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Abstract

Neurofeedback based on real-time measurement of the blood oxygenation level-dependent

(BOLD) signal has potential for treatment of neurological disorders and behavioral enhancement.

Commonly employed methods are based on functional magnetic resonance imaging (fMRI)

sequences that sacrifice speed and accuracy for whole-brain coverage, which is unnecessary in

most applications. We present multi-voxel functional spectroscopy (MVFS): a system for

computing the BOLD signal from multiple volumes of interest (VOI) in real-time that improves

speed and accuracy of neurofeedback. MVFS consists of a functional spectroscopy (FS) pulse

sequence, a BOLD reconstruction component, a neural activation estimator, and a stimulus

system. The FS pulse sequence is a single-voxel, magnetic resonance spectroscopy sequence

without water suppression that has been extended to allow acquisition of a different VOI at each

repetition and real-time subject head motion compensation. The BOLD reconstruction component

determines the T2* decay rate, which is directly related to BOLD signal strength. The neural

activation estimator discounts nuisance signals and scales the activation relative to the amount of

ROI noise. Finally, the neurofeedback system presents neural activation-dependent stimuli to

experimental subjects with an overall delay of less than 1s. Here we present the MVFS system,

validation of certain components, examples of its usage in a practical application, and a direct

comparison of FS and echo-planar imaging BOLD measurements. We conclude that in the context

of realtime BOLD imaging, MVFS can provide superior accuracy and temporal resolution

compared with standard fMRI methods.
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1. INTRODUCTION

Moment to moment measurement of the blood oxygenation level-dependent (BOLD) signal

allows manipulation of experimental stimuli based on the current brain state of the subject.

Such manipulations can be used to train subjects to gain control of regional neural

activation. For example, neurofeedback control experiments have shown that subjects can

learn to regulate regional BOLD signal when trained using a neurofeedback stimulus, which

provides access to BOLD signal levels updated in real-time (deCharms, 2008).

Manipulations of BOLD estimates available in real-time can also be used to shape activation

patterns (Bray et al., 2007) or to control behavioral performance (Hinds et al., 2009; Yoo et

al., 2009) without providing neurofeedback. The ultimate goal of such experiments is to

harness moment to moment changes in the BOLD signal to treat neurological disorders or to

enhance normal function. Whether the goal of an experiment is self-regulation or behavioral

control, rapid and accurate BOLD estimates from the brain region of interest (ROI) increase

the likelihood of success (Rockstroh et al., 1990).

In this work we present a new method for measuring moment to moment changes in the

BOLD signal called multivoxel functional spectroscopy (MVFS) that can improve the speed

and accuracy of BOLD estimation compared with commonly employed methods for real-

time fMRI. MVFS is a complete system for real-time BOLD estimation that includes four

components: MR signal measurement, BOLD reconstruction, activation estimation, and

experimental stimulus integration.

The MR signal measurement component of MVFS is a pulse sequence based on functional

spectroscopy (FS; Hennig et al., 1994). With the exception of Kuo et al. (2011), all previous

studies computing real-time BOLD signal changes have employed echo-planar imaging

(EPI) or spiral imaging sequences, which are the dominant pulse sequences for functional

magnetic resonance imaging (fMRI). Both EPI and spiral sequences are designed to acquire

images from the entire brain in a short time, and therefore when applied to neurofeedback

applications waste substantial time acquiring data from parts of the brain that are not needed

to compute ROI BOLD signal estimates. Like Kuo et al. (2011), our motivation is to

sacrifice (unused) spatial data for an increase in temporal resolution. MVFS uses an FS-

based pulse sequence that only collects data from specific ROIs. This reduces acquisition

time and avoids artifacts in EPI and spiral imaging that arise from the relatively long delay

between excitation and readout.

In addition, the MVFS pulse sequence includes an optional per-measurement navigator-

based prospective head motion correction mechanism. The MVFS pulse sequence is

implemented in C++ using the IDEA platform to run on Siemens MR systems (Siemens

Healthcare, Erlangen, Germany).
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Once free induction decay (FID) data is measured from an ROI, data from all receive

channels is combined using a singular value decomposition based method for noise

reduction, resulting in a single FID signal. BOLD reconstruction is then employed to

produce an estimate of the T2* decay time by fitting a single decaying exponential to the

FID magnitude.

T2* estimates are used to estimate moment to moment neural activation via an incremental

general linear model (GLM) fit. The model fit accounts for portions of the T2* estimates

that arise from nuisance sources (such as subject head motion or low-frequency signal

fluctuations) by including bases in the GLM design for each nuisance signal. The

contribution of nuisance signals is removed by subtracting its reconstruction from the

measured T2* signal, leaving just a portion due to neural activation changes and residual

noise not accounted for in the model. The model also includes bases created using the

experimental stimulus schedule to account for the neural response to experimental stimuli.

Such a complete model fit allows incremental estimation of the signal baseline and residual

variance, which can then be used to scale the neural portion of the T2* signal by the

expected deviation due to noise, resulting in a neural activation estimate in units of standard

deviation from baseline.

