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Abstract: Having a robust image segmentation strategy is very important in magnetic 

resonance image (MRI) processing for an effective and early disease detection and 

diagnosis. Since magnetic resonance images can present tissues of interest in both 

morphological and functional images, various segmentation techniques have been 

employed for this. The algorithms based on Markov Random Field (MRF) have shown 

strong abilities in dealing with noisy image segmentation compared to other methods. In 

this paper, inspired by the random drift particle swarm optimization (RDPSO) algorithm, 

we propose a novel hybrid framework based on a combination of the RDPSO with the 

Hidden Markov Random Field model and the Expectation-Maximization algorithm 

(HMRF-EM), to be used for MRI segmentation in real-time environments. The proposed 

hybrid framework is compared with the standalone HMRF-EM method, two other MRF-

based stochastic relaxation algorithms, and two widely used brain tissue segmentation 

toolboxes on both simulated and real MRI datasets. The experimental results prove that 
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the proposed hybrid framework can obtain better segmentation results than most of its 

competitors and has faster convergence speed than the compared stochastic optimization 

algorithms. 

Keywords: Brain tissue segmentation; Expectation-maximization; Hidden Markov 

Random Field; Magnetic Resonance Image; Random Drift Particle Swarm Optimization 

1. Introduction 

Segmentation of the brain magnetic resonance images (MRIs) is of fundamental 

importance in the analysis of brain tissues, and it is a challenging task for radiologists 

[1]. Many neurological diseases of brain are followed by subtle abnormal changes as 

shown in pathological studies [2]. MRI segmentation aims at partitioning brain images 

into regions so that each region groups contiguous voxels sharing similar attributes 

(intensity, luminance, etc.) [3]. The fundamental task of the 3D brain MRI segmentation 

involves the classification of the voxels into three primary tissue types: white matter 

(WM), gray matter (GM), and cerebrospinal fluid (CSF). This tissue classification has 

been the subject of intensive medical research for the last two decades, in which both 

supervised and unsupervised segmentation methods have been used [4, 5]. For example, 

supervised methods for MRI segmentation include support vector machines [6] and K-

nearest neighbors [7, 8], and unsupervised methods include adaptive Markov modeling 

for mutual-information-based [9], K-means clustering or fuzzy c-means clustering [10, 

11, 12]. Some semi-automatic methods have also been employed in this task [13, 14].  

Among all the segmentation methods for MRI, the Markov random field (MRF) has 

been regarded as one robust and efficient methodology, which has been widely used in 
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computer vision [15] in dealing with image segmentation [12, 16], surface reconstruction 

[17] and other tasks [18, 19]. This method treats image segmentation as a labeling 

problem in order to find one optimal value of energy in the large solution space. 

Characterized as one universal model whose spatial information is encoded through 

contextual constraints of neighboring sites, MRFs can search the feasible space to get the 

optimum solution. Both the deterministic and stochastic optimization methods can be 

used to optimize the MRF model. However, the deterministic relaxation method, like the 

Iterated Conditional Modes (ICM) [20], heavily relies on initialization and may get 

trapped into local minima easily. By contrast, the stochastic relaxation method, such as 

Simulated Annealing (SA) [21], is more likely to get to a global minimum [22], while 

accompanied by heavy computational load. 

Therefore, in order to solve these potential problems, many researchers have 

proposed novel methods or modified existing approaches for optimizing the MRF model 

employed in brain MRI segmentation [23]. For example, Tohka et al. [24] introduced a 

framework in which local models for tissue intensities and MRF priors were combined 

into a global probabilistic image model. Cardoso et al. [25] proposed a locally varying 

MRF-based model for enhancement of sulci and gyri. Yousefi et al. [26] presented a 

novel method based on MRF and a hybrid of an ant colony optimization and a Gossiping 

algorithm which can help find a better path using neighborhood information. In [27], 

Park et al. proposed a new segmentation method based on a hierarchical MRF model. 

The hierarchical MRF consists of local-level MRFs based on adaptive local priors and a 

global-level MRF that enhances the consistency of the local-level ones. In conclusion, 
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all of the aforementioned optimization methods could be divided into two groups, namely 

global methods and local ones. However, due to the algorithm limitations and the 

complicated neuroanatomical structure of the brain, many of these methods are still prone 

to get trapped into local minima when solving the brain MRI segmentation problems, 

and their segmentation efficiency can also be further improved. 

In order to design an approach to solve brain MRI segmentation problems with high 

effectiveness and high efficiency, we propose a novel hybrid framework in this paper. On 

one hand, the random drift particle swarm optimization (RDPSO) algorithm [28] is first 

utilized to optimize the MRF model (RDPSO-MRF) in this framework. As a variant of 

particle swarm optimization (PSO) [29, 30], the RDPSO also shows better efficiency in 

solving many optimization tasks than many other stochastic optimization algorithms [28]. 

However, unlike the PSO, which has been proven to be neither a globally convergent nor 

a locally convergent algorithm [31], the sampling strategy of the RDPSO makes the 

algorithm have global convergence [28]. Therefore, in combination with the MRF model, 

the RDPSO can solve brain MRI segmentation problems with higher effectiveness and 

efficiency. On the other hand, to further improve the segmentation accuracy and 

convergence rate of the proposed hybrid framework, the HMRF-EM method, which can 

be easily combined with other stochastic techniques [32, 33, 34], is also employed in this 

work. As one variant of MRF, the Hidden Markov random field (HMRF) approach 

derives from hidden Markov model [32], and generally utilizes the expectation-

maximization (EM) algorithm to complete its parameter estimation step [35]. 

In the proposed hybrid framework, the RDPSO-MRF algorithm is employed as a 
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global search technique to find potential candidates, while the HMRF-EM method is used 

as a local optimization method to further optimize the current best solution found by the 

RDPSO-MRF in some iterations. The cooperation between these two methods can make 

the hybrid framework obtain good segmentation accuracy within acceptable 

computational time. In order to verify the performance of our hybrid framework, we 

compared the proposed segmentation approach with the standalone HMRF-EM method, 

some variants of MRF model, and two widely used brain segmentation toolboxes on 

simulated data as well as real MRI dataset. The experimental results clearly demonstrate 

that our proposed method is superior to all the other compared methods in terms of 

segmentation accuracy in most cases, and is also much less time-consuming than the 

compared stochastic relaxation algorithms. 

The organization of this paper is as follows. Section 2 describes the proposed hybrid 

framework for brain MRI segmentation. In Section 3, we present experimental validation 

of the proposed framework on both simulated and real datasets, by comparing it to other 

competitive brain tissue segmentation methods. Section 4 provides some conclusion and 

final remarks on this work. 

