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Abstract  

Diabetic Retinopathy (DR) is a late-stage ocular complication of diabetes. 
Proposing a high-accuracy automatic screening technology of fundus images based on 
deep learning is of great significance to delay the deterioration of DR. In this paper, 
we propose an end-to-end framework RAN for DR classification and diagnosis based 
on the ResNet, attention mechanism and dilated convolution was added to the 
framework. We implemented experiments on three DR datasets, Kaggle, Messidor 
and IDRid, analyzed and compared the experimental results. The focal loss function is 
added to solve the imbalance problem between DR datasets. The results show that the 
method RAN used mainly improves the results of the basic neural network when 
using the same dataset. Therefore, by optimizing the basic neural network, the 
classification and diagnosis effect of DR can be improved. 
 

Keywords: Diabetic Retinopathy, Fundus Image, CNN,  Attention Mechanism, 
Dilated Convolution,  Deep Learning Assisted Diagnosis 

1.Introduction 

Diabetes Mellitus (DM) is a common endocrine system disease. The prevalence 
of diabetes in all ages was 2.8% in 2000 and 4.4% by 2030 of the world . The total 
number of diabetics is expected to increase from 171 million in 2000 to 366 million in 
2030. Women have more medical records than men. The urban population of 
developing countries is expected to double between 2000 and 2030. The most 
significant demographic change in the prevalence of diabetes worldwide is the 
increase in the proportion of people over 65 years of age. Because of the rising 



prevalence of obesity worldwide, the future prevalence of diabetes will continue to 
rise, and the burden of diabetes will also increase[1]. Diabetes is associated with life, 
the longer it is discovered and the prolonger diabetes is, the higher the risk of 
complications is. Eventually, complications of diabetes can be disabling and even 
life-threatening. 

Diabetic retinopathy (DR) is a late manifestation of diabetes, and one of the most 
severe complications of diabetic microangiopathy. If it is not detected and treated 
early, it will cause irreversible visual impairment, and in severe cases it may cause 
blindness. Fundus image is an vital inspection method for early detection of DR 
lesions. Due to many ophthalmologists in the less developed areas are lacking, 
patients with diabetes lack early diagnosis and treatment of DR. Therefore, 
computerized screening technology based on fundus images is of great significance to 
delay the deterioration of DR. 

Fundus changes in DR mainly include microaneurysms, hard exudates, bleeding 
spots, cotton-wool patches, Diabetic Macular Edema (DME), as shown in Figure 1.1. 
DR is divided into 5 levels, as is shown in Table1.1-1.2, Figure 1.2, for diabetic 
patients, regular DR screening is very essential. There are usually three methods for 
diagnosing DR: ①Ophthalmoscope or indirect ophthalmoscope can observe the 
fundus retina of diabetic patients after dilation of pupils; ②The patient's  color 
retina images is also the primary method of early DR screening. Figure 1.1 shows the 
DR color retina images obtained by the fundus camera; ③Optical Coherence 
Tomography (OCT): can provide high-resolution cross-sectional images of the retina, 
showing its thickness. 

 

 

Figure 1.1 Fundus changes in DR lesions 



Table 1.1 International DR clinical classification (see after examination of dilated pupils)[2] 

DR Level Fundus Examination 

No obvious retinopathy No abnormality 

Nonproliferative DR, Mild Microaneurysms only 

              Moderate      Besides microaneurysms, there are still a few hard exudative spots 
or small bleeding spots. 

                Severe    There are no signs of proliferative DR, but besides moderate 
lesions, there is still one of the following three (4, 2, 1 regulation)： 

More than 20 retinal vein beads in four quadrants, 
Two quadrants have clear retinal vein beads, 

One quadrant has obvious IRMA. 
Proliferative DR One or more of the following changes: 

1. Neovascularization 2. Preretinal bleeding 3. Vitreous blood. 

 

 

Figure 1.2 Schematic diagram of 5 grades of authentic clinical diabetic retina images[2] 

Table 1.2 Clinical classification of diabetic macular edema (DME)[2] 

DME Level Fundus Examination 

No obvious DME No noticeable thickness of retina or hard exudate at the posterior pole. 
There is obvious DME A significant thickness of retina or hard exudate in the posterior pole. 

Mild DME The thickness of retina or hard exudates away from the fovea. 
Moderate DME The thickness of retina or hard exudates does not affect the fovea. 

Severe DME The thickness of retina or hard exudates affects the fovea. 

 

High-quality color retina images can assist doctors in the diagnosis and judgment 
of retinopathy. However, the diagnosis of DR requires a clinically experienced 
ophthalmologist, and DR screening has not carried out in most grass-roots areas, 
which has significantly increased the risk of blindness due to diabetes[3]. Therefore, 
computer-assisted remote diagnostic technology in fundus images can effectively 
reduce the visual impairment of diabetic patients caused by insufficient medical 
resources. This study intends to use deep learning (DL) methods to process the fundus 
images, laying the foundation for the remote automatic fundus image screening 
system. 