Once an activation estimate has been computed, it is used to modulate the stimulus

presented to the subject in the MR scanner. For neurofeedback training experiments the

activation estimate can be directly displayed to the subject, while in behavioral control

experiments the stimulus is changed in an activation-dependent manner. MVFS provides a

system that avoids substantial unnecessary delay between activation estimation and stimulus

update.

We performed several tests of MVFS to evaluate its performance and to compare its

neurofeedback estimates with those computed using standard methods. The data from these

tests focused on three specific issues. The first issue was to use our implementation of

MVFS to perform a direct comparison of BOLD activation sensitivity with that of EPI, a

major technique used in prior studies computing real-time BOLD signal changes. The

second issue was to validate our method for real-time coil combination by determining the

error in coil combination weights relative to the amount of time spent collecting data to

compute them. The third issue was to test the entire system of MVFS using a human subject

performing a behavioral task and receiving real-time neurofeedback.

To test the first issue of benchmarking MVFS against EPI-based methods, we studied four

healthy volunteers with MVFS of the visual cortex during visual stimulation using

checkerboard patterns that reverse their contrast. Data from these subjects was also used to

evaluate the second issue of validating our method of real-time coil combination. For this

second issue, we simulated the real-time approximation to the singular value decomposition

(SVD) combination method using the data from these four healthy volunteers and varying

the number of measurements used to compute the estimates. Lastly, to test the overall

viability of the MVFS system, we tested the integrated system on one healthy volunteer

performing a repeated finger tapping task while viewing neurofeedback from that task.
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2. METHODS

2.1 MR signal measurement

The MR pulse sequence used to measure the BOLD signal in MVFS is based on the FS

sequence originally proposed by Hennig et al. (1994). This pulse sequence measures an FID

from a rectilinear ROI at each repetition by first exciting the spins in a plane using a radio

frequency (RF) pulse to tip the spins 90° while a slice selective magnetic field gradient is

applied. This is followed by two successive inversion RF pulses, each with a slice selective

gradient in a direction orthogonal to the first, timed to create two spin echos. The first RF

pulse limits the magnetization to a slab, then the two refocusing pulses limit magnetization

to a column (second pulse), then a rectilinear box (third pulse). In the MVFS pulse

sequence, the bandwidth of the RF pulse is held constant, and the size of the ROI in each

direction is controlled by the strength of the associated gradient. The location of the ROI is

controlled by changing the center frequency of the RF pulse. Figure 1 shows a diagram of

the FS sequence.

The FS pulse sequence is essentially a PRESS pulse sequence for single-voxel spectroscopy

(Ordidge et al., 1985) but without water signal suppression. The result of a single FS

measurement is therefore an FID where the overwhelming source of signal decay is T2*

dephasing of the water protons within the ROI. Because the BOLD signal is exactly a

measurement of the change in T2* (due to differences in the oxygenation content of blood

and blood volume), FS is sensitive to changes in the BOLD signal, as demonstrated by

Hennig et al. (1994).

FS BOLD measurements have potential advantages over more commonly employed whole

brain fMRI sequences both in speed and accuracy. For spiral and EPI sequences--the

dominant pulse sequences used for fMRI--a single slice can be acquired in an amount of

time comparable to a single FS measurement, however usually many slices are collected to

achieve coverage of a much larger portion of the brain, thus requiring a much longer total

repetition time (TR). While a single slice EPI or spiral sequence could acquire data at the

same rate as FS, this is rarely done in practice, and has not been reported in any published

real-time fMRI study. Further, whole-brain imaging methods suffer from substantial spatial

distortion in regions near interfaces between tissues with relatively large magnetic

susceptibility inhomogeneity, which create nonuniformities in the main field that interfere

with spin encoding. FS is more robust to such susceptibility inhomogeneities both because

the main field shims can be tuned to uniformize just the field within the ROI, and because

FS does not rely on phase encoding for spatial localization.

One potential drawback to current FS-based sequences, such as Kuo et al. (2011), is that no

images are produced. This prevents real-time head motion correction, which is usually

performed during real-time fMRI experiments (Weiskopf et al., 2007) using a prospective

(Thesen et al., 2000) or real-time retrospective method (Cox and Jesmanowicz, 1999). We

have addressed this issue by supplementing the MVFS pulse sequence with volume

navigators (vNavs), which are a tool for real-time sample-based artifact correction.

Previously, vNavs have been demonstrated for motion correction in structural and functional

MR pulse sequences such as MPRAGE, T2SPACE and diffusion EPI (Tisdall et al., 2011;
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Alhamud et al., 2012; Hess et al., 2011), as well as for motion correction and frequency and

shim correction in spectroscopic imaging (Hess et al., 2010). Here, we use vNavs to correct

head motion by embedding a very rapid, low-resolution, multi-shot, three dimensional EPI

sequence between FS acquisitions, which provides images of sufficient quality to perform

prospective motion correction (Thesen et al., 2000). After vNav acquisition, the translation

and rotation of the head computed via prospective motion correction is used to adjust the

center frequency of the RF pulses and/or the strength of the gradients for the next FS

acquisition. This way the FS ROI tracks the motion of the subject’s head.