2. Segmentation methodology 

2.1 MRF theory and the HMRF-EM model 

The MRF was first proposed in image analysis by Geman and Geman [36]. MRF is 

a stochastic process that models spatial coherence constraints within a labeling process 

through a neighboring system. In MRF, we consider two random fields for 𝑋 and 𝑌, as 
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detailed below. Suppose Ω = {(𝑖, 𝑗); 1 ≤ 𝑖 ≤ 𝑀, 1 ≤ 𝑗 ≤ 𝑁} defines a two dimensional 

𝑀 × 𝑁  lattice indexed by (𝑖, 𝑗) . On this lattice, let 𝑌 = {𝑌𝑠 = 𝑦𝑠; 𝑠 ∈ Ω}  be the 

observation field and 𝑋 = {𝑋𝑠 = 𝑥𝑠; 𝑠 ∈ Ω} designate the label field which has values 

from 𝜚 = {0, 1, 2, ⋯ , 𝐾 − 1}, where 𝐾 is the number of classes. Each site on Ω relates 

with another via a neighborhood system, which is defined as 𝑁 = {𝑁𝑠, 𝑠 ∈ Ω}, where 

𝑁𝑠  is the set of sites neighboring 𝑠  that meet the condition 𝑠 ∉ 𝑁𝑠  and 𝑠 ∈ 𝑁𝑤 ⟺

𝑤 ∈ 𝑁𝑠. The label field 𝑋 is said to be an MRF on Ω with regard to the neighborhood 

system 𝑁𝑠 if and only if two below conditions are satisfied [37]: 

𝑃(𝑥) > 0, ∀𝑥 ∈ 𝑋 

 𝑃(𝑥𝑠|𝑥Ω−{s}) = 𝑃(𝑥𝑠|𝑥𝑁𝑠
), 𝑠 ∈ Ω 

(1) 

(2) 

According to the Hemmersley-Clifford theorem [38] and commonly used maximum 

a posteriori probability (MAP) criterion, the MRF problem is equal to minimizing the 

posterior energy 𝑈(𝑥) below 

𝑥∗ = arg min
𝑥∈𝑋

[𝑈(𝑥)] = arg min
𝑥∈𝑋

[𝐸(𝑥) +
(𝑦 − 𝜇)2

2𝜎2
+ log (𝜎)] (3) 

A common probabilistic model used in Eq. (3) is the Gaussian distribution with mean 𝜇 

and standard deviation 𝜎. Since a specific brain tissue with common properties makes 

up one class, it is reasonable to suppose that the image values are distributed around the 

mean value of the class [39].  

Eq. (3) is a nonconvex function, which means we should seek the global optimum 

in the entire solution space, and it clearly presents a computationally infeasible problem. 

Therefore, the stochastic relaxation algorithm is usually used to find the MAP estimation. 
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In [36], the SA algorithm employing the Metropolis sampling method was applied to 

solve this problem, and such an implementation is called the classical MRF (CMRF) 

model in this paper. The detailed description of the CMRF model could be found in the 

literature [15, 26, 40]. 

As a variant of the MRF model, the HMRF model is defined with respect to a pair 

of random variable families  (𝑋, 𝑌) , while the MRF is only defined on 𝑋  [32]. By 

supposing that (𝑋, 𝑌)  is pairwise independent and given the neighborhood 

configuration 𝑋𝑛𝑠
  of 𝑋𝑠 , we can get the general form of Gaussian Hidden Markov 

Random Field model, that is 

 𝑃(𝑦𝑠|𝑥𝑛𝑠
, 𝜃) = ∑ 𝑔(𝑦𝑠, 𝜃𝑙)𝑃(𝑙|𝑥𝑛𝑠

)

𝑙∈𝐿

 (4) 

where 𝜃 = {𝜃𝑙 , 𝑙 ∈ 𝐿} , 𝐿  is the state space of 𝑋  and 𝑔(𝑦𝑠, 𝜃𝑙)  is the Gaussian 

probability density function. 

Generally, the Expectation-Maximization (EM) algorithm is used to fit the HMRF 

model and estimate the parameter set 𝜃𝑙 = (𝜇𝑙, 𝜎𝑙). The EM algorithm is a method of 

parameter estimation from a given data set that is incomplete [41]. The main steps of the 

HMRF-EM framework could be found in [32]. 

2.2 Random drift particle swarm optimization 

In this paper, the RDPSO algorithm was utilized to optimize the MRF model. The 

RDPSO algorithm is a probabilistic PSO variant and is first combined in this paper with 

the MRF model to deal with the MRI segmentation problems. In the canonical PSO with 

𝑀 particles, each particle 𝑖 is regarded as a potential solution for a problem in a 𝐷-
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dimensional space and denoted by its position 𝑋𝑖
𝑡 = [𝑋𝑖,1

𝑡 , 𝑋𝑖,2
𝑡 , ⋯ , 𝑋𝑖,𝐷

𝑡 ] and its velocity 

𝑉𝑖
𝑡 = [𝑉𝑖,1

𝑡 , 𝑉𝑖,2
𝑡 , ⋯ , 𝑉𝑖,𝐷

𝑡 ] at the 𝑡th iteration. At the (𝑡 + 1)th iteration, the velocity and 

position of particle 𝑖 are updated according to the following two equations: 

𝑉𝑖,𝑗
𝑡+1 = 𝜔𝑉𝑖,𝑗

𝑡 + 𝑐1𝑟𝑎𝑛𝑑1
𝑡(𝑃𝑖,𝑗

𝑡 − 𝑋𝑖,𝑗
𝑡 ) + 𝑐2𝑟𝑎𝑛𝑑2

𝑡 (𝐺𝑗
𝑡 − 𝑋𝑖,𝑗

𝑡 ) (5) 

𝑋𝑖,𝑗
𝑡+1 = 𝑋𝑖,𝑗

𝑡 + 𝑉𝑖,𝑗
𝑡+1 (6) 

where 𝜔 is the inertia weight, which can be adjusted to balance the exploration and 

exploitation ability of each particle [30]. In the canonical PSO, 𝜔 is generally set to 

linearly decrease from 0.9 to 0.4 according to the number of iterations. 𝑐1 and 𝑐2 are 

known as the acceleration coefficients which control the influence of the social and 

cognitive components. 𝑟𝑎𝑛𝑑1 and 𝑟𝑎𝑛𝑑2 are the sequences of two different random 

numbers with uniform distribution on the interval (0, 1). Generally speaking, the value 

of 𝑉𝑖,𝑗
𝑡   is restricted within the interval [−𝑉𝑚𝑎𝑥, 𝑉𝑚𝑎𝑥] . The vector 𝑃𝑖

𝑡 =

[𝑃𝑖,1
𝑡 , 𝑃𝑖,2

𝑡 , ⋯ , 𝑃𝑖,𝐷
𝑡 ]  records the historical best position found by particle 𝑖 , called the 

personal best (𝑝𝑏𝑒𝑠𝑡) position, and the vector 𝐺𝑡 = [𝐺1
𝑡, 𝐺2

𝑡, ⋯ , 𝐺𝐷
𝑡 ] is the best position 

among all the 𝑝𝑏𝑒𝑠𝑡 positions in the population and is called the global best (𝑔𝑏𝑒𝑠𝑡) 

position. Each 𝑝𝑏𝑒𝑠𝑡  position is updated by comparing the fitness values of the 

particle’s current position and its own 𝑝𝑏𝑒𝑠𝑡 position [42, 43].  