2. Related Work 

At present, most of the work in the field of ophthalmology image analysis 
focuses on the DR classification, segmentation, and detection of retina structures, 
such as optic disc, macular, blood vessel, abnormal parts (hard osmosis, soft osmosis, 
bleeding spots, microaneurysms), Table 2.1. Common retina diseases use deep 
learning techniques to assist in diagnosis including DR, age-related macular 
degeneration (AMD), glaucoma, etc.  

Pratt et al.[4] developed a network with CNN architecture and data augmentation, 
which can identify the intricate features involved in the classification task, trained the 
model on the Kaggle dataset, and achieved a sensitivity of 95% and an accuracy of 
75% on 5,000 validation images. Chandrakumar et al.[5] proposed a Deep Convolution 
Neural Network (DCNN) method which gives high accuracy in the classification of 
retinal diseases through spatial analysis, using 35,126 Kaggle fundus images, the 
accuracy of normal, mild, moderate, NPDR and PDR was 99%, 83%, 79%, 84%, 91%, 
respectively. Rahim et al.[6] presents an automatic detection method of diabetic 
retinopathy and maculopathy in fundus images by employing fuzzy image processing 
techniques. A combination of fuzzy image processing techniques, the circular hough 
transform, and several feature extraction methods are implemented. 

Eftekhari et al.[7] used a two-step process and two online datasets to train CNN, 
which can solve the problem of imbalance and reduce training time while accurately 
detecting. Seth et al.[8] used convolutional neural networks and linear support vector 
machines to train the network on the benchmark dataset EyePACS dataset. 
Experimental results show that the model has high sensitivity and specificity in 
detecting diabetic retinopathy. Dutta et al.[9] proposed an automatic knowledge model 
to identify critical prerequisites for disaster recovery. After testing using a 
CPU-trained neural network model, three types of back-propagation neural networks 
were used. The model was able to quantify the characteristics of different types of 
blood vessels, exudates, bleeding, and microaneurysms.  

Benzamin et al.[10] proposed a deep learning algorithm based on CNN, which can 
detect hard exudates in fundus images and assist ophthalmologists in diagnosis. Adem 
et al.[11] used a CNN model with a circular Hough transform to apply it to retinal 
images. The results show that the using of the CNN model together with image 
processing methods can improve the accuracy, and the success rate of exudates 

https://www.researchgate.net/profile/Suvajit_Dutta2


detection is 99.18%. Li et al.[12] developed a DL system for GON classification to 
classify GON on color fundus images automatically . The area under curve (AUC) of 
the DL system is 0.986, and the sensitivity is 95.6 %, the specificity is 92.0%. Based 
on these works, this article will combine the needs of ophthalmologists and diabetic 
patients, optimize the application of DL technology in ophthalmology clinics, 
improve the accuracy of model diagnosis, and assist clinicians in their work. 

 

Table 2.1 Experimental methods, datasets, and results used in recent papers 

 Method Dataset Performance 

Gulshan et al.[13] Inception v3 EyePACS 

Messidor 
Specificity 93.4%，Sensitivity 

97.5% 

Specificity 93.9%，Sensitivity 
96.1% 

Li et al.[14] VggNet、
GoogleNet 

DR1 

Messidor 
Sensitivity 97.11%，Specificity 

86.03% 

Accuracy 92.01%，AUC0.9834 

Gargeya et al.[15]  Data driven 
DNN ResNet 

EyePACS 

Messidor 
AUC0.97 

AUC0.94 

Abramoffff et al.[16] DCNN  Messidor Sensitivity 96.8%,Specificity 
87.0%, AUC 0.98 

Ting et al.[17]  VGG-19 10 datasets 
recruited from 6 

countries 

Sensitivity 90.5%,Specificity 
91.6%,  

AUC 0.936.  

Li et al.[18] Inception v3 Chinese color 
fundus images, 

Multi-racial color 
fundus images 

Sensitivity  97.0%,Specificity  
91.4%;  

Sensitivity  92.5%,Specificity  
98.5%; 

Abràmoffff et al.[19] CNN 900 subjects 
enrolled in primary 

care clinics 

Sensitivity  87.2%,Specificity  
90.7%,  

Accuracy 96.1%. 
Wang et al.[20]  DenseNet EyePACS Accuracy R0:0.92,R1:0.70,  

R2:0.64,R3:0.67,R4:0.69.  

Zhou et al.[21] Multi-grid 
multi-task CNN 

EyePACS Kappa 0.841  

Doshi et al.[22] 5-layer CNN EyePACS Kappa 0.386  

3.Method 

3.1 Research Status of Deep Learning Methods 

Based on the previous deep learning methods, the Residual Attention Network 



proposed in this paper is mainly comprises of an encoder, a residual attention module, 
and dilated convolution. 

3.2 Encoder 

The primary function of the encoder is to extract image features with high-level 
semantic information. Generally, the deeper the network, the stronger the ability to 
extract features. But when the network increases to a certain depth, the problem of 
gradient disappearance will occur, which leads to the degradation of network 
performance. ResNet[23] solves this problem through residual connection, which can 
make the network deeper, and its ability to extract features is more stronger. It is a 
structure designed based on VGG[24]. The biggest part is adding a layer jump 
connection structure to achieve residual learning and increase identity mapping, 
making the depth of the network play a role.  

