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Abstract: This paper proposes an adapted ventricular segmentation method based on topological 

watershed transform. Segmentation will allow spatio-temporal modeling of trajectories of the 

different points belonging to the borders of the ventricle using a harmonic motion model that is able 

to describe such motion over the entire cardiac cycle. In addition, extraction of the adopted canonical 

state vector and the corresponding state equations guarantees an optimal efficacy and a gradual 

transition from order n to order n+1. To validate the proposed approach, an intern-image base was 

used. Our results show a promising ability to discern whether subjects are healthy or pathological 

with an 80% success rate. 
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1. Introduction 

 

The heart is a vital organ that equals life for human beings as it beats constantly in the 
human body. Nevertheless, not only the functioning of this organ is complex but also its 

mechanism can be sometimes altered or even disrupted by different factors [1]. Moreover, 
the onset of heart disease can lead to death [2]. For this reason, establishing an adapted 
therapeutic strategy for a patient who suffers from heart disease is essential. This strategy 

requires several pieces of information about the patient's heart to evaluate the viability of 
the cardiac muscle through fixed or mobile systems [3]. In fact, many modalities are used to 

acquire images of the human heart. One of the least non-invasive modalities is magnetic 
resonance imaging MRI, a technique that allows the acquisition of functional (which 
enables locating the areas involved) and anatomical (which provides a realignment to 

correct a subject motion) images [4]. Cardiac MRI is used as a reference method that 
enables the detection of cardiac pathologies. The study of the different cardiac cavities, 

particularly the left and right ventricles, allows such detection. Figure 1 illustrates these 
cavities according to the short and long axis sections. The analysis and the quantitative 
assessment of the cardiac functions such as ejection fraction (EF) and myocardial mass 

(MM), as well as cardiac mass (CM), are frequently asked in clinical workflow [5]–[7].  In 
fact, MRI in cine mode is the most used acquisition in clinical routine because it allows 

continuous observation of cardiac kinetics. The MRI sequences performed provide both a 
2D and 3D visualization.  In addition, a view of 4D (3D+t) and 5D volume MRI sequences 
(flow sequences) can be realized [8]. This progress requires acquisition based on various 

slice planes. The main slice planes used for the right ventricle (RV) [9], which is the object 
of interest in this paper, are: the long axis 4 cavities slice and the short axis slice [10], [11].  

 
    In cardiac imaging, the segmentation of the contours of the ventricles is an essential step 
in detecting pathologies [12]–[14] such as ischemic, cardiomyopathies, and arrhythmias. 

Moreover, the monitoring of ventricular motion allows an in-depth analysis of these 
cardiovascular pathologies [15]. Although medical imaging provides essential support for 

the diagnosis of ventricle functions, their direct interpretation is still impeded by some 
constraints such as low resolution and the presence of strong noise that influence not only 
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the reliability of 2D segmentation but also the quality of 3D reconstruction. Thus, the use 

of spatio-temporal modeling techniques represents a notable alternative. This alternative 
follows three steps: the segmentation and modeling of ventricular contour and shape, the 
temporal monitoring of ventricular movement, and finally the analysis of computed 

parameters in the two previous steps for the establishment of the diagnosis.   
 

  
(a) (b) 

Figure 1. Cardiac MRI in diastolic phase (a) Long axis slice, (b) Short axis slice [10] 

In this work, we will present a study of the right ventricle which is often 
underestimated [9],[16], and we will precisely focus on the first steps of the 

aforementioned process. In fact, the monitoring of the right ventricle motion is a key phase 
in the cardiac sequence analysis process that provides information about the temporal 

evolution of the RV. Nevertheless, monitoring either suffers from a lack of precision or 
causes high computing costs whenever the result is satisfactory. With regards to these 
issues, this work purports to introduce a generic monitoring method that is not only 

accurate but also adapted to the monitoring of periodic shapes such as the right ventricle. 
Throughout the whole cycle, full cardiac dynamics can be described which allows a direct 

interpretation of the RV functional parameters. The proposed approach is based on a 
Harmonic State Model (HSM) that provides first good modeling of a closed contour (a 
periodic evolution), and second an estimation of this contour which is made possible 

thanks to the model’s robust state vector that helps to exploit the Kalman filter [17]. This 
function enables the use of the motion parameters such as velocity which represents a 

component of the model’s state vector.  
 