According to the analysis of the particles' trajectory and the stability of the PSO 

algorithm in [44], the canonical PSO may converge if each particle converges to its local 

focus 𝑝𝑖
𝑡 = (𝑝𝑖,1

𝑡 , 𝑝𝑖,2
𝑡 , ⋯ , 𝑝𝑖,𝐷

𝑡 ), which is defined at the following coordinates: 
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𝑝𝑖,𝑗
𝑡 =

𝑐1𝑟𝑖,𝑗
𝑡 𝑃𝑖,𝑗

𝑡 + 𝑐2𝑅𝑖,𝑗
𝑡 𝐺𝑗

𝑡

𝑐1𝑟𝑖,𝑗
𝑡 + 𝑐2𝑅𝑖,𝑗

𝑡  (7) 

or 

𝑝𝑖,𝑗
𝑡 = 𝜑𝑖,𝑗

𝑡 𝑃𝑖,𝑗
𝑡 + (1 − 𝜑𝑖,𝑗

𝑡 )𝐺𝑗
𝑡,    𝜑𝑖,𝑗

𝑡 ~𝑈(0,1) (8) 

Based on this the trajectory analysis of the canonical PSO, and motivated by the free 

electron in model metal conductors placed in an external electric field in [45], Sun et al. 

[28] proposed the RDPSO algorithm. Compared with the canonical PSO algorithm, the 

RDPSO generally have stronger global search ability and is less prone to be trapped into 

local optimal or suboptimal points. The velocity's sampling strategy of RDPSO differs 

from that of the canonical PSO significantly, which can be expressed as 

𝑉𝑖,𝑗
𝑡+1 = 𝛼|𝐶𝑗

𝑡 − 𝑋𝑖,𝑗
𝑡 |𝜙𝑖,𝑗

𝑡 + 𝛽(𝑝𝑖,𝑗
𝑡 − 𝑋𝑖,𝑗

𝑡 ) (9) 

where 𝐶𝑡 = (𝐶1
𝑡 , 𝐶2

𝑡 , ⋯ , 𝐶𝐷
𝑡 ) is the mean best position (𝑚𝑏𝑒𝑠𝑡), defined by the mean 

value of the 𝑝𝑏𝑒𝑠𝑡  of all 𝑀  particles. The parameter 𝛼  is called the thermal 

coefficient and 𝛽  is called the drift coefficient. 𝜙𝑖,𝑗
𝑡   can be calculated by using the 

following equations:  

𝜙𝑖,𝑗
𝑡 = {

+ln (1/𝑢𝑖,𝑗
𝑡 ), 𝑠 > 0.5

−ln (1/𝑢𝑖,𝑗
𝑡 ), 𝑠 ≤ 0.5

 (10) 

where 𝑠 and 𝑢𝑖,𝑗
𝑡  are two different random numbers uniformly distributed on (0, 1). 

The thermal and drift coefficients ( 𝛼  and 𝛽 ) are the most important algorithmic 

parameters in the RDPSO algorithm. In [28], it was recommended that for the RDPSO, 

𝛼 should be set to be no larger than 1.0 and 𝛽 to be no larger than 1.5. In our experiment, 

in order to obtain good brain MRI segmentation results, the value of 𝛼 is set to linearly 
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decrease from 1.0 to 0.5 according to the iteration number 𝑡, and the value of 𝛽 is fixed 

to 1.0. The detailed derivation process of Eq. (9) and the corresponding analysis of the 

RDPSO algorithm can be found in the [28]. 

2.3 The energy function and the fitness function 

 

Fig.1 The illustration of the neighborhood system, left to right: label fields, clique of 

orange filled site. (a) the 2D first order neighborhood with 4 neighbors; (b) the 3D first 

order neighborhood with 6 neighbors. 

In this work, we draw on the information of three sequenced slices from brain MRI 

data. Therefore, in order to guarantee the validity of the followed experiments, all of the 

MRF-based methods introduced in this paper, including our proposed algorithm and 

other compared algorithms, utilize the same three-dimensional neighborhood system as 

shown in Fig.1(b). The prior model defined by the 3𝐷 first order neighborhood has 6 

neighbors, which is distinct from that of the original MRF model in a two-dimensional 

lattice as described in Fig.1(a).  
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Due to the possibility of anisotropic voxel size and slice spacing, the interaction 

between neighbors in each direction should be different. However, considering the 

computational efficiency, we assume that the interaction between a voxel and its 

neighbors in the 𝑥 direction is the same as that in 𝑦 direction, but is different from that 

in the 𝑧 direction. Therefore, a simplified prior model [24, 25, 46] is used to compute 

the energy function in this paper, which is defined by: 

𝐸(𝑥) = 𝛽 ( ∑
𝐺𝑖𝑗

𝑑(𝑠𝑖, 𝑠𝑗)
𝑗∈𝑁

𝑖
𝑥𝑦

+ ∑
𝐻𝑖𝑧

𝑑(𝑠𝑖, 𝑠𝑧)
𝑧∈𝑁𝑖

𝑧

) (11) 

where 𝑑(, ) is the Euclidean distance between the centers of two voxels; 𝛽 is a user 

tunable regularization parameter that is meant for the overall strength of the interaction 

between pair-wise neighboring voxels, controlling the tradeoff between the prior model 

and the likelihood; 𝑁𝑖 = {𝑁𝑖
𝑥𝑦

, 𝑁𝑖
𝑧} = {{𝑖𝑛, 𝑖𝑠, 𝑖𝑤, 𝑖𝑒}, {𝑖𝑡, 𝑖𝑏}}  defines the 3D MRF 

neighborhood system, where 𝑖𝑛, 𝑖𝑠, 𝑖𝑤 and 𝑖𝑒 are its four neighbors in the plane, and, 

𝑖𝑡 and 𝑖𝑏 are its two neighbors out of the plane; 𝐺 and 𝐻 are 𝐾 × 𝐾 energy matrices 

that together form the MRF parameters Φ = (𝐺, 𝐻), where 𝐾 is number of tissue types. 