Another potential drawback of the FS sequence as proposed by (Hennig et al., 1994) is that

only a single ROI can be measured at once. This is especially problematic for real-time

fMRI studies where it is advantageous to feedback an ROI BOLD estimate from which a

second ROI signal has been subtracted to account for global BOLD signal changes due to

respiration or scanner instrumentation-related signal drift. While others have addressed this

by using gradients to encode a 1-dimensional column of voxels (Kuo et al., 2011), in this

preliminary work we simply allow FS acquisitions from multiple ROIs on successive

measurements. By manipulating the frequency of the RF pulses and the strength of the

gradients, the position of the ROI can be changed arbitrarily between measurements.

The MVFS pulse sequence is currently implemented in Siemens IDEA pulse sequence

programming environment. In addition to the parameters that are available for user

modification in the Siemens single-voxel spectroscopy sequence, the user can specify the

number of ROIs and the placement of each, as well as whether and when vNav motion

correction should be used to correct for subject head motion. After acquisition, ROI FIDs

are passed to the Siemens image reconstruction computer for BOLD signal reconstruction,

which is described next.

2.2 BOLD reconstruction

The MVFS pulse sequence produces an FID timecourse per measurement for each receive

coil element. The goal of BOLD reconstruction is to estimate the T2* decay time of the ROI

signal from these FIDs. Our approach is to first combine the FIDs from each coil element

into a single FID while taking advantage of the independent estimates of the FID from each

coil to reduce noise, then to fit the resulting FID signal with a decaying exponential function

to allow an estimate of T2*.

2.2.1 Coil FID combination—FID signals measured with different receive coils on the

same measurement contain signal components of varying phase and magnitude due to

differences in the position and orientation of the coil relative to the ROI. In the ideal, noise-

free case, the coil-specific FIDs are identical up to a scaling factor equal to this coil

sensitivity. In real-world measurements, all signals that disturb this relationship can be

considered noise. We employ a method for combining FID signals across coils tailored to

our case of uncorrelated, complex-valued Gaussian noise (Bydder et al., 2008).

The coil-combination method begins by constructing a matrix F that includes all the data

collected over the entire scan. Rows of F represent all data collected at a particular sample,

while columns represent all data collected with a single coil. If our scan was noise-free, F
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would be rank 1, as it can be viewed as the outer product of the true FID signal within the

ROI and the vector of coil sensitivities. In the case of uncorrelated, complex-valued

Gaussian noise, the singular value decomposition (SVD) of F can be used to derive the

maximum-likelihood estimate of the true FID and coil sensitivities. A detailed description of

this method follows.

The FID signal fc,t represents FS data measured with coil cat measurement t. F is

constructed by first concatenating fc,t by measurement into a single vector fc that represents

all the data samples collected with coil c, then stacking these vectors into F with dimensions

total number of scan samples by number of coils. Row n of F represents the nth sample from

each coil, while column c represents all data acquired with coil c. The SVD of F = USV is

then used to remove unwanted signal components by identifying the singular vector in U
that represents the ROI FID signal component and discarding all others. Splitting this

singular vector us back into individual FIDs ft, yields an FID signal for each measurement

that has been denoised and combined across coils. In practice, the first singular vector can

always be chosen as the ROI FID component u1 because it is the dominant non-white noise

portion of the signal.

This coil combination method requires all of the measured data to be available to compute

the SVD, and thus is only applicable for offline computations. However, we can adapt this

method for real-time use if we notice that the first right singular vector v1 can be used as an

alternate means of computing the combined FIDs up to a scaling because u1∝Fv1 In this

framework v1 can be viewed as a set of attenuation coefficients that specify the contribution

of each coil to the combined signal. If v1 is known a priori, we can compute a combined

FID signal from any single measurement incrementally as ft=Ftv1, where Ft is a matrix with

columns made of the FIDs from each coil at measurement t. In practice we have found that

estimation of the coil combine weights v1 can be accomplished in a few measurements at the

beginning of each scan (see Section 3.3).

2.2.2 FID fit for T2* decay—Once the combined FID ft has been computed, the T2*

decay time dt of the FID can be estimated. FIDs collected without water suppression are

well modeled as a single decaying exponential of the form

where n indexes the sample in the FID, a is amplitude, dt is signal magnitude decay time. To

find dt at each measurement, we determine the parameters of the exponential that minimize

the squared error with the measured FID using a standard nonlinear minimum searching

algorithm based on the simplex method proposed by Nelder and Mead (1965). Only the

magnitude portion of the complex signal is used in the fit in order to speed convergence. In

practice we have found that the phase is sufficiently linear in time that the magnitude-only

fit allows a robust estimate of dt. Figure 2 shows two example FIDs and T2* fits to data

measured using FS under strong neural activation and during rest.
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2.2.3 Reconstruction implementation—The BOLD reconstruction component of

MVFS is implemented in C++ within the Siemens Image Calculation Environment (ICE)

and runs on the image reconstruction computer of the scanner. Raw FID data from each coil

is input to the reconstruction pipeline, which is fed to the MVFS BOLD reconstruction

program. If the required number of measurements for computing v1 have not yet been

collected, the FID data are stored for later use. If the measurement represents the last

required for computing v1, all FID data are used to build F, which is then used to compute v1

by computing an SVD using the Template Numerical Toolkit (http://math.nist.gov/tnt/

overview.html) and JAMA/C++, a C++ implementation of the JAva MAtrix Library (http://

math.nist.gov/javanumerics/jama/). After the coil weights v1 are computed, the stored FID

data can be coil combined for each measurement. For subsequent measurements, the FIDs

across each coil are immediately combined into a single FID via a weighted average using

the weights v1.

