needed to be in the model. Accordingly,
CFD-MRI points out that the propagator is not the quantity that is being measured.

The simplicity of Equation 30 (Bloch equation) and Equation 31 (the most general equation
of motion) make their combination tractable by use of particle methods. CFD-MRI model
would be hard to derive using a PDE framework. However, theoretical equivalence of the
two methods [26] indicates that particle method derivations are sufficient for modeling.

The Fourier relationship established with CFD-MRI clarifies the mechanisms of existing
methods. For example, the Wiener process that describes self-diffusion in a liquid has
displacements, Wi that are Gaussian distributed with 0 mean and covariance matrix equal to
the diffusion tensor D. It can be derived after tedious but routine calculations that the

displacement integrals, , have mean equal to 0 and covariance equal to [45]

Equation 36

This equation shows that the MR scanner acts as a filter on the diffusion process by scaling
its covariance with bt that only depends the duration and separation times of the diffusion
sensitizing gradients. The DW signal that comes out of the scanner is the Fourier transform
of the distribution.

Gaussians are eigenfunctions of the Fourier transform, i.e. the Fourier transform of a
Gaussian is also a Gaussian [45]:

Equation 37

Equation 37 is key in understanding the model matching methods. Equation 9 is obtained by
evaluating the Fourier transform in half of the variables, namely the imaging portion defined
by Kmr and leaving the displacement integral portion KD intact In this mixed physical-
frequency variable setup, the displacement portion remains on the Fourier domain.
According to the right hand side of Equation 37, DTI estimates D in Fourier domain more
easily than in the physical domain on the left side which involves of the inverse of D. In
more complex microstructures, high order approximations follow the same strategy. They
attempt to expand the mathematical Fourier transform by adding higher order terms
described in Section 9 to the argument of the eigenfunction.

According to Equation 35, CFD-MRI reconstructs Pcfd using the inverse Fourier transform
(discrete Fourier transform is used in practice). Spectral methods of Section 4 are based on
the same principle but CFD evaluates the Fourier transform correctly (see Item 5 above), i.e.
using complex valued signals. It obtains the correct distribution function (see item 6 above),
in the sense that Pcfd being a joint distribution cannot necessarily be factored into a spin
density and displacement descriptor. The mechanisms behind the methods are summarized
in Figure 3.
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5. Conclusion
All DW-MRI models process the data with the same goal in mind: non-invasive description
of microstructural changes that will endow extraction of relevant information pertaining to
diagnosis, prognosis and management of important health problems from different areas.
The large number of models described herein is proof of continuing research effort in the
quest of a more adequate model for DW-MRI. The unification of the plethora of approaches
will improve the accuracy of the assessment provided by the modality. In this manuscript,
the methods are summarized by describing their mathematical properties. In addition, they
are interpreted using the Fourier based CFD-MRI method with the aim of reaching a
consensus among the methods. An important future goal is the incorporation of these new
findings into the tractography methods which is reserved for future studies.
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Figure 1.
Spin echo (top) and Pulsed Gradient Spin Echo experiments. Diffusion sensitizing gradients
are placed around the 180 degree radio frequency (RF) pulse. The duration and the
separation of the pulses are δ and Δ respectively. The echo time is denoted by Te and the
measurement is the attenuation of the single point, the maximum of FID.
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Figure 2.
Diffusion weighted images from a PGSE experiment of an ex-vivo baboon brain [39, 40, 38]
shown on top of the diffusion sensitizing gradient vectors (orange vectors with blue ends) of
the diffusion gradient scheme (DGS). The image at the origin is acquired without diffusion
gradients and therefore is unattenuated. The attenuation is highest on the fibers parallel to
the diffusion gradient vector as shown in two zoomed images on the left and right bottom.
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Figure 3.
The summary of the DW methods is shown using the Fourier transform of Fourier’s portrait
on top right corner. MR scanner takes the full Fourier transform of the portrait. CFD-MRI
reconstructs the portrait by using the inverse transform. Spectral methods take the magnitude
of the transform and compute the inverse transform. The outcome, shown in the middle
column on top, does not resemble the original portrait. Model matching methods (arrow at
the bottom) evaluate the inverse transform and work in a mixed physical-frequency space.
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