Instead of estimating and updating 𝐺  and 𝐻  at each iteration, we assume constant 

values based on anatomical proprieties of the brain, that is 

𝐺𝑖𝑗 = {

0, class 𝑖 is the same as 𝑗
𝛼, class 𝑖 is next to 𝑗
𝛾, class 𝑖 is far from 𝑗

 (12) 

𝐻𝑖𝑧 = {

0, class 𝑖 is the same as 𝑧
𝑅𝑓 , class 𝑖 is next to 𝑧

0, class 𝑖 is far from 𝑧

 (13) 

with 0 ≤ 𝛼 ≤ 𝛾  and 0 ≤ 𝑅𝑓 ≤ 1  [25]. 𝛼  and 𝑅𝑓  are penalty factors for 
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anatomically neighboring classes, and 𝛾  is a penalty factor for anatomically distant 

classes. A larger 𝛾 could lead to a lower probability for two voxels with anatomically 

distant labels to be together. A larger 𝛼 would increase the sharpness of the transitions 

between neighboring tissue, leading to more robust but less sensitive segmentation. The 

values of 𝛼, 𝛾 and 𝑅𝑓 used in this paper are 0.5, 3 and 0.3, respectively. 

In this paper, since we incorporate the RDPSO algorithm into the MRF-MAP 

framework, the estimation of the MAP problem represented by Eq. (3) is converted to 

the optimization of the fitness function by RDPSO. By integrating the above energy 

function 𝐸(𝑥) with the MRF-MAP framework, the fitness function used in our work 

can be obtained ultimately as: 

𝑈(𝑥) = arg min
𝑥∈𝑋

[𝛽 ( ∑
𝐺𝑖𝑗

𝑑(𝑠𝑖, 𝑠𝑗)
𝑗∈𝑁

𝑖
𝑥𝑦

+ ∑
𝐻𝑖𝑧

𝑑(𝑠𝑖, 𝑠𝑧)
𝑧∈𝑁𝑖

𝑧

) +
(𝑦 − 𝜇)2

2𝜎2
+ log (𝜎)] (14) 

where 𝛽 is set to be 0.7 empirically. The first item is the energy of the prior model, and 

the last two items are the energy of the likelihood function that fits the Gaussian 

distribution. They constitute the objective function that we intend to optimize. 

2.4 The proposed hybrid framework 

In order to further improve the segmentation accuracy and accelerate the 

convergence speed for the brain MRI segmentation problem, we present a new hybrid 

framework comprising the RDPSO-MRF model and the well-known HMRF-EM 

algorithm (see section 2.1) to solve MRI segmentation problems. The RDPSO-MRF 

model utilizes the RDPSO algorithm to optimize the fitness function defined by the 
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MRF-MAP. During the search process of the RDPSO, the HMRF-EM scheme is used to 

further optimize the current best solution found by the RDPSO algorithm when some 

conditions are satisfied. Since the HMRF-EM has been proven to be powerful for 

segmentation of brain MRIs [32], the further optimization by the HMRF-EM can 

accelerate the convergence speed of the RDPSO and achieve better segmentation results. 

The pseudocode of the proposed approach is outlined in Algorithm 1, and the 

corresponding flowchart is illustrated in Fig.2. The specific setting of the corresponding 

parameters for the proposed hybrid framework can be found in Table 1. 

Algorithm 1: The RDPSO-MRF&HMRF-EM framework 

1 begin 

2 Preprocess the input MRI; 

3 Set 𝑀, 𝐾, 𝑀𝐴𝑋𝐼𝑇𝐸𝑅, 𝑁𝑒𝑚, 𝑁𝑠, 𝑁𝑢; 

4 Initialize the current position 𝑋𝑖,𝑗
0  (1 ≤ 𝑖 ≤ 𝑀, 1 ≤ 𝑗 ≤ 2𝐾);  

5 Compute 𝑈(𝑋𝑖
0) and initialize 𝑃𝑖,𝑗

0  of each particle, and then find 𝐺0; 

6 Set 𝑁𝑐 = 0, 𝑐𝑜𝑢𝑛𝑡 = 0; 

7 for 𝑡 = 1 to 𝑀𝐴𝑋𝐼𝑇𝐸𝑅 do 

8 Update population 𝑋𝑡−1 to 𝑋𝑡 following Eqs. (8) and (5); 

9 Compute 𝑈(𝑋𝑖
𝑡) of each particle; 

10 Update 𝑃𝑖
𝑡 of each particle and find 𝐺𝑡; 

11 Update the current segmentation result 𝑠𝑒𝑔𝑡 represented by 𝐺𝑡; 

12 if 𝑈(𝐺𝑡) ==  𝑈(𝐺𝑡−1) then 

13 𝑐𝑜𝑢𝑛𝑡 = 𝑐𝑜𝑢𝑛𝑡 + 1; 

14 end if 

15 if 𝑐𝑜𝑢𝑛𝑡 ≥ 𝑁𝑠 then 

16 [𝑝𝑜𝑠𝐸𝑀 , 𝑠𝑒𝑔𝐸𝑀] = HMRF_EM(𝐺𝑡, 𝑠𝑒𝑔𝑡, 𝑁𝑢);  

17 𝑁𝑐 = 𝑁𝑐 + 𝑁𝑢; 
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18 𝑐𝑜𝑢𝑛𝑡 = 0; 

19 if 𝑈(𝑝𝑜𝑠𝐸𝑀) < 𝑈(𝐺𝑡) then 

20 𝐺𝑡 = 𝑝𝑜𝑠𝐸𝑀; 

21 𝑈(𝐺𝑡) = 𝑈(𝑝𝑜𝑠𝐸𝑀); 

22 𝑠𝑒𝑔𝑡 = 𝑠𝑒𝑔𝐸𝑀; 

23 else 

24 Break; /* The whole search process is terminated */ 

25 Output 𝑠𝑒𝑔𝑡; 

26 end if 

27 end if 

28 end for 

29 if 𝑁𝑐 <  𝑁𝑒𝑚 

30 [𝑝𝑜𝑠𝐸𝑀, 𝑠𝑒𝑔𝐸𝑀] = 𝐻𝑀𝑅𝐹_𝐸𝑀(𝐺𝑀𝐴𝑋𝐼𝑇𝐸𝑅 , 𝑠𝑒𝑔𝑀𝐴𝑋𝐼𝑇𝐸𝑅 , 𝑁𝑒𝑚 − 𝑁𝑐); 

31 if 𝑈(𝑝𝑜𝑠𝐸𝑀) < 𝑈(𝐺𝑀𝐴𝑋𝐼𝑇𝐸𝑅) 

32 Output 𝑠𝑒𝑔𝐸𝑀; /* The whole search process is terminated */ 

33 else 

34 Output 𝑠𝑒𝑔𝑀𝐴𝑋𝐼𝑇𝐸𝑅; /* The whole search process is terminated */ 

35 end if 

36 else 

37 Output 𝑠𝑒𝑔𝑀𝐴𝑋𝐼𝑇𝐸𝑅; /* The whole search process is terminated */ 

38 end if 

39 end 

As shown in Algorithm 1, after preprocessing the brain MRI data, 𝑀 particles are 

initialized for the RDPSO-MRF model. Each particle represents a set including the 2𝐾 

parameters, denoted by 𝜃𝑙𝑘∈𝐿 = (𝜇1, 𝜇2, ⋯ , 𝜇𝑘; 𝜎1, 𝜎2, ⋯ , 𝜎𝑘) , where 𝐿 = {𝑙𝑘; 𝑘 =

1, 2, ⋯ , 𝐾}  represents a set of tissue classes and 𝐾  denotes the number of classes.  