As soon as ft becomes available, dt (the T2* decay time) is computed by fitting the

exponential model using a C++ implementation (by John Bukardt) of Applied Statistics

Algorithm 47 (O’Neill, 1971), which implements Nelder and Mead (1965). Once dt is

available, the BOLD reconstruction component opens a TCP/IP socket connection to an

external computer that is running a custom designed server which listens for incoming T2*

estimates.

2.3 Activation estimation

BOLD reconstruction makes a T2* estimate available for each measurement. The task of

activation estimation is to discount non-neural signal sources affecting the measured T2*

and to transform BOLD estimates into meaningful units. The MVFS activation estimation

method is identical to that proposed by Hinds et al. (2010) for EPI-based activation

estimation. For completeness, we will briefly review it in the context of MVFS.

The goal is to discard nuisance signals from each incoming T2* value dt, while maintaining

neural signal components. An estimate of the contribution of neural and nuisance signals to

the timecourse d1..t is updated at each measurement by incrementally fitting a GLM

(Gentleman, 1974; Cox et al., 1995)

where N is a design matrix made up of nuisance signal bases and X is a design matrix made

up of neural signal bases, while γ and β weight the contribution of each basis to the

timecourse. The design matrices and d grow in length by one row with each measurement

(time-dependent subscripts have been omitted for clarity).

The incremental model fit yields estimates of γ and β which can be used to reconstruct the

estimated signal contributions from each nuisance and neural basis at any measurement.

Nuisance signals can then be removed from dt by computing
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Where Nt is the tth row of N and  is the signal portion due to estimated neural sources plus

unmodeled noise.

The standard deviation of the residual mean squared error after the GLM fit

provides an estimate of the expected deviation of any single measurement from the mean

T2* signal due to unmodeled noise within the ROI. Computing σ provides a convenient way

to convert activation signal into meaningful units (z-scores), as

In practice σ is computed with τ fixed to some number of initial measurements without

experimental stimulus used estimate noise levels and to let the incremental fit converge

(e.g., τ=30). Estimating σ using only the first τ scans ensures that the scale factor used to

compute zt is identical for all t≥τ, and thus ensures consistent units for neurofeedback over

the entire scan. Conceptually, the z-score zt is the number of standard deviations the

activation signal is from the expected baseline activation at time t.

The MVFS activation estimation component runs on a computer external to the scanner

system, which will be called the processing/stimulus computer. Implementations are

available both in C++ and in MATLAB (Hinds et al., 2010), and both achieve rapid

processing, taking only a few milliseconds to process a single measurement with modern

computer hardware. A custom TCP/IP server runs on the processing/stimulus computer that

accepts incoming connections from the BOLD reconstruction component and initiates

transfer of dt as soon as a new measurement has been processed.

2.4 Experimental stimulus integration

Experimental stimuli that are dependent on moment to moment activation estimates should

introduce as little delay as possible between the time a new estimate is available and the

time that the stimulus display is updated. We have developed a stimulus integration

component of MVFS that allows construction of stimuli that rapidly incorporates moment to

moment activation estimates. Stimulus presentation is accomplished with the Pyschophysics

Toolbox (Brainard, 1997), which runs within MATLAB on Linux, Macintosh, or Windows

operating systems. Templates are provided for frequently employed real-time BOLD

stimulus types such as thermometer-based neurofeedback training and activation-contingent

presentation for behavior control (Hinds et al., 2009; Yoo et al., 2009).

The most recently computed activation estimates are made available to the stimulus script

via compiled Matlab EXecutable (MEX) libraries implemented in C++. The library receives

and stores zt from the estimation component, then the stimulus script can access the most
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recent (or any arbitrary) zt with a single function call. The activation estimation and stimulus

code execute in different threads, so latency from executing computationally intensive

stimulus tasks is minimized.

3 Demonstration

In this section we demonstrate that MVFS provides a feasible alternative to EPI for

measuring the BOLD signal in real-time. We first present a direct comparison of BOLD

signal measurements with both FS and a commonly employed real-time fMRI acquisition

scheme based on EPI. Also, we describe how FS increases acquisition speed compared with

standard EPI-based real-time fMRI and validate our real-time adaptation of the SVD-based

method for coil combination. We end the section with a demonstration of the complete

neurofeedback system with a human subject.

3.1 Direct comparison of the magnitude of FS and EPI for real-time fMRI

The MVFS pulse sequence implements interleaved EPI and FS acquisitions. The generality

of the vNav system allows us to modify the TE of the EPI navigator to detect the BOLD

signal. This allows the same BOLD signal to be measured with both sequences almost

simultaneously. Here, we used interleaved FS and EPI acquisitions to measure the BOLD

sensitivity of these two methods by comparing BOLD signal changes under strong neural

activation in the visual cortex.