The model is linear and periodic, and it translates a dynamic model corresponding 
to the Fourier series decomposition [18] of cardiac movement. Used as a state model in a 
Kalman filter, this model provides a noise-resistant estimation of motion parameters such 

as speed and acceleration which are components of the state vector. So far, the Harmonic 
State Model has only been exploited in a temporal dimension to model the motion of the 

RV. The periodicity of the shape of the RV (closed surface) also allows us to transpose the 
model in a spatial dimension at a given time by introducing shape and smoothing 
constraints via harmonic decomposition. This double characteristic reveals the potential 

interest of such a model for 2D/3D tracking of the RV wall in a sequence of images. 
 

This paper is organized as follows. Section 2 presents a brief state of the art of 2D 
segmentation, 3D reconstruction, and motion tracking methods. Section 3 then introduces 
the watershed segmentation method to enable endocardial and epicardial RV delineation. 

Section 4 deals with the volume reconstruction. In section 5, we outline the Linear 
Harmonic Model with the selected state equations which are to be followed by the 

estimation of motion parameters by Kalman filtering. In Section 6, the results are reported 
and succeeded by a discussion. Finally, Section 7 presents a brief conclusion and 
perspectives. 

 
RV 

LV  
RV 

LV 



 

3 

 

2. Related works 

This section introduces a brief description of reference techniques in ventricular 

segmentation from cine MRI images as well as motion tracking of non-regular objects. 

2.1. Cardiac cine MRI segmentation methods  

The analysis of cine MRI sequences generally consists of three stages. First, a segmentation 

stage which includes segmentation of the wall in the successive images of the sequence. 

This stage is characterized by its difficulty as it is often performed in part manually because 

of the insufficient quality of the images. Second, a quantification stage of contraction or 

movement parameters by direct measurement or adapted modeling. Finally, an analysis 

stage which leads to the determination of the healthy or pathological character of the 

cardiac function under study. The work of several research groups gave rise to various 

publications concerning the analysis of marked MRI images [7], [19]–[21]. To contribute to 

a better understanding of these works, we will start with the concept of active contour [22] 

which was developed as a deformable curve in an attempt to get as close as possible to the 

contours of an image which helps locate and/or follow their movement over time. These 

active contours are used in many applications such as locating vessels in angiograms and 

tracking heart movement. Figure 2 showcases an example.  

 

Figure 2. Left ventricle segmentation using active contours technique [23] 

For a given deformable curve, the classical method initially defined by Kass et al. [23] is to 

associate certain energy at each position of the curve on the image. This energy is defined 

so that the ideal position of the curve (the contour to locate) corresponds to the minimum 

energy. The algorithmic complexity of the minimization processes leads to several 

iterations starting from an initialization already close to the result. The work of Amini et 

al. [24] was applied to a 2D time series of small-scale cuts with a grid-like marking pattern. 

The merit of this method is its low algorithmic complexity which is achieved thanks to the 

use of splines. Besides, the study was conducted only on interpolation points. However, 

follow-up problems appear for tags close to myocardial contours, mostly because of 

unreliable image energy. We recall that the myocardium represents the main muscle of the 

heart that ensures the emptying and filling of the cardiac cavities through the alternation 

between contractility and elasticity. The method developed by Young et al. [25] is a direct 

application of that of [23] to the entire grid with each line constituting a discrete snake. For 

each snake, the associated energy is defined as the sum of internal energy measuring 

elasticity and stiffness, image energy based on the intensity, and user energy, that allows 

manual intervention. The local weighting of these energies differs depending on whether 

or not they belong to the myocardium. This technique has the advantage of integrating 

regularity properties in the deformable grid which makes it more robust against noise. 