Here we usually set 𝐾 to be 4, considering that the main tissue classes in MRI are GM, 

WM, CSF, and background. The fitness value of each particle is measured by the 
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objective function (i.e. the fitness function) defined in Eq. (14). Then, the whole 

population with 𝑀 particles is updated iteratively by following Eqs. (9) and (6). In each 

iteration, the 𝑝𝑏𝑒𝑠𝑡  position of each particle and the 𝑔𝑏𝑒𝑠𝑡  position should also be 

updated based on the comparison of fitness values. During the search process, once the 

𝑔𝑏𝑒𝑠𝑡  position stops updating in consecutive 𝑁𝑠  iterations, the HMRF-EM method 

was employed to further optimize the current 𝑔𝑏𝑒𝑠𝑡 position and thus accelerate the 

convergence speed. Using the current 𝑔𝑏𝑒𝑠𝑡  position 𝐺𝑡  and current segmentation 

result 𝑠𝑒𝑔𝑡 obtained by the RDPSO as the two input arguments, the HMRF-EM method 

firstly carries out the MRF-MAP estimation to get the optimal class labels and total 

energy, and then uses the EM algorithm to iteratively optimize the parameters 𝜃𝑥𝑠
=

(𝜇𝑥𝑠
, 𝜎𝑥𝑠

)  for 𝑁𝑢  times, through transforming the input 𝑔𝑏𝑒𝑠𝑡  position 𝐺𝑡 . If the 

HMRF-EM method successfully updates the fitness value of the 𝑔𝑏𝑒𝑠𝑡 position, the 

current 𝑔𝑏𝑒𝑠𝑡 position of the RDPSO algorithm is replaced to the better one and then 

the RDPSO algorithm continues to optimize the MRF model, and otherwise the whole 

search process of the hybrid framework is terminated. Besides, if the RDPSO algorithm 

reaches its maximum number of iterations 𝑀𝐴𝑋𝐼𝑇𝐸𝑅  while the HMRF-EM method 

does not reach its cumulative maximum number of iterations 𝑁𝑒𝑚, a continuous HMRF-

EM search process with 𝑁𝑒𝑚 − 𝑁𝑐 (𝑁𝑐 is the current cumulative number of iterations 

of the EM method) number of iterations should be implemented, since enough 

cumulative number of iterations of the HMRF-EM method can significantly enhance the 

robustness of the hybrid framework.  
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Fig.2 Flowchart of the proposed approach (L* represents the operation in the “* line” in 

Algorithm 1) 

Therefore, the termination conditions in this hybrid algorithm can be divided into 

two types, as shown in Fig.2. One is obviously when the RDPSO and the HMRF-EM 
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have both reached their maximum number of iterations (line 32 and line 37 in Algorithm 

1). The other is that if the HMRF-EM does not find a better solution than the current 

𝑈(𝐺𝑡) within the specified number of iteration steps, the algorithm is regarded to have 

converged and should be terminated (line 24 and line 34 in Algorithm 1). The reason for 

the setting of the latter type is that in our preliminary experiments, we found that the 

HMRF-EM method can quickly update the current 𝑔𝑏𝑒𝑠𝑡 solution found by the RDPSO 

within a limited number of iterations. Therefore, if the energy value of the 𝑔𝑏𝑒𝑠𝑡 

position found by the RDPSO cannot be updated by the HMRF-EM method within the 

specified number of iterations ( 𝑁𝑐  or 𝑁𝑒𝑚 − 𝑁𝑐  iterations), the current 𝑔𝑏𝑒𝑠𝑡 

solution can be regarded as the global optimal solution and the whole search process 

should be terminated. 

With respect to the theoretical computational complexity, the computational costs of 

the proposed hybrid algorithm comprise that of the initialization (𝑇ini ), the RDPSO 

operation (𝑇RD) and the HMRF-EM operation (𝑇EM). The 𝑇RD involves the evaluation 

and the position update for each particle, and the 𝑇EM contains the evaluation and the 

position update. Since there are several termination conditions in this algorithm, only the 

worst-case time complexity is analyzed here, that is, the time complexity when the hybrid 

algorithm completes the maximum iterations. For each particle, we assume 𝑇RD_ini to 

be the time of initialization in the RDPSO, 𝑇RD_upd the time of the velocity and position 

update in the RDPSO, 𝑇EM_upd the time of the position update in the HMRF-EM, and 

𝑇eva  the time of one fitness function evaluation. Therefore, the worst-case time 

complexity of the proposed algorithm can be calculated as 𝑇 = 𝑇ini + (𝑇RD + 𝑇EM) =
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𝑇RD_ini ∙ 𝑀 + (𝑇RD_upd + 𝑇eva) ∙ 𝑀 ∙ 𝑀𝐴𝑋𝐼𝑇𝐸𝑅 + (𝑇EM_upd + 𝑇eva) ∙ 𝑁𝑒𝑚 = 𝑀 ∙

𝑇RD_ini + 𝑀 ∙ 𝑀𝐴𝑋𝐼𝑇𝐸𝑅 ∙ 𝑇RD_upd + 𝑁𝑒𝑚 ∙ 𝑇EM_upd + (𝑀 ∙ 𝑀𝐴𝑋𝐼𝑇𝐸𝑅 + 𝑁𝑒𝑚) ∙ 𝑇eva . 

Since in this MRI segmentation problem, the time of the fitness function evaluation 𝑇eva 

is generally much longer than 𝑇RD_ini , 𝑇RD_upd  and 𝑇EM_upd , Algorithm 1 has an 

𝑂(𝑀 ∙ 𝑀𝐴𝑋𝐼𝑇𝐸𝑅 + 𝑁𝑒𝑚) time complexity, associated with the number of particles and 

the iteration numbers of both the RDPSO and HMRF-EM operations. 