Four subjects underwent MR scans during visual stimulation with checkerboard patterns that

reverse their contrast at 8Hz. Such stimulation is known to produce relatively strong blood

oxygenation changes in visual cortex (Fox and Raichle, 1984). All MR runs began with 30s

of initial fixation to estimate a baseline neural state. The initial baseline period was followed

by visual stimulation in a block design consisting of 5 block pairs, each of which contained

16s of fixation and 16s of checkerboard stimulus. Each run ended with 16s of fixation to

allow activation to return to baseline. All subjects provided informed consent in accordance

with the policies of Massachusetts General Hospital.

All acquisitions were collected using a 1.5T Avanto Siemens MR system. The first run for

each subject was used as a functional localizer scan to locate an ROI particularly active

during visual stimulation. Whole-brain EPI volumes were collected during the functional

localizer scan with parameters: TR=2s, bandwidth/pixel=2298Hz, TE=40ms, matrix

size=64×64, voxel size=3×3mm2, slice thickness=3. 6mm, 32 slices, and 106 measurements,

the first 3 of which were discarded to allow a magnetization steady state to develop. PACE

(Thesen et al., 2000) was applied to incoming volumes during acquisition to correct for scan

to scan subject head motion.

Immediatly after acquisition, the data was analyzed to locate voxels responsive to the visual

stimulus using the FSL fMRI analysis software package (http://www.fmrib.ox.ac.uk/fsl/).

Volumes were smoothed with a three dimensional Gaussian kernel of full width at half

maximum of 6mm3, high-pass filtered (cutoff 32s), prewhitened to account for timeseries

autocorrelation, and fit to a GLM containing bases made up of the block design stimulus
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schedule convolved with a double gamma model of the hemodynamic response and its first

temporal derivative. An example activation pattern from one subject is shown in Figure 3.

Visualization of the functional localizer activation pattern allowed identification of a center

of particularly strong activation in each subject. The coordinates of this spot were recorded

for use during subsequent scans as the target for both FS and EPI activation estimation. An

FS ROI of size 9×9×9mm3 was centered on the target location. For direct comparison, we

wanted to measure BOLD from an EPI ROI covering the same cortex as the FS ROI. To

accomplish this a single 9mm thick EPI slice was centered on the target location and

oriented to match the angle of the FS ROI. Because the in-plane EPI voxel size was 3mm2,

the 3×3 grid of voxels from the center of the EPI slice target the exact same brain tissue as

the FS ROI. The EPI parameters for these comparison scans were the same as for the

functional localizer scan except for the number of slices (one) and the slice thickness (9mm).

FS parameters were: TE=40ms, bandwidth=2300Hz, and vector size=1024. Both FS and EPI

had a TR of 2s individually.

Three scans were performed for each subject to compare EPI and FS BOLD measurements.

First a scan using either just FS or just EPI individually was performed, then a scan using

the combined FS/EPI pulse sequence was performed, then another individual scan was

performed using the other of the methods used in the first scan. The order of individual

scans was balanced across subjects: two subjects had the FS scan first and two had the EPI

scan first. Figure 4 shows the results of both the individual and simultaneous comparison

scans. Qualitative inspection reveals that FS is more sensitive to BOLD signal changes than

EPI in both the simultaneous and the individual comparison scans.

The mean stimulus response z-scores were used to test quantitatively whether the BOLD

sensitivity of FS is greater than EPI. Each timecourse was fit using a GLM with bases to

model the expected neural response pattern as well as low frequency drift signals. This fit

yields a pair of model parameters (one for FS and one for EPI) for each subject that

represent the mean z-score of the visual stimulus response over the scan. These parameters

were entered into a one-tailed, paired t-test across subjects to determine whether FS has a

greater BOLD sensitivity than EPI. These tests were performed independently for

simultaneous and individual scans. FS was found to be significantly more sensitive to

BOLD than EPI for the simultaneous acquisition scans (t3=2. 4; p=0. 049), while no

significant difference between the two methods was found for individual scans (t3=1.22;

p=0. 15).

3.2 Acquisition speed comparison

For MVFS, the ROI selection RF pulses and gradients take a time equal to the specified

echo time for the measurement. With modern MR systems this time can be very small

(<10ms), however in practice it is desirable to use an echo time that maximizes BOLD

sensitivity. For main field strengths in common use, the best echo time for BOLD will be

substantially longer than the minimum achievable: from ~40-50ms for 1.5T (Turner et al.,

1993; Fera et al., 2004) down to ~23ms for 7T (Yacoub et al., 2001). This value will dictate

a relatively unchangeable amount of time devoted to MVFS ROI selection, which will vary

slightly with field strength.
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The amount of time devoted to FID readout, on the other hand, can be modified depending

on the desired temporal sampling. In all the examples of MVFS we present here, a

bandwidth of 3000Hz and vector size (number of FID samples) of 1024 was used. In this

scheme an FID readout takes 340ms, determining a minimum repetition time of 420ms

(accounting for the constant 80ms required for spoiling at the end of the sequence) at 1.5T.