From an intuitive perspective, the residual learning needs less content, and the 
learning difficulty is low. The residual unit can be expressed as: 

                         𝑦𝑙 = ℎ(𝑥𝑙) + 𝐹(𝑥𝑙, 𝑊𝑙)                     (3-1) 
                            𝑥𝑙+1 = 𝑓(𝑦𝑙)                          (3-2) 

The learning characteristics from shallow l to deep L  are expressed as:               

                   (3-3) 

According to the chain rule, the gradient of the reverse process can be expressed 
as: 

                         (3-4) 
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Figure 3.1 Examples of two-layer jumper connection methods (Figure A has the same 

channel number, Figure B has the different channel number) 

As shown in Figure 3.1, Figure A corresponds to a shallow network, using 
identity mapping; Figure B corresponds to a deep network, using identity mapping 
when the input and output dimensions are consistent, and linear mapping when they 
are not. These two structures are aimed at ResNet18 / 34 (Figure A) and ResNet50 / 
101 / 152 (Figure B). 

3.3 Residual Attention Module: 

The attention mechanism in computer vision is an imitation of human visual 
attention actually. The principle is that human brain can find the target area, and give 
more attention to the area, while assigning to the surrounding unimportant areas less 
attention, so as to obtain more useful information and suppress other useless 
information. In traditional image processing methods: salience detection, image 
feature extraction, and sliding window methods can also be regarded as attention 
mechanisms. The attention mechanism in deep learning also mainly includes two 
parts: learning weight distribution (different parts of the input image or feature map 
have different weights), task focus (divide the task, design different sub-networks, and 
focus to different subtasks, redistribute the learning ability of the network). 

As shown in Figure 3.2, the attention guided module (AGM) is composed of two 
1x1 convolution layers with different activation functions in the adaptive average 
pooling layer. The specific operation is as follows: First, the input feature map passes 
through an adaptive average pooling layer, and the output feature map dimension is 𝑅1×1×𝑐; then, after a 1x1 convolution layer with ReLU activation function, the output 

feature map dimension is 𝑅1×1×𝑐/𝑟, and the number of channels It is reduced from C 
to C/r; then, after a 1x1 convolution layer with sigmoid activation function, the 
number of channels is expanded from C/r to C, and a channel descriptor with 
dimension 𝑅1×1×𝑐 is obtained to recalibrate the original feature map. Among them, 
the hyper-parameter r can control the calculation amount of the AGM, which is set 
to 16 in the experiment. Finally, by multiplying the obtained channel descriptor and 
the input feature map, the recalibration of the feature map can be completed, and the 
importance of each channel can be recalibrated by integrating global information. The 
importance of different channels is different, which highlights important information 



and suppresses background information. 
 

 

Figure 3.2 Attention guided module 

 

In this DR classification experiment, the areas such as hard exudates, cotton 
velvet spots, bleeding films, and microaneurysms in the fundus image are the areas of 
focus[25]. The methods in the neural network can increase the abnormal area 
information of the lesion and suppress other background information, which can 
improve the accuracy of the model in the DR classification task. 

Residual attention module structure, as shown in Figure 3.3, based on ResNet, 
the method of stacking attention structure to change the attention of features, as the 
network deepens, the attention mechanism module will make adaptive changes[26]. In 
each attention mechanism module, upsampling and downsampling structures are 
added.  

 



 

Figure 3.3 RAN structure 

 



The core of the RAN idea is the attention mechanism. In the ordinary network, 
side branches are added. The side branches gradually extract high-level features and 
increase the receptive field of the model through a series of convolution and pooling 
operations. The corresponding activation position of the high-level features can reflect 
the area of attention, then up-sampling this feature map with attention features to 
make its size return to the size of the original feature map, the attention is 
corresponding to each position of the original image. Performing element-wise 
product operations with the original feature map is equivalent to a weighted action 
that enhances meaningful features and suppresses meaningless information. 

Each attention mechanism module is divided into two branches, as Figure 3.4 
shows, the soft mask branch (attention mechanism branch) and the trunk branch 
(original branch). The formula of the attention mechanism is: 

                    𝐻𝑖,𝑐(𝑥) = 𝑀𝑖,𝑐(𝑥) × 𝑇𝑖,𝑐(𝑥)               (3-5)               

T represents the main branch and M represents the mask branch. The mask 
branch uses several maximum pooling to increase the receptive field. After reaching 
the minimum resolution, a symmetric network structure is used to amplify the features 
back. 

 

 Figure 3.4 Soft mask branch and trunk branch  

 



With the deepening of module stacking, different levels of attention information 
can be extracted from top to bottom, and the attention perception function from 
different modules will change adaptively. The added attention residual learning 
structure can train very deep residual attention networks, easily extended to hundreds 
of layers. Each attention module in the stack can be replaced with other structures 
(such as residual modules and inception modules), and can be easily connected to 
other networks to achieve a plug-and-play effect. By stacking this residual attention 
structure, the advantages of residual learning and attention mechanism can be 
thoroughly combined to achieve better results. 
 