Compared with the CMRF and its variants, the proposed hybrid framework adopts 

the HMRF-EM framework to accelerate the convergence and further improve the 

segmentation accuracy. Compared with the standalone HMRF-EM method, the proposed 

hybrid framework uses the current best solution obtained by the RDPSO as the initial 

solution for each HMRF-EM implementation, while the standalone HMRF-EM method 

generally adopts the K-means algorithm to produce the initial value. Undoubtedly, our 

current best solution generated by the RDPSO-MRF is much different from what the K-

means does with respect to the overall segmentation performance, which may help the 

HMRF-EM method find better results within limited number of iterations for the EM 

algorithm.  

3. Experimental results 

In this section, in order to show the applicability of the proposed approach to the 

segmentation of MRIs of brain tissue as well as its robustness to noise, we tested our 

segmentation approach on simulated data as well as real MRI dataset. 

3.1 Performance metrics 
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For the sake of quantitatively measuring the effectiveness and robustness of our 

proposed algorithm against the known ground truth, the following two segmentation 

similarity metrics are employed in our experimental analyses. 

The Dice similarity coefficient (DSC) known as the mean and standard deviation of 

the Dice measure is used as the performance evaluation between the ground truth and the 

segmentation result. It is computed separately for each class (CSF, GM and WM). The 

DSC metric measures the degree of spatial overlap between two binary images and its 

value ranges from 0 and 1, which is defined as 

DSC(𝑈, 𝑉) =
2|𝑈 ∩ 𝑉|

|𝑈| + |𝑉|
 (15) 

where 𝑈  is the segmentation result, 𝑉  is the ground truth and | ∙ |  signifies the 

number of voxels contained in a set. The value of the DSC(𝑈, 𝑉) ranges from 0.0 to 1.0. 

The larger ultima value we get from DSC, the better segmentation result we achieve. 

However, the DSC metric has its own limitations in this application since it is sensitive 

to misplacement of the segmentation label and tends to attain higher values for larger 

structures than smaller ones [47]. One drawback of the DSC metric is that it is unsuitable 

for comparing segmentation accuracy on objects that differ in size [48]. So, it might not 

directly relate to an accuracy of clinical decisions. 

Therefore, in this paper, we also adopt the commonly used miss-classification rate 

(MCR) performance to measure the overall segmentation quality, which is defined as: 

MCR =
Number of miss classified voxels

Total number of voxels
 (16) 

It is a kind of error measurements that are used to evaluate the overall segmentation result. 

It is also called "segment deletion" or "miss detection", referring to the failure of the 
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algorithm to classify actual labels. As can be seen, the smaller the MCR is, the more 

accurate segmentation result can be acquired. 

3.2 Comparative methods and parameter settings 

In order to evaluate the outperformance of our proposed method over other 

segmentation methods, our hybrid framework of RDPSO-MRF and HMRF-EM 

algorithms was compared with three MRF-based segmentation schemes and two other 

widely used brain tissue segmentation toolboxes. 

With respect to the algorithms based on the MRF model, the first is the CMRF 

implementation described in section 2.1 that is used as a standard method in MRF 

classification and is based on a stochastic relaxation algorithm and Metropolis sampling 

method [36]. Since our proposed algorithm is also a global optimization method, it is 

reasonable to compare it with the CMRF model to demonstrate its performance. The 

termination condition of the CMRF implementation is when the local energy variation 

goes to zero. The second compared algorithm is the HMRF-EM method, which has also 

been described in section 2.1. As our proposed hybrid framework contains the HMRF-

EM part, it makes sense to experiment on the standalone HMRF-EM framework to verify 

the superiority of our hybrid approach. The termination condition of the HMRF-EM 

framework is when the total energy of label field stops changing significantly 

(|𝑈(𝑋𝑡) − 𝑈(𝑋𝑡−1)| < 10−3). The final MRF variant is the MRF implementation based 

on the canonical PSO algorithm introduced in section 2.2. As has been illustrated, the 

RDPSO algorithm, which is the core of our hybrid framework, is a variant of the PSO 

algorithm, and therefore it is valuable to compare the proposed framework with the 
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method where the PSO is used as a parameter optimizer. In the PSO-MRF method, the 

termination condition is that the optimization algorithm reaches the maximum number 

of iteration steps. 

Two widely used toolboxes for brain tissue segmentation, i.e., the statistical 

parametric mapping (SPM) toolbox [49, 50, 51] and the partial volume classifier (PVC) 

[52, 53], were also used as competitive methods in the experiments. The SPM toolbox 

utilizes the parameter estimations of Gaussian mixer model (GMM) [49] for the brain 

tissue segmentation. In this study, the latest version of SPM (SPM12) was employed [54]. 

The PVC is implemented in the BrainSuite software. The brain tissue segmentation 

method for the PVC is based on the maximum-a-posteriori classifier and spatial prior 

model of the brain [52]. The version of the BrainSuite software adopted in this paper is 

BrainSuite18a [55], which corresponds to the version of Matlab used (see below). 

The brain segmentation methods described above were all implemented in the 

Matlab programming environment (Matlab R2018a) running on an Intel 3.60 Giga-Hz 

CPU system with 128 Giga-Bytes memory. Except for the proposed framework, the 

parameter configurations of all the other compared algorithms are those recommended 

by the corresponding references. Since the CMRF, the PSO-MRF and the proposed 

method are stochastic relaxation algorithms, their mean value of the performance metrics 

(DSC and MCR) for each slice is the average result obtained after 30 runs, while HMRF-

EM, SPM and PVC were run only one time, since their DSCs and MCRs on the same 

slice were invariant in different runs. The parameter configurations for each MRF-based 

method are listed in Table 1. 
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Table 1 

Parameters of CMRF, HMRF-EM, PSO-MRF and RDPSO-MRF&HMRF-EM. 

CMRF HMRF-EM PSO-MRF 
RDPSO-MRF 

&HMRF-EM 

Parameters Value Parameters Value Parameters Value Parameters Value 

𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 4 𝑁𝑒𝑚 50 𝑀 40 𝑀 40 

𝑇𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 0.97 𝑁𝑚𝑎𝑝 10 𝜔 0.90.4 𝛼 1.00.5 

    𝑐1&𝑐2 2 𝛽 1.0 

    𝑀𝐴𝑋𝐼𝑇𝐸𝑅 100 𝑀𝐴𝑋𝐼𝑇𝐸𝑅 100 

      𝑁𝑒𝑚 50 

      𝑁𝑚𝑎𝑝 10 

      𝑁𝑠 5 

      𝑁𝑢 5 

The parameters listed in Table 1 are explained as follows.  𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 : the initial 

temperature in SA, 𝑇𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒: the temperature multiplier computed after traversing all 

the voxels, 𝑁𝑒𝑚: the total number of iterations of the EM algorithm, 𝑁𝑚𝑎𝑝: the number 

of iterations of the MAP process, 𝑀: the population size, 𝜔: the inertia weight, 𝑐1&𝑐2: 

the acceleration coefficients, 𝑀𝐴𝑋𝐼𝑇𝐸𝑅: the number of iterations in each run, 𝛼: the 

thermal coefficient, 𝛽: the drift coefficient, 𝑁𝑠: the maximum number of iterations for 

the RDPSO algorithm to continuously stop updating the fitness value of 𝑔𝑏𝑒𝑠𝑡, 𝑁𝑢: the 

number of iterations of the EM algorithm for each execution of the HMRF-EM method. 