This minimum can be reduced substantially by reducing the vector size or increasing the

bandwidth. For example, using a bandwidth of 5000Hz and a vector size of 256 a repetition

time of 130ms can be achieved with an echo time of 40ms. In practice the specifics of the

application will determine the balance between the bandwidth, vector size, and repetition

time, which respectively affect the SNR, the length of the measured FID, and the temporal

resolution.

When using vNavs for online subject head motion correction there is an additional amount

of time devoted to acquiring the low-resolution, whole brain EPI volume at each TR. On our

Avanto system (and on 3T Siemens Trio systems) a navigator volume with 32 image slices

and a 32×32 matrix size can be acquired in 275ms using the maximum bandwidth, minimum

echo time, and 6/8 partial Fourier encoding. Therefore the minimum repetition time

achievable with motion corrected MVFS is 405ms when using an echo time of 40ms. This

vNav is sufficient to perform prospective motion correction to within an accuracy of

approximately 0.5mm (Tisdall et al., 2011).

In EPI, the temporal resolution is mainly limited by the number of slices acquired. Each

slice requires a fairly short amount of time, e.g. 57ms using our Siemens Avanto system

with a 6464 matrix size, an echo time of 40ms, and bandwidth of 2298Hz. Therefore 7 EPI

slices can be acquired in the same amount of time as a single MVFS ROI. While it is

possible to compute neurofeedback using 7 EPI slices, the ability to perform motion

correction would be compromised. Practically, a minimum of 10 (and usually 16 or more)

EPI slices are acquired per measurement (Weiskopf et al., 2004; Caria et al., 2007; Bray et

al., 2007), which dictates an effective TR of 570ms. Therefore, MVFS provides a substantial

increase in temporal sampling of the BOLD response over EPI when motion correction is

not applied, and even with motion correction, MVFS provides a speedup compared with

real-time EPI acquisitions in common use.

Very rapid temporal sampling can be achieved with MVFS while still applying vNavs if

motion correction is limited to specific times during the scan when neurofeedback need not

be computed. For example, if a few repetitions are available between temporal blocks or

trials of neurofeedback, vNavs can be acquired only in these intervening times. This scheme

will account for low-frequency drifts in head position while maintaining a BOLD sampling

rate on the order of 100ms. Our implementation of MVFS allows collection and application

of vNavs at arbitrary times during the scan. The time required to reconstruct the T2* signal

was substantially less than 100ms, therefore computation time of signal reconstructions was

never a bottleneck even when motion correction was not applied.

3.3 Coil combination method validity

We measured the performance of the real-time approximation to the SVD-based coil

combination method described in Section 2.2.1 for increasing numbers of included
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measurements at the beginning of the scan. In the limit of including all measurements in the

SVD, the coil combination weights are identical between the real-time approximation and

the offline computation via direct SVD application. However, inclusion of all measurements

is not feasible in practice because feedback data would not be available until after the scan

was completed. Therefore, a balance must be achieved where coil combination weights are

computed from a subset of the measurements at the potential cost of accuracy in the weight

estimates.

To determine the error in the coil combination weights relative to the amount of time spent

collecting data to compute them, we simulated the real-time approximation to the SVD

combination method and varied the number of measurements used to compute the estimates.

The FS data collected for the direct comparison with EPI was used for this purpose. We

computed the coil combination weights that would be estimated using only the first m

measurements and varied m from 10 to the number of measurements in the scan (106). The

mean squared error between the coil combination weights computed using all the

measurements in the scan and resulting coil combination weights v1,m for each m were

computed.

Figure 5 shows the relative coil combination weight estimate error over number of included

measurements averaged over all four subjects, with error bars in gray indicating standard

error. There is a sharp drop off in coil combine error for increasing number of included

measurements from 1 to about 10, at which point the error drops more slowly, but steadily,

to zero when including the entire scan to compute coil combine weights. Interestingly

however, the percent error is already only 0.013% when including only a single

measurement in computing the coil weights. This suggests that the coil weights producing

the best coil combination are very similar over consecutive measurements, validating our

choice to use only a few measurements at the beginning of the scan to compute the weights.

In addition, the low error observed when even using just one measurement to estimate

combine weights suggests that in practice they can be estimated based on only the first

measurement.

We also compared the SVD-based coil combination method to the widely used sum of

squares (SoS) coil combination method (Bydder et al., 2002). SoS combination would not

require combination weights to be estimated, and thus would simplify the coil combine

process. However, as shown in Figure 6, the process of adding together the squares of very

low magnitude signals results in substantial bias of the reconstructed FID. This known

drawback of SoS combination in low SNR situations is especially prominent in the tail of

the FID where signal is very low.

3.4 Demonstration of the complete neurofeedback system

We demonstrated the operation of the complete MVFS neurofeedback system using a

human subject. The subject performed a task requiring repeated finger tapping while

viewing a neurofeedback stimulus that displayed the current BOLD estimate. This

demonstration was designed to illustrate the use of MVFS in a standard neurofeedback

training experiment.