3.4 : Dilated Convolution Module[27] :  

 

In order to expand the receptive field, this article also introduces a cavity 
convolution module. Deep features have high-level semantic information but lost 
resolution; shallow features have high-resolution, but the semantic level is low. The 
dilated convolution can expand the receptive field of the network without reducing the 
resolution in the case of 2 dimensions. The dilated convolution can be expressed as: 

                       𝑦[𝑖] = ∑ 𝑥[𝑖+𝑑∙𝑘] ∙ 𝑤[𝑘]𝐾𝑘=1                     （3-6） 

 

In the formula, 𝑦[𝑖] represents the output feature map, 𝑥[𝑖] represents the input 

feature map, d represents the dilation rate, 𝑊[𝑘] represents the k − th parameter of 

the convolution kernel, and K represents the size of the convolution kernel.  

 

 

 Figure 3.5 Dilated convolution 

As shown in Figure 3.5, the dilated convolution is equivalent to filling d-1 
dilations between adjacent convolution kernel parameters. When the dilation rate d=1, 



the dilated convolution degenerates into a standard convolution, the larger d, the 
larger the receptive field of the convolution kernel. In this article, 1x1 standard 
convolution, 3x3 dilated convolution with dilation rate d=2, 3x3 dilated convolution 
with dilation rate d=3, 3x3 dilated convolution with dilation rate d=5, and global 
average pooling is used to extract features. Five levels of image information are 
extracted. The specific process of using global average pooling to extract features, is 
to use an adaptive average pooling layer to generate a 1x1x512 dimension feature 
map first. Second, use 1x1 convolution to change the number of channels to 256, and 
then use the bilinear interpolation algorithm to expand its size to 14x14. Third, the 
extracted feature maps of 5 levels are spliced with the original feature maps to obtain 
a 14x14x1792 dimension feature map, and finally use 1x1 convolution to change the 
number of channels to 512. After each convolution operation, there is a batch 
normalization layer (BN) and a ReLU activation function. Before each dilated 
convolution extracts features, the feature map perform a padding operation to ensure 
that the resolution of the feature map before and after does not change.  

3.5 Loss Function 

The loss function in the neural network is used to measure the gap between the 
predicted value obtained by the model and the actual value of the data, and it is also a 
standard used to measure the generalization ability of the model. The smaller the loss 
function, the better the performance of the model, and the loss function used by 
different models are generally different. 

3.5.1 Cross Entropy[28] 

In this experiment, the classification module performs the main task of DR 
classification. The goal of the classification task is to predict the label category of 
each input image. The most commonly used loss function is cross entropy. Cross 
entropy is also known as log-likelihood loss, logarithmic loss, and is also called 
logistic loss in the two-class classification. To describe the difference in probability 
distribution, the formula is: 

               （3-7） 𝑦𝑖𝑐 represents the original image label，𝑦̂𝑖𝑐 is the classifier predicting similar 
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=

= − 



values. Simultaneously, 𝜃𝑐𝑙𝑠 represents the weight value in the classification module. 

Suppose there are m sets of training samples {(𝑥(1), 𝑦(1)), . . . , (𝑥(𝑚), 𝑦(𝑚))}, where 

input features 𝑥(𝑖) ∈ 𝑅𝑛+1, the corresponding category is 𝑦(𝑖) ∈ {1,2, . . . , 𝑘}, then the 
cross entropy is defined as follows: 

         （3-8） 1{∙} is the indicator function, p(y(i) = j|x(i); θ) represents a given sample 𝑥(𝑖)  

and when model parameters is θ, probability of label is 𝑦(𝑖). In this experiment, 
structural risk is added on the basis of cross entropy for optimization. Structural risk is 
based on empirical risk plus punishment items. 

           （3-9） J(θ) is the complexity of the model, the more complex the model f, the greater 

the penalty term model, λ ≥ 0 represents weights penalties, regularization terms are L1 and L2 regularization. 

3.5.2 Focal Loss[29]: 

Since the imbalance problem generally exists in the DR datasets, focal loss, 
designed to solve the imbalance problem is introduced in this experiment. It is 
modified on cross entropy, and multiplies the original cross entropy by an index that 
weakens the contribution of the easily detectable object to the model training. So that 
focal loss successfully optimizes the imbalance problem between positive and 
negative samples, and relieves the problem that object detection loss are easily 
affected by a large number of negative samples. Focal Loss is defined as: FL(𝑝𝑡) = −(1 − 𝑝𝑡)𝛾𝑙𝑜𝑔(𝑝𝑡)                 （3-10） γ is the focus parameter, γ ≥ 0. (1 − 𝑝𝑡)𝛾  is called modulating factor, the 
purpose of adding modulation coefficient is to reduce the weight of samples that are 
easy to classified, so that the model focused more on the samples that are difficult to 
classified during training. 