3.3 Simulated Data 

The simulated 3D MRIs are provided by the BrainWeb simulated brain database 

from the McGill University [56]. The BrainWeb is a public dataset that offers realistic 

simulation of MRI acquisition with different levels of noise and inhomogeneities. 
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Simulated magnetic resonance phantoms are generated based on an anatomical model of 

the real brain. We selected the 3D simulated T1-weighted MRI data with 3% noise-level 

and 20% intensity non-uniformity (INU, also known as bias field) percentage. The data 

size is 181 × 217 × 181  voxels of 1𝑚𝑚3  isotropic resolution. First, we performed 

some tasks to extract skull and scalp tissues. With the available ground truth from 

Brainweb, we used the ground truth of the brain mask to delineate the brain. Then, we 

could get the only four parts including CSF, WM, GM, and the background. Some 

methods reported in the literature have been employed to minimize the potential effects 

of the bias field in the next step, as a result of its bias effect on the accuracy of the final 

segmentation results [3] [9] [10] [25]. However, as our attention mainly focuses on the 

optimization of MRF by some stochastic algorithms, which is also accompanied by 

relatively heavy computational load, we directly employed our proposed method and the 

compared algorithms to segment the MRIs without further considering the bias field 

compensation. 

Table 2 

Mean DSC and mean MCR of all the slices obtained by all the compared methods on the 

BrainWeb dataset 

Method Mean DSC Mean MCR 

CMRF 0.821 ± 0.069 0.289 ± 0.059 

PSO-MRF 0.810 ± 0.076 0.294 ± 0.086 

HMRF-EM 0.822 ± 0.062 0.287 ± 0.044 

SPM 0.826 ± 0.065 0.281 ± 0.086 
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PVC 0.808 ± 0.084 0.313 ± 0.112 

Proposed 0.845 ± 0.070 0.269 ± 0.057 

In order to compare the MRI segmentation methods quantitatively on the BrainWeb 

dataset, we recorded in Table 2 the mean DSC and the mean MCR of all the slices 

obtained by all the compared methods. The mean performance metrics in Table 2 is the 

average value of DSC or MCR of three tissues (i.e., CSF, GM and WM) over all the slices 

in this dataset. It can be observed that in Table 2, for most of the evaluation criteria, the 

proposed hybrid algorithm is better than the other five methods, only except that the 

standard deviation of the mean DSC by the proposed method is a little larger than those 

obtained by the SPM, the PSO-MRF and the HMRF-EM, and the standard deviation of 

the mean MCR by the proposed method is just worse than that obtained by the HMRF-

EM. Moreover, the advantages of the proposed algorithm over all the other compared 

methods on the evaluation criteria in terms of the mean values are significant. Therefore, 

it can be concluded that our proposed method had better performance than the three 

MRF-based methods as well as the other two brain tissue segmentation toolboxes from 

an overall perspective. 

 

(a) 

 

(b) 
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(c) 

Fig.3 Mean DSC value obtained by each method on the BrainWeb dataset for (a) CSF 

(b) GM and (c) WM. The whiskers show plus/minus one standard deviation. 

More specifically, in order to compare the segmentation accuracy on each tissue, we 

plot in Fig.3 the mean DSC values along with the standard deviations of all the slices 

corresponding to CSF, GM, and WM tissues for all the compared methods. From Fig.3, 

we can find that for each type of tissue, our hybrid framework produced better mean DSC 

value than most of the other competitive methods with only one exception, that the SPM 

is better than the proposed method for the average DSC on the CSF. The standard 

deviation of the proposed method on each tissue is also comparable to most of the other 

methods, especially for CSF and WM tissues, which shows the good robustness of the 

hybrid algorithm. It should be pointed out that benefiting from the proposed hybrid 

framework, the RDPSO-MRF&HMRF-EM algorithm shows its great advantage on the 

DSC values for the CSF and GM tissues over the other compared MRF-based methods, 

indicating the superiority of our proposed framework. An example of the segmentation 

results of a typical slice by the six compared methods together with the original slice and 

the ground truth are demonstrated in Fig.4. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 
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(g) 

 

(h) 

Fig.4 The segmentation results obtained by (a) CMRF, (b) PSO-MRF, (c) HMRF-EM, 

(d) SPM, (e) PVC, (f) the proposed method along with (g) the original slice and (h) the 

ground truth. Image: BrainWeb slice70 (WM in white, GM in light gray, CSF in dark 

gray and the background in black). 

 

Fig.5 Comparison of the mean computational time over each slice by the CMRF, the 

PSO-MRF and the proposed method for the BrainWeb dataset. 

Fig.5 shows the computational time by three methods in each round averaged on 

each slice for the BrainWeb dataset. It can be seen that the average value for our proposed 

method is 55.10s, while those for the CMRF and the PSO-MRF are 246.02s and 94.41s, 
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respectively. Therefore, the average of computational time reduction percentages of the 

proposed method corresponding to the CMRF and the PSO-MRF method are significant, 

i.e., 77.60% and 41.64%, respectively, verifying that our proposed method is much less 

time-consuming than the other two stochastic relaxation algorithms. Here, we do not 

consider the computational time taken by the HMRF-EM, SPM and PVC due to their 

fast convergence rate based on local optimality, and thus only the time taken by the 

stochastic relaxation methods are compared. It should be noted that the time complexity 

of the PSO-MRF, which can be estimated as 𝑂(𝑀 ∙ 𝑀𝐴𝑋𝐼𝑇𝐸𝑅), is actually lower than 

that of the proposed method (see section 2.4), but the mean computational time by the 

PSO-MRF is higher than that by the proposed method. The reason is that the 

computational time taken by the proposed method is less than that in the worst case in 

many cases, while the PSO-MRF always needs to evaluate the fitness function for 𝑀 ∙

𝑀𝐴𝑋𝐼𝑇𝐸𝑅 times. In other words, the carefully set termination conditions (see section 

2.4) can make the proposed method take less computational time than the PSO-MRF in 

many cases. 