Hinds et al. Page 12

Int J Imaging Syst Technol. Author manuscript; available in PMC 2015 June 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



An initial functional localizer scan was performed to locate an ROI covering cortex involved

in movements of the fingers. Standard, whole-brain EPI volumes were collected while the

subject performed a finger tapping task in a block design (5 blocks, each of 16s of tapping

and 10s of rest). Immediately after the scan ended, the volumes were transferred from the

scanner computer to an external computer for fMRI analysis, which was accomplished using

FSL in less than 5 minutes. A center of particularly strong finger tapping activation in the

left motor cortex was chosen as the location of the MVFS ROI. Figure 7a shows the

functional localizer activation and ROI location.

Once the ROI center was found, an MVFS scan was performed with neurofeedback while

the subject performed the same finger tapping task used during the functional localizer. 30

measurements were collected and stored by the coil FID combination system to estimate the

coil weights via the SVD-based scheme presented in Section 2.2.1. Once all 30

measurements were acquired, the SVD was computed, the coil combination weights were

stored, and the combination was applied to the first 30 measurements, yielding an FID for

each measurement. These FIDs were passed along to the BOLD reconstruction component.

BOLD reconstruction to determine T2* always occurred as soon as an FID became

available. This T2* estimate was then immediately sent to the processing/stimulus computer

via ethernet connection.

When a T2* value was received by the processing/stimulus computer, it was incorporated

into the incremental GLM fit. After 30 measurements (which come rapidly one after the

other because the corresponding FIDs are sent just after the coil combination weights have

been estimated), the standard deviation of the GLM residuals was computed and taken as the

noise magnitude for that scan. The feedback stimulus then began its display by revealing a

thermometer indicating the magnitude of the most recent BOLD change processed (see

Figure 7c). The beginning of neurofeedback also triggered the commencement of the

stimulus schedule. Figure 7b shows the neurofeedback values that were presented to the

subject via the height of the thermometer over the course of the scan.

4 Discussion

We have developed, implemented and tested a complete system for neurofeedback called

MVFS. This system has specific advantages in speed and accuracy compared to traditional

EPI-based neurofeedback systems and introduces real-time head motion correction to

spectroscopy-based neurofeedback systems (Kuo et al., 2011). Our hope is that MVFS will

provide an alternative to EPI based systems in situations where its advantages can improve

the quality of neurofeedback and therefore increase the success rate of neurofeedback

experiments.

4.1 Advantages

4.1.1 BOLD sensitivity—We demonstrated that the FS pulse sequence has an equal or

greater BOLD sensitivity compared to EPI. Reliable neurofeedback during self-regulation

training experiments is crucial for subjects to develop control over regional activation. In

Section 3.1 we showed that when FS and EPI measure the same BOLD response to neural

activation FS has a higher sensitivity to activation induced changes than EPI. Despite a
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substantially greater mean response amplitude under FS, no significant difference was found

when BOLD was measured independently during dedicated runs. However, this may be due

to the increased variance associated with measuring different BOLD timecourses with the

two techniques.

Almost every component of MVFS provides a speed advantage over EPI. In common usage,

the EPI pulse sequence acquires multiple slices, which greatly decreases the BOLD

sampling rate within a given ROI. FS acquires an ROI BOLD measurement in a time

comparable to that required to acquire a single slice in EPI, increasing BOLD sampling rate

multiplicatively by the number of slices prescribed in a particular EPI protocol. A standard

EPI scan (64×64×32) produces more than 2 orders of magnitude more raw data than a single

FS scan (1024), which increases data transmission time and aspects of data processing such

as coil combination.

One aspect of data processing that is faster with EPI is processing the raw data to obtain

relative activation values (T2* for MVFS, image intensity for EPI). EPI uses a fast Fourier

transform (FFT) for this purpose, which is substantially faster than the fitting of an

exponential function using an iterative optimization technique that MVFS relies on.

However, if speed in this aspect of data processing is important, the relatively expensive

exponential model fit can be replaced with an FFT of the FID, followed by estimation of the

line width of the water peak.

Additional speedups over EPI-based neurofeedback systems are realized by reducing the

number of timeseries that need to be processed during the activation estimation component.

MVFS needs to fit only a single ROI timecourse using the GLM described in Section 2.3,

while standard EPI based methods would need to fit a GLM for each voxel in an ROI. In

addition, after the model fit the resulting activation values need to be combined across the

ROI in a way that faithfully represents the BOLD signal (Hinds et al., 2010).

4.1.2 Spatial Accuracy—Any method that measures T2* changes will be sensitive to

magnetic field inhomogeneities induced by the difference in magnetic susceptibility between

different substances within a sample. Such susceptibility inhomogeneity distortions are a

common problem with EPI-based fMRI, and they interfere with the ability to measure

BOLD changes within certain parts of the brain. MVFS can partially overcome this problem

for small portions of the brain by using the dynamic shims to uniformize the magnetic field

within the ROI only rather than attempting to make the field over the entire brain uniform.

4.1.3 Acoustic noise—EPI and spiral methods for fMRI cover large portions of k-space

in a small amount of time, and therefore must rely heavily on rapid magnetic gradient

changes. These gradient changes are accompanied by loud acoustic noise that can interfere

with fMRI experiments where the acoustic environment is important either 1) by creating

non stimulus-related neural activation or 2) by modifying an individual’s perceptual state.