Contrarily to the method of Amini et al. [24], all the points of the grid move at the same 

time leading to the increase of the minimization algorithm’s complexity. Radeva et al. [26] 

take into account all the superimposed slicing levels of a short-axis acquisition. Similar to 

Amini et al. work, slicing levels correspond to superimposed grids of tags a deformable 

3D grid of splines, called B-solid and expressed as a 3D tensor product of B-splines. In fact, 

the search for the 3D matrix of the interpolation points is realized iteratively with minimal 

energy, yet in a significantly more complex way since the whole B-solid is deformed at the 

same time to converge towards the solution.   
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In this part we will deal with region-based segmentation, also called similarity-based 

segmentation which consists of converting an input image into a gray image to perform 

segmentation using morphological operations. The Watershed Algorithm [27]–[29] is 

indeed an important morphological technique. Based on this algorithm, the image is 

visualized on the topographic surface and the gray levels of a pixel are interpreted by its 

altitude. In fact, there exist several morphological techniques to perform image 

segmentation; however, the problem related to this segmentation is either condensed or 

overcome by the selection of the best marker-controlled algorithm.  This marker can be 

applied directly to the gradient image in order to control segmentation [30]. In fact, many 

studies have been conducted on this subject to demonstrate the efficiency and 

powerfulness of the watershed algorithm in case of overlapping or rock formation [27]. An 

adapted algorithm that describes a parallel topological watershed transform inspired by 

Cousty et al. [32] original work is introduced in [31]. The recently published work of 

Kornilov et al. [33] presents an excellent description of open tools for watershed 

implementation. This algorithm remains a true source of inspiration and continues to 

operate successfully in image segmentation [34]–[38].   

 

The aforementioned segmentation step can be followed by a volume reconstruction. In 

fact, while several studies have been proposed in the literature on the 3D reconstruction of 

the left ventricle, some researchers started to gain particular interest in the 3D 

modelization of the right ventricle given its importance to predict morbidity in patients 

with cardiac diseases. While an accurate assessment of the right ventricular function is 

crucial for the diagnosis of patients with pulmonary hypertension, the assessment of  RV 

function is still challenging due to its complex morphology. Farooqi et al. [39] proposed a 

3D model of the heart including the left and the right ventricles to aid surgeons in surgical 

planning. The model was generated from a 3D b-SSFP MRI sequence and the measurement 

results showed a good correlation compared to those generated from 3D 

echocardiography. Tautz et al. [40] proposed a 3D model of the right ventricle using 2D U-

Net. Similarly, Küstner et al. [41] developed a new algorithm based on deep learning for 

3D reconstruction of the right ventricle using cine MRI images. In their study, they proved 

that the proposed method allows rapid quantification of RV ejection fraction and offers 

acquisition of 3D cine MRI in less than 10 s. Furthermore, Dawes et al. [42] developed a 3D 

model of RV to predict pulmonary hypertension disease using supervised principal 

components analysis. The outcome of their study showed that the proposed 3D model 

improved the survival prediction of patients with cardiac diseases with an area under 

curve (AUC) of 0.73. Khouloud et al. [43] proposed an automatic watershed-based 

approach for left ventricular (LV) segmentation based on topology, geometry, and 

brightness priors before moving to 3D+t assessment in order to study the LV dynamics.  

2.2. Tracking moving objects techniques  

The processing of image sequences for tracking objects includes three points: detection, 

recognition, and tracking. Each point is characterized by different hypotheses and 

algorithmic tools. 

 

The first step in image sequence processing is the detection of motion which indicates the 

possible existence of moving regions in the current image. These indicators then provide 

the basis for future algorithmic processing. There are indeed three types of methods 

characterized by the nature of the indicator they extract: the velocity-based approach [44], 

the primitive extraction approach [45], [46], and the regions of interest extraction approach 