Focal loss has two important properties:①When a sample is wrong, 𝑝𝑡 is very 
small, then the modulation factor (1 − 𝑝𝑡) is close to 1, the loss is not affected; when  

 
= =

= − = =   
=
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𝑝𝑡 → 1, the factor (1 − 𝑝𝑡) is close to 0, then the weight of the better sample is 
reduced. Therefore, the modulation coefficient tends to 1, which means that there is 
no significant change from the original loss. ②When γ = 0, focal loss can be written 
as cross entropy, and as γ increases, the modulation coefficient also increases. 

3.6 Transfer Learning[30] 

Transfer learning is a method of machine learning, which is to transplant the 

model obtained from one task training to the training of other tasks. Affected by 

transfer learning, in the case of insufficient training data, by loading the pre-trained 

EfficientNet weights on the ImageNet dataset, the model has a better weight 

initialization before starting to optimize the gradient, so as to train your own model.  

Considering the huge difference between the fundus image dataset and the ImageNet 

dataset, the training of the network layer during the experiment is restarted from each 

layer. 

4. Materials and Approach 

 

Figure 4.1 The workflow of the proposed work for classification of diabetic retinopathy 

4.1 Datasets  

In order to verify the effectiveness of RAN, comparative experiments were 
carried out on Kaggle, IDRid, and Messidor datasets, Figure 4.1 shows the workflow. 



4.1.1 Kaggle Dataset[31] 

The training set contains 35,125 fundus images released by the California 
Medical Foundation from eye-PACS users, including level 0 25809 (74%), level 1 
2443 (7%), level 2 5292 (15%), level 3 873 (2%), level 4 708 (2%). The images in the 
dataset come from different models and types of cameras, which may affect the visual 
appearance and resolution of the images. Some images in the dataset contain artifacts, 
blurry focus, underexposure or overexposure, which may adversely affect the 
experimental results. In addition, due to the excessive number of normal fundus 
images in this dataset, 40% of the normal images were selected for training and 
testing during the second classification experiment, and only 20% of the normal 
images were selected for training during the five-class classification experiment and 
test. 

4.1.2 Messidor Dataset[32] 

The Messidor dataset is a research project funded by the French Ministry of 
Defense in the TECHNO-VISION program in 2004 to promote research on the 
computer-aided diagnosis of diabetic retinopathy. It consists of 1200 fundus images 
from three ophthalmology hospitals, 800 of which are images obtained after pupil 
dilation. According to the presence or absence of hard exudates, microaneurysms, 
hemorrhage, and neovascularization, each picture is marked with a DR lesion grade of 
0-3, each picture also has a DME lesion grade of 0-2, Figure 4.2. Table 4.1 lists the 
number distribution. The image sizes in the dataset are 1440×960, 2240×1488, and 
2304×1536, respectively, in tif format. 

Table 4.1 Number distribution of DR and DME in Messidor dataset 

Diseases Lesion Grade Picture Quantity (1200 ) Ratio 

DR 0 546 46% 

1 153 13% 

2 247 21% 

3 254 21% 

DME 0 974 81% 

1 75 6% 

2 151 13% 



 

Figure 4.2 Fundus images of DR level 0-3 in the Messidor dataset from left to right 

4.1.3 IDRid Dataset[33] 

The dataset was published by the IEEE International Biomedical Imaging 
Symposium (ISBI-2018) Diabetic Retinopathy Segmentation and Classification 
Challenge, the purpose of this challenge is to evaluate algorithms for the automatic 
detection and grading of DR and DME using fundus images. Data includes: ①Lesion 
segmentation: DR-related retinal lesions are segmented into microaneurysms, 
hemorrhage, hard and soft exudates. ②Disease classification: classify fundus images 
according to the severity of DR and DME. ③Optic disc and fovea detection: 
automatic positioning of the central coordinates of the optic disc and fovea and 
segmentation of the optic disc. In this experiment, only disease classification data was 
used, including 413 pictures in the training set and 103 pictures in the test set. All 
pictures are 4288×2848, in jpg format. Table 4.2 shows the number and proportion 
distribution. 

Table 4.2 Number and distribution ratio of DR and DME training sets in IDRid dataset 

Diseases Lesion Grade Training Set (413) Test Set (103) Ratio 

DR 0 134 34 33% 

1 20 5 5% 

2 136 32 33% 

3 74 19 20% 

4 49 13 12% 

DME 0 177 45 43% 

1 41 10 10% 

2 195 48 47% 

 

Because the amount of abnormal pictures in the Messidor dataset and IDRid 
dataset is too small, it is more meaningful for clinical application to do two-class 
classifications. It can also be seen from the above dataset that the most prominent 
feature of medical images is the imbalance distribution of data, that is, the number of 
samples in normal images is much higher than that of abnormal images, and the 



amount of grading data with the severity of the disease is getting less and less. To 
solve this problem, the most commonly used method is data enhancement, to expand 
the lesion sample. In addition, improving the loss function or improving the network 
structure is also a widely used optimization method. 

In the above three datasets, we randomly selected 60%, 15%, and 25% of the 
images in each dataset as the training set, validation set and test set. 