Examples of studies using neurofeedback that could be affected by fMRI acoustic noise are

studies where auditory activation is the target for neurofeedback training (Thompson et al.,

2009) as well as vigilance, meditation, or sleep studies where measured brain state is used to
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change experimental stimuli (Hinds et al., 2009). It should be noted, however, that the

inclusion of vNavs for motion correction would increase the acoustic noise of MVFS.

4.2 Limitations

The advantages in speed and accuracy over EPI made possible with MVFS are not without

associated disadvantages. Because FS produces no brain images it is much more difficult to

perform quality assurance on data either during a scan or retrospectively. For example, it is

common to retrospectively correct for subject head motion by spatially coregistering the EPI

volumes that contain the BOLD measurements. This is not possible with MVFS as the

BOLD measurements are only an FID from a single (or a few) ROIs.

We have provided partial compensation for this drawback in MVFS by allowing interleaved

acquisition of EPI and FS. These EPI volumes can be acquired quickly compared with

standard EPI for BOLD measurement because the resolution and contrast can be adjusted for

adequate structural information and by ignoring BOLD contrast. This provides images for

quality assurance and real-time motion correction, but retrospective motion correction is still

not possible. This is not a major drawback for neurofeedback applications, as offline data

processing is not possible.

With EPI-based neurofeedback, ROIs are made up of a set of voxels. Because an EPI ROI

can be constructed from any voxels in the volume, EPI provides much more flexibility than

MVFS in ROI shape. This feature is especially important when providing neurofeedback

from a region with a shape that is not modeled well by a rectilinear region, or is a region

with disconnected pieces. We feel that in practice a substantial portion of most brain regions

can be modeled well by a single rectilinear region, and thus this limitation will not provide a

serious drawback for MVFS in most cases.

Because EPI acquires an entire brain volume at each measurement, BOLD activation from

several ROIs can be measured at once. In its current formulation MVFS is unable to

estimate BOLD activation from more than one ROI at each measurement. This means that

the effective TR of MVFS is the product of the single-voxel TR and the number of voxels to

be measured. In practice it is fairly common to measure BOLD from multiple ROIs when

computing neurofeedback to provide feedback that is a relative measure of the activation

from two regions. In addition, subtraction of the BOLD signal present in an ROI separate

from the target ROI can help to alleviate global BOLD nuisance signals like variability in

respiration or heart rate. In practice this limitation is fairly minor considering that only a one

or two additional ROIs would need to be measured with MVFS to allow nuisance signal

discounting or multiple ROI feedback. This would increase the effective TR, but it would

still be shorter than the TR for a standard fMRI scan.
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Figure 1.
FS pulse sequence diagram. The first 90° pulse excites a slab, the second pulse (180°) limits

to a column, then the third pulse (180°) limits magnetization to a rectilinear box. The

readout event measures the FID arising from the echo after the third pulse.
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Figure 2.
Example FS FIDs during strong visual cortex stimulation (red) and passive fixation (black).

The single fit to each is shown as a dashed gray line. The difference in T2* decay time due

to visual stimulation is apparent by eye. The timecourse shows the change in T2* over an

experimental run, with red regions indicating the presence of the visual stimulus. The

excellent correlation with the stimulus time and the low noise level demonstrate the

sensitivity of FS to neural activation as well as the stability of the T2* fit.
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Figure 3.
Direct comparison of EPI and FS BOLD sensitivity for real-time fMRI. The heatmap shows

the functional activation, from which the FS ROI was placed (blue crosshairs). The green

plane indicates the location of the EPI slice.
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Figure 4.
Comparison of BOLD signal measured in visual cortex using FS and EPI. The top panel

shows the BOLD signal across subjects during the individual sequence runs (FS and EPI

were performed in separate runs). The bottom panel compares FS and EPI when used to

sample the same BOLD signal simultaneously. In both cases FS has a higher BOLD

sensitivity, but this difference is only significant for the simultaneous acquisition. [Color

figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 5.
The error in coil weighting factors when estimated from an increasing number of

measurements from beginning of a scan compared to estimation from the full scan. In

practice we use the value 30, which is indicated here by the vertical dashed line.
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Figure 6.
Comparison of the online and offline SVD-based FID coil combination method with the

widely used of Squares method. The black FID was reconstructed from 32 channels using

the online SVD-based method to estimate combination weights from the first 30

measurements. The red FID was reconstructed using SoS. The green dashed line is the best

fitting exponential to the SoS reconstruction (red FID). The bias introduces by SoS in low

SNR conditions is apparent in the tail of the FID. The inset shows the average MSE of the

exponential fit to the MVFS FIDs over subject using the offline SVD-based combine, online

SVD-based combine, and Sum of Squares combine. The bias in the FID tail with SoS causes

its fit MSE to be significantly higher than either the offline or online SVD-based method (t-

test: t3=4.3; p=0.024).
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Figure 7.
(a) ROI placement, (b) feedback signal over the run, and (c) neurofeedback stimulus for the

MVFS demonstration.
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