[47], [48]. 
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The next step is recognition. The goal is to obtain, at the end of this phase, a set of objects 

potentially usable for the dynamic aspects. It is a matter of refining or even decide the 

interest of particular areas of the image.  We will organize the study of the different models 

of objects encountered along two axes: the appearance models and real models. Object 

appearance models are often used in cases where it is difficult to qualify the object because 

of excessive noise or in cases where objects are complex or diverse. In [48], the authors 

present the impossibility of defining an object model for their field of study as a 

justification for their approach. There is no object recognition but rather an area 

recognition. The models of real objects use characteristics of the object and they often 

exploit more natural properties. In [47], the object consists of a 3D polyhedron modeling a 

vehicle with twelve degrees of freedom. The set of contour segments obtained by the 

detection step is then matched with the edges of the polyhedral model by an iterative 

process introduced in [49]: minimize a criterion, defined by a measure of distance, for each 

edge of the polyhedron. In [50], the author uses a person model defined by a skeleton of 

six segments (two arms, two legs, torso, and head). In [51], a skeletal model of seventeen 

segments is used. A volume model consisting of fourteen elliptical cylinders is used in [52].  

Time Matching and Tracking, contrarily to the previous steps whose treatments could be 

qualified as static, aimed at analyzing only one image. The methods which will be exposed 

in the continuation have an additional dimension to be treated: time. The purpose of 

processing in this step is to include the results of detection and recognition in the 

continuity of the image sequence. A first family of methods aims at matching these 

measurements with those obtained previously, while other techniques use these 

measurements to check the consistency of a prediction made thanks to all the results of the 

previous images. The first family of methods evoked by [53] is direct matching. The other 

popular family of tracking problem solving is Kalman filter estimation [17]. In this case, 

the treatment is done in two steps. First, a prediction of the current result is generated from 

the set of previous results, and then the predicted result is compared with the 

measurements obtained [46].  

3. Proposed method for right ventricle segmentation  

The right ventricular myocardium RVM is bordered by two contours: the epicardial (Ep)  

and the endocardial (En). We, therefore, consider: the right ventricular cavity RVC whose 

border is En and its complementary RVC̅̅ ̅̅ ̅̅ ; and the union of the RVC and the RVM, denoted 

RVCM, whose edge is Ep and its complementary is called ventricular fundus (BV =RVMC̅̅ ̅̅ ̅̅ ̅̅ ). 

3.1. Endocardial contour detection 

The first step of RV segmentation consists of detecting the endocardial contour, thus 

primarily finding an RVC marker through the application of a threshold on the original 

image in order to separate the cavity from the rest. Then, this marker will be extended.   A 

process of delimitation is applied by dilating the calculated marker at the level of pixels 

detected as potential candidates that may belong to the RVC. The results are shown in 

Figure 3. 

3.2. Epicardial contour detection   

In this section, we are interested in detecting the right ventricular epicardium based on the 

Watershed approach [54]. In order to guarantee an optimal implementation, a parallel 

version has been selected [31]. Based on the approach of Cousty et al. [32], the implemented 

version assures parallel watershed computing while preserving the given topology. In fact, 

prior minima extraction is not needed, and neither is the use of any sorting step or 

hierarchical queue. 
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(a) (b) (c) 

   
(d) (e) (f) 

Figure 3. Endocardial border detection:(a) Original image in short axis view; (b) Result of 

the threshold; (c) Marker extraction; (d) RVC detection; (e) RVC border extraction; (f) Final 

result. 

 

For this particular reason, we aimed at separating the ventricular background from the 

epicardial contour, which means the selection of two markers. To accomplish this, we 

relied on morphological and topological operators which enabled us to guarantee the 

respect of the a priori presented in the previous paragraph. The Ep border is then delimited 

from these markers and finally, a smoothing phase is performed: 

 

• RVMC Recognition: This step is to determine the set of markers RVMCt for any t ∈ [1, 

sequence length] for each image. It is a matter of dilating the RVC by making sure that 

the resulting set is included in the present RVMC. 

• BV Recognition: The RVC thickness cannot exceed a certain threshold (s). We can 

deduce that the elements which are more distant from RVCt than a distance equal to 

(s) must belong to the BV and therefore to the BV marker. The BVt marker must be 

derived while preserving the topology by the homotopic transformations [55] which 

constitute a powerful tool. The BV has a single cavity: RVMC. The marker set RVMCt 

is, by construction, related. Moreover, it is necessarily included in the RVMCt. The 

complement of this marker RVMCt̅̅ ̅̅ ̅̅ ̅̅ ̅ has then the desired topology for BVt. Thus, marker 

BVt can be derived from marker RVMCt by homotopic retraction. The idea is therefore 

to reduce the marker RVMCt̅̅ ̅̅ ̅̅ ̅̅ ̅ set while preserving its topology and respecting the 

constraints, using an ultimate homotopic constrained skeleton. A homotopic skeleton 

of a set R constrained by a set C has the same topology as R, contains C, and cannot 

be reduced (by point suppression) while preserving these two invariants. Therefore, 

we calculate the BVt marker as the ultimate skeleton of RVMCt̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

• Delineation by Watershed transform: To take the temporal coherence of the 

delineation process into consideration, we consider the 4D graph corresponding to the 

3D+t image equation. The neighborhood of each voxel consists of its 6 neighbors in 3D 

space. The voxel that precedes it and the one that follows it in the temporal equation. 

Each edge of this graph is valued by the difference in intensity of the two voxels that 

compose it. The Watershed is calculated on the edges of this 4D graph from the 
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markers corresponding to the union of the marker RVMCt and the marker BVt in time. 

It can be noticed that the evaluation of the edges connecting two voxels belonging to 

a temporal gradient corresponds to two successive images. Considering this temporal 

component enables us to maintain a generic coherence between the successive 

segmentations during the cardiac cycle, which leads to an epicardium segmentation. 

• Smoothing: In order to smooth the epicardial border and restore a satisfactory shape 

in places where the contrast information does not allow a correct Watershed 

delineation, we use the Alternating Sequential Filter (ASF) [56], [57]. The ASF is a 

sequence of openings and closings by balls of increasing size. It is important to 

emphasize the effectiveness of the parallel version presented in [58]. The results are 

shown in Figure 4. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 4. Epicardial border detection:(a) RVC border already detected; (b) Selection of Ep 

marker; (c) Selection of BV marker; (d) Delineation by Watershed transform; (e) Extraction 

of Ep border; (f) Final result.  

3.3. Myocardium extraction    

The final step is to join the two output images of the epicardium and endocardium border 

detection to find the myocardium automatically as shown in Figure 5. 

 

    
(a) (b) (c) (d) 

Figure 5. Myocardial border detection: (a) En border detection result; (b) Ep border 

detection result; (c) Myocarditis border extraction; (d) Myocardial border detection result 

after detection of the En and Ep borders. 
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We aim to evaluate the semi-automatic image segmentation short-axis cardiac MR method, 

which segments all RV contours in one cardiac phase with minimal user input and without 

any manual corrections (Figure 6). The validity of the semi-automatic segmentation is 

compared to manual segmentation. 

 

  
(a) (b) 

Figure 6. RV manual segmentation in yellow: (a) endocardial detection, (b) myocardial 

extraction. 

 

It was revealed that manual segmentation is time-consuming because it depends on 

various factors such as user experience and contour detection methods. The main difficulty 

lies in the uniform delineation of the endocardial wall. If short-axis slices are used, 

delineation of the basal slices becomes extremely delicate. On the other hand, if strictly 

axial slices are used, the inferior wall of the right ventricle rises and becomes practically 

impossible to delineate [59], [60]. To summarize, the robustness of right ventricular 

measurements raises many questions. The postprocessing time as well as the variability of 

the measurements are twice as high as the analysis of the left ventricle. Conditioned by 

expert experience (see table 1) and appropriate slices selection, the variations of inter-

observer and intra-observer coefficients are 10% and 13%, respectively. It is important to 

note that these two coefficients do not exceed 5% and 8% when analyzing the LV [61].     

Table 1. Manual vs automated segmentation results. First and second columns: expert 1 and expert 2 annotations of different slices of patient1 
respectively 

 PM vs. exp1 PM vs. exp2 Exp1 vs. exp2 

End-systolic-time 

Sensitivity 0.95 0.99 0.98 

Specificity 0.99 0.99 0.99 

Dice 0.96 0.93 0.93 

Precision 0.97 0.89 0.89 

Recall 0.95 0.99 0.98 

End-diastolic-time 

Sensitivity 0.96 0.95 0.95 

Specificity 0.99 0.99 0.99 

Dice 0.97 0.95 0.97 

Precision 0.98 0.95 0.99 

Recall 0.96 0.95 0.95 
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Table 2 Manual vs automated segmentation results. First and second columns: expert 1 and expert 

2 annotations of different slices of patient 1 respectively. Fourth and fifth columns: expert 1 and 

expert 2 annotations of different slices of patient 2 respectively. Third and sixth columns: our 

proposed method segmentation results of patient 1 and patient 2 respectively.  

 

Patient 1 Patient 2 

Expert 1 - Manuel Expert 2 – Manuel Proposed method Expert 1 - Manuel Expert 2 – Manuel Proposed method 

      

      

      

      
 

In fact, inter-expert variability has a major influence in interpreting the segmentation 

quality results as shown in Ammari et al. work’s [62]. For this reason, we wanted to 

compare our algorithm’s output with two different manual segmentation held by two 

expert radiologists from Fattouma Bourguiba hospital. Table 2 illustrates the manual 

segmentation of the two experts showing similarities in some slices and few differences 

found within others. Contrarily, the results returned by our method are homogeneous, and 

stable without any variability except the inter-patient one. Semi-automatic segmentation 

methods which assist the analyst in this process in a short period of time and which 

provide valid results will be very beneficial to the physician in their clinical work. Our 

segmentation method provides, indeed, promising results as it takes less segmentation 

time.  
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4. Volume reconstruction  

 

Volumetric reconstruction of the right ventricle is an excellent way to guarantee a better 

visualization of the result of the previous segmentation. To achieve this, we first generate 

meshes from the obtained sequences, see figure 7, before proceeding to smoothing.  

Figures 8 and 10 show respectively the reconstructions of volumes from two different 

patients at the End-Diastolic phase and the End-Systolic phase after computing volume 

parameters that confirm pathological cases (Patient 1 – a 37-year-old man with inferior 

infarction extended to the VD) as shown in table 3. It should be noted that patient 2 who 

is a 49-year-old man is healthy. Volume rendering and computing are obtained using 

Amira software. For a more refined result, 3D slicer was used to obtain smoother 

contours and separation of the endo and epicardial cavities as shown in figures 9 and 11.     

 

Table 3. Volume (mm3) results of the two patients' RV constructions. 

Patient 1 Patient 2 

VTD VTS VTD VTS 

143700.9 103800.2 84000.1 37000.4 

 

 
Figure 7. The final result of RV segmentation. The first raw displays the original MRI slices; 

The second raw displays the superposition of the extracted mask with the original image; 

The third raw displays the extracted contours. 
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Corner 1 Corner 2 Corner 3 Corner 4 

  
Corner 5 Corner 6 

(a)  

    
Corner 1 Corner 2 Corner 3 Corner 4 

  
Corner 5 Corner 6 

 

 

(b)  
 

Figure 8. 3D volume of Patient 1’s RV demonstrated using AMIRA software: (a) at the End-

Diastolic phase, (b) at the End-Systolic phase using AMIRA software. 
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Corner 1 Corner 2 Corner 3 

   
Corner 4 Corner 5 Corner 6 

(a)  

 
(b)  

 

Figure 09.  3D volume of Patient 1’s RV demonstrated using 3D slicer Software: (a) 

Different corner views (b) Full reconstruction of Endo and Epicardial volumes.  
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Corner 1 Corner 2 Corner 3 Corner 4 

  
Corner 5 Corner 6 

 

(a) 

    
Corner 1 Corner 2 Corner 3 Corner 4 

  
Corner 5 Corner 6 

 

 

(b) 

 

Figure 10.  3D volume of Patient 2’s RV demonstrated using AMIRA software: (a) at the 

End-Diastolic phase,(b) at the End-Systolic phase. 
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Corner 1 Corner 2 Corner 3 

   
Corner 4 Corner 5 Corner 6 

 

(a)  

 
(b)  

Figure 11.  3D volume of Patient 2’s RV demonstrated using 3D slicer Software. (a) 

Different corner views (b) Full reconstruction of Endo and Epicardial volumes 

5. Modeling the cardiac right