In order to further illustrate the fast convergence speed during the search process and 

the effectiveness of the set termination conditions, we plotted in Fig.6 the convergence 

curves of the CMRF, the PSO-MRF and the proposed method for one run on the 70th 

slice (slice70) of the BrainWeb dataset as an example. Fig.6 illustrates that the fitness 

value of the proposed hybrid framework reduces much faster than the other two 

algorithms with respect to the number of fitness function evaluations. Fig.6 also clearly 

demonstrates that the implementation of the HMRF-EM method can significantly 
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accelerate the convergence speed (see the red line segments in Fig.6). Moreover, the 

number of iterations by the proposed method is much smaller than those by the other 

algorithms due to the carefully set termination conditions, which can also save much 

computational time. 

 

Fig.6 The convergence curves of the CMRF, the PSO-MRF and the proposed method for 

one run. Image: BrainWeb slice70. 

3.4 Real datasets 

This section shows validation results for real expert-classified MRIs, which were 

obtained from the Internet Brain Segmentation Repository (IBSR) [57]. The IBSR 

provides manually-guided expert segmentation results along with MRI data. In our 

experiments, we selected the IBSR_V2.0 (hereinafter referred to as IBSR2.0) dataset [58]. 

The IBSR2.0 dataset comprises 18 real T1-weighted MRI scans of normal subjects, 

named as IBSR_01 to IBSR_18. The data size of each subject is 256 × 128 × 256 with 

voxels of size 0.94𝑚𝑚 × 1.5𝑚𝑚 × 0.94𝑚𝑚. The ground truth for each subject in this 
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dataset can be downloaded from the IBSR repository. As the IBSR2.0 dataset contains in 

total 18 different MRI scan data, this segmentation task is more challenging for our 

proposed framework as well as the comparative methods.  

 

(a) 

 

(b) 

Fig.7 (a) The mean DSC and (b) the mean MCR over all the slices for each subject from 
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the IBSR2.0 dataset obtained by each method. 

Fig.7 compares the average values of some evaluation criteria over all the slices for 

each subject from the IBSR2.0 dataset. From Fig.7, we can find that our hybrid 

framework produced overall better DSC value than the other competitive methods in 

most cases. The two exceptions are that the results of PSO-MRF and PVC are better than 

that of the proposed method for IBSR_06, and the results of HMRF-EM and SPM are 

better than that of the proposed method for IBSR_15. For the mean MCR obtained by 

each subject, our proposed method is also superior to the others only except that the result 

of SPM is better than that of the proposed method for IBSR_12. Nevertheless, for all the 

aforementioned subjects which the hybrid algorithm cannot obtain the best results, there 

is quite small difference between the results of the proposed method and those of the 

better ones. By comparison, for most of the other cases, the advantage of the RDPSO-

MRF&HMRF-EM over the other compared methods is more obvious, which 

demonstrates the superiority of the proposed hybrid approach. 

 

(a) 

 

(b) 
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(c) 

Fig.8 Mean DSC value obtained by each method over all the subjects of the IBSR2.0 

dataset for (a) CSF (b) GM and (c) WM. The whiskers show plus/minus one standard 

deviation. 

The mean DSC value obtained by each method for each kind of tissue over all the 

subjects of the IBSR2.0 dataset is presented in Fig.8. Comparing the results in Fig.8 and 

Fig.3, we can find that the advantage of the proposed method over the others on the real 

dataset is more remarkable than that on the simulated dataset, for the RDPSO-

MRF&HMRF-EM method can get the highest mean DSC value for each kind of tissue 

in the IBSR2.0 dataset. Therefore, the proposed hybrid framework is maybe more 

suitable for real datasets than for the simulated ones. Furthermore, according to Fig.8, 

the standard deviations for the proposed method are comparable or better than those for 

the other methods in most cases, which demonstrates the good robustness of the hybrid 

method again. Therefore, it can be concluded that the segmentation accuracy of the 

proposed hybrid framework is better than those of the other compared methods for the 

IBSR2.0 dataset, and this is true in most cases. As an example, Fig.9 illustrates the 

segmentation results obtained by all the compared methods along with the original slice 
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and the ground truth for the 128th slice of the IBSR_01 subject in this dataset. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

Fig.9 The segmentation results obtained by (a) CMRF, (b) PSO-MRF, (c) HMRF-EM, 
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(d) SPM, (e) PVC, (f) the proposed method along with (g) the original slice and (h) the 

ground truth. Image: IBSR_01 slice128 (WM in white, GM in light gray, CSF in dark 

gray and the background in black). 

 

Fig.10 Comparison of the mean computational time over each slice by the CMRF, the 

PSO-MRF and the proposed method for the IBSR2.0 dataset. 

Similar to Fig.5, Fig.10 shows the mean computational time of each slice by three 

methods for the IBSR2.0 dataset, including the CMRF, the PSO-MRF and our proposed 

method. For the real dataset, the proposed hybrid algorithm also consumes much less 

time than the other two stochastic relaxation algorithms. The computational time 

reduction percentages of our proposed method relative to the CMRF and the PSO-MRF 

methods are 61.95% and 41.91%, respectively. The time reduction percentage indexes 

for the IBSR2.0 dataset is comparable to that for the BrainWeb dataset, which shows that 

compared to other stochastic relaxation algorithms, the proposed hybrid framework can 

definitely save computational time for both the simulated and the real datasets. 

4. Conclusions 
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This paper introduced a novel framework for brain MRI tissue segmentation. The 

motivation was that the RDPSO algorithm, as a global optimization method, can help 

achieve more accurate classification results when used within an MRF approach. 

Furthermore, we combined the RDPSO-MRF algorithm with the HMRF-EM approach 

to propose a hybrid framework, which can further improve the segmentation precision 

and speed up the convergence. There are two main reasons for the utilization of the 

HMRF-EM. First, the HMRF-EM method adopts the results obtained by the RDPSO-

MRF algorithm to initialize its parameters, which can further be locally improved in 

terms of the segmentation performance. Second, as the RDPSO is a global stochastic 

algorithm, it does cost much computational time when performing optimization tasks, 

especially when coping with a large task like the optimization of the total energy of MRF, 

and we thus utilized the HMRF-EM framework to cut off some meaningless iterations in 

the running of the RDPSO-MRF. In contrast with two other traditional stochastic 

algorithms, the standalone HMRF-EM, and two widely used brain tissue segmentation 

toolboxes on both simulated and real MRI datasets, the proposed hybrid framework 

showed its advantages over all the other methods in terms of segmentation accuracy, and 

it converged to the optimal solutions much faster than the two compared stochastic 

algorithms. 

In our future work, we will further improve the RDPSO algorithm with respect to 

its search ability and convergence speed, and take into account the bias field 

compensation in preprocessing in order to obtain better MRI segmentation results. 
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