4.2 Image Preprocessing 

Since all the widely used DR public datasets have the problem of severe 
imbalance in data distribution, and image preprocessing is used in this experiment to 
increase the amount of data. The purpose of image enhancement is to process the 
acquired images so that the features of interest have better contrast and visibility. By 
making a series of random changes to the training image to produce similar but 
different training samples, the amount of training set is expanded. The robustness and 
generalization ability of the model trained by image enhancement can significantly 
improved. This method does neither reduce the capacity of the network, nor does it 
increase the computational complexity and the number of parameters. It is an implicit 
regularization method and is widely used in the current landing of medical image AI 
products. However, most of the image enhancement methods have a certain 
randomness, which may reduce the accuracy of the model while enhancing the 
robustness. 

4.2.1 Data Augmentation 

Commonly used image-enhancing methods, translation, rotation, cropping, 
scaling, noise addition, affine transformation, etc., usually do not change the type of 
object, are the earliest and most widely used type of image-enhancing method. 
Another way is to change the color. We can change the color of the image from four 
areas: brightness, contrast, saturation, and tone. In practical applications, multiple 
image-enhancing methods are usually superimposed, as shown in Figure 4.3. 



 

Figure 4.3 Messidor dataset enhanced results 

4.2.2 CLAHE 

Contrast Limited Adaptive Histogram Equalization (CLAHE), mainly limits the 
contrast in each small area by limiting the degree of contrast improvement of the 
adaptive histogram equalization, crops the histogram with a defined threshold, and 
limits the slope of the transform function. By cropping the histogram obtained from 
the statistics in the sub-blocks, the amplitude is within a certain interval, and the entire 
interval is evenly distributed, while also ensuring that the total area of the histogram 
remains unchanged. Figure 4.4 lists the changes of the image and its histogram after 
the histogram equalization and CLAHE processing of the fundus image in the Kaggle 
dataset. 

 

Figure 4.4 The three columns from left to right are the original image in the Kaggle dataset, 

after CLAHE processing, after equalization processing and its corresponding histogram 



 

4.2.3 Normalizing  

In order to reduce the difference between the different images of the dataset, 
before sending the image to the network for training, first standardize each image, 
specifically, Figure 4.5: 𝐼′(𝑖,𝑗,𝑘) = 𝐼(𝑖,𝑗,𝑘)−𝑚𝑘𝜎𝑘                        

(4-1) 

Where 𝐼(𝑖,𝑗,𝑘) is the input image,  𝐼′(𝑖,𝑗,𝑘) is the normalized image, iand j is 

the coordinates of the pixel points, k represents the three channels of the image (blue, 
green and red), 𝑚𝑘 represents the average value of the k − th channel pixel value, 
and 𝜎𝑘  represents the standard deviation of the k − th channel pixel value. 

 

Figure 4.5 DR image before and after normalizing 

In addition, due to limited computer performance, the image is first scaled to 
224x224 pixels and then sent to the network for training and testing. 
 

4.3 Implementation Details 

The experiment uses the PyTorch deep learning framework and OpenCV image 
processing library, implemented on Ubuntu16.04 operating system, GeForce GTX 
2080Ti graphics card, Adam optimizer initial learning rate is 0.001, the batchsize 
training phase is set to 8, the testing phase is set to 1, and a total of 60 epochs are 
trained. The test set is tested after every epoch of training, and we only output models 
and results with the highest sensitivity and accuracy values.  

Table 4.3 Experimental environment 
CPU  i7-9700k  8 cores3.6G 

RAM Kingston 16G  DDR4 2666 

Main Hard Drive Samsung 256G  M.2 



GPU RTX 2080ti   11GB 

Operating System Ubuntu 16.04 

Software Environment Python 3.6.2  PyTorch 1.0.0  Scikit-Learn 0.19.2 

 

 

4.4 Evaluation Index 

 

In this experiment, the relationship between the model prediction result and the 
true label of the data is evaluated by the following criteria (as shown in Figure 4.6): 
True Positive (TP), the number of true positive samples predicted as positive; False 
Negative (FN), The number of true positive samples predicted to be negative; False 
Positive (FP), the number of true negative samples predicted to be positive; True 
Negative (TN), the number of true negative samples predicted to be negative. We also 
adopted accuracy (ACC), sensitivity (SE), specificity (SP), receiver operating curve 
(ROC), and area under curve (AUC) to evaluate the experimental results. 

 

 

Figure 4.6 Evaluation criteria of DR grading experiment 

SE represents the proportion of true positive samples that are predicted to be 
positive, and SP represents the proportion of true negative samples that are predicted 
to be negative. The calculation formula for the SE and SP is: 

                 （4-2） 

The higher the SE, the greater the probability of a DR image being diagnosed, 
the higher the SP, the greater the probability that a normal image is predicted to be 
normal. In clinical applications, the missed diagnosis has a greater adverse effect on 
patients, so the SE in DR classification is more significant. ACC represents the 
probability of correct classification of all samples, the calculation formula is as 
follows: 

= =
+ +



                   （4-3） 

Taking multiple sets of SE values as the ordinate and SP values as the abscissa 
constitute the ROC curve, which can comprehensively evaluate the performance 
difference of multiple classifiers. AUC represents the area under the ROC curve, and 
the AUC also can express the model classification ability more intuitively. The larger 
the AUC, the better the classification performance. In the DR five-category 
experiment, the Kappa coefficient was also added as an evaluation criterion. The 
Kappa coefficient is calculated on the basis of the confusion matrix. It is a method for 
evaluating the consistency of the model results and can also be used to evaluate the 
accuracy and performance of the classifier. The formula for the Kappa coefficient is 
calculated as follows: 
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𝑞𝑖 is the number of correctly classified samples in each category divided by the 

total number of samples, 𝑎𝑖 is the number of samples of type i, 𝑏𝑖 is the number of 

samples predicted to be the i − th category. 

5. Results and Discussion 

In this paper, on the three DR datasets of Kaggle, Messidor, and IDRid, the 

commonly used deep learning methods and our proposed RAN are used respectively, 

and the loss function uses cross entropy and focal loss to perform classification and 

diagnosis experiments for DR and DME, then compared and analyzed them. The 

results are as follows. 

5.1 Kaggle Results 

It can be seen from Table 5.1 that in the Kaggle dataset, the specificity, 

sensitivity and AUC of the RAN proposed in this paper for DR two-class 

classification reached 0.894, 0.930 and 0.917, respectively, and the accuracy reached 

+
=

+ + +



0.892, which was 4.6%, 3.7%, 9.4% and 5.6% higher than VGG-16. RAN has reached 

an excellent level in the accuracy of DR classification. 

Table 5.1 Two-class classification results of different models on the Kaggle dataset 

Method Accuracy Specificity Sensitivity AUC 

VGG-16 0.836 0.848 0.893 0.823 

ResNet-50 0.844 0.862 0.907 0.876 

ResNeXt-50[34] 0.866 0.867 0.919 0.892 

DenseNet-121[35] 0.862 0.877 0.905 0.874 

SE-ResNet-50[36] 0.889 0.889 0.924 0.896 

DPN-92[37] 0.868 0.876 0.918 0.878 

EfficientNet-b0[38] 0.886 0.882 0.925 0.903 

RAN 0.892 0.894 0.930 0.917 

 

It can be seen from Table 5.2 that in the Kaggle dataset, the accuracy of RAN for 

DR five-class classification reaches 0.815, which is 5.3% higher than that of VGG-16. 

The Kappa score reached 0.865, which was higher than the 0.829 achieved in the DR 

classification competition held on the Kaggle website in 2015[31], and the performance 

was improved. 

Table 5.2 Five-class classification results of different models on Kaggle dataset 

Method Accuracy Kappa Score 

VGG-16 0.762 0.720 

ResNet-50 0.782 0.781 

ResNeXt-50 0.811 0.812 

DenseNet-121 0.803 0.856 

SE-ResNet-50 0.808 0.834 

DPN-92 0.802 0.827 

EfficientNet-b0 0.810 0.835 

RAN 0.815 0.865 

 

 

Figure 5.1 Comparison of the classification results of different models 



with different loss functions on the Kaggle dataset 

 

In order to improve the performance of the deep learning model and alleviate the 

problem of the small amount of data in the Messidor and IDRid datasets, this paper 

transfers the RAN model trained on the Kaggle dataset to the experiments on the 

Messidor and IDRid datasets. 

5.2 Messidor Results 

It can be seen from Table 5.3 that in the Messidor dataset, the specificity and 

sensitivity of the RAN proposed in this paper for DR two-class classification reached 

0.887 and 0.931, and the accuracy reached 0.898, which was 3.7%, 4.9% and 7.5% 

higher than VGG-16. The AUC result of EfficientNet is 0.912, which is 0.5% higher 

than RAN. 

Table 5.3 The results of DR two-class classification of different models on the Messidor 

dataset 

Method Accuracy Specificity Sensitivity AUC 

VGG-16 0.823 0.850 0.882 0.830 

ResNet-50 0.861 0.875 0.892 0.887 

ResNeXt-50 0.868 0.864 0.904 0.893 

DenseNet-121 0.854 0.878 0.895 0.864 

SE-ResNet-50 0.858 0.884 0.914 0.894 

DPN-92 0.864 0.876 0.908 0.869 

EfficientNet-b0 0.884 0.881 0.923 0.912 

RAN 0.898 0.887 0.931 0.907 

In the Messidor dataset, Table 5.4, the accuracy, sensitivity and AUC of RAN 

for DME two-class classification reached 0.881, 0.912, and 0.882, respectively, which 

were 4.2%, 4% and 4.4% higher than VGG-16. The specificity result of EfficientNet 

is 0.862, which is 0.4% higher than RAN, also has a good performance. 

Table 5.4 DME two-class classification results of different models on the Messidor dataset 

Method Accuracy Specificity Sensitivity AUC 

VGG-16 0.839 0.824 0.872 0.838 

ResNet-50 0.852 0.833 0.876 0.851 

ResNeXt-50 0.861 0.833 0.883 0.858 

DenseNet-121 0.852 0.836 0.882 0.844 

SE-ResNet-50 0.866 0.843 0.897 0.863 



DPN-92 0.853 0.832 0.889 0.858 

EfficientNet-b0 0.871 0.862 0.904 0.880 

RAN 0.881 0.858 0.912 0.882 

 

Figure 5.2 Comparison of the classification results of different models 

with different loss functions on the Messidor dataset 

5.3 IDRid Results 

Table 5.5 DR two-class classification results of different models on IDRid dataset 

Method Accuracy Specificity Sensitivity AUC 

VGG-16 0.678 0.684 0.724 0.667 

ResNet-50 0.693 0.705 0.734 0.684 

ResNeXt-50 0.702 0.714 0.748 0.695 

DenseNet-121 0.694 0.706 0.736 0.685 

SE-ResNet-50 0.701 0.716 0.745 0.711 

DPN-92 0.692 0.708 0.734 0.702 

EfficientNet-b0 0.704 0.715 0.747 0.715 

RAN 0.715 0.728 0.752 0.726 

Table 5.6 DME two-class classification results of different models on IDRid dataset 

Method Accuracy Specificity Sensitivity AUC 

VGG-16 0.702 0.714 0.748 0.693 

ResNet-50 0.725 0.736 0.768 0.714 

ResNeXt-50 0.746 0.749 0.785 0.738 

DenseNet-121 0.735 0.740 0.779 0.737 

SE-ResNet-50 0.742 0.751 0.792 0.736 

DPN-92 0.728 0.742 0.787 0.718 

EfficientNet-b0 0.756 0.763 0.807 0.739 

RAN 0.785 0.796 0.813 0.772 

 

It can be seen from Table 5.5 that in the IDRid dataset, the accuracy, specificity, 

sensitivity and AUC of RAN for DR two-class classification reached 0.715, 0.728, 



0.752 and 0.726. From Table 5.6 we can see that the accuracy, specificity, sensitivity, 

and AUC of the RAN for the IDRid dataset DME two-class classification reached 

0.785, 0.796, 0.813 and 0.772. Compared with other methods, the performance of 

RAN in each index in the IDRid dataset has an improvement of about 1 to 10 points. 

 

Figure 5.3 Comparison of the classification results of different models 

with different loss functions on the Messidor dataset 

 

As can be seen from Figure 5.1-5.3, because of the imbalance problem in the DR 

datasets, in each classification task, using focal loss as the loss function is more 

suitable than cross entropy as the loss function, accuracy has been greatly improved.  

 

 

Figure 5.4 Visualization of Grad-CAM[39] DR classification 

In addition, we also used Grad-CAM to visualize the attention heat map during 



the fundus image DR classification process. As shown in Figure 5.4, we can clearly 
see that the optimization method is more focused on abnormal parts than the basic 
neural network structure.  

The above experimental results show the intense competitiveness of CNN in 

clinical diagnostic applications, and RAN has achieved good results in completing the 

DR classification task. The image-enhancing method used in this experiment can 

make the amount of data in each classification of DR reach a relatively balanced state, 

and the loss function optimization method has also achieved satisfactory results in 

alleviating the problem of data imbalance. The model added an attention mechanism, 

which can pay more attention to the features in the fine-grained image during 

classification, and play an active auxiliary role in the feature extraction of the network. 

Using optimization methods such as dilated convolution can also improve the results 

of the neural network. In short, using our RAN can enhance the accuracy of DR 

classification and diagnosis on most fundus images. 

6. Conclusion 

This paper proposes a classification algorithm, Residual Attention Network 
(RAN), combining attention mechanism and dilated convolution for diaetic 
retinopathy (DR) detection. The classification effect of the model is verified on 
Kaggle, Messidor and IDRid competition data. Since the imbalance between data 
categories will lead to overfitting during model training, data augmentation and focal 
loss are used. Aiming at the problem of minor differences between DR categories, we 
performed a series of preprocessing on the original retinal image to make the bleeding 
and exudation in the fundus image more obvious. Then, an attention mechanism is 
added to the network to extract features of fine-grained images, so that the network 
can better distinguish the differences between the types of lesions, and we also used 
dilated convolution in the network to increase the receptive field. Through this 
combination of residual network designed based on ResNet, attention mechanism and 
dilated convolution, the accuracy of the classification task of diabetic retinopathy can 
be improved. However, the increase in accuracy of this method is not significant 
enough. Therefore, in the future work, we will integrate the prior knowledge of age, 
blood glucose, blood pressure, intraocular pressure, and past history into the DR 
classification model to integrate more information related to disease and effectively 



improve the diagnosis effect. In addition, multi-task experiments will mutually 
promote the improvement of experimental results. How to integrate the results of 
optic disc, macular detection, and blood vessel segmentation into the DR 
classification model will also be the focus of future work. It is the common aspiration 
of algorithm engineers and clinicians to build a robust and accurate deep learning 
model for DR screening. This desire cannot be achieved without the joint efforts and 
cooperation of both parties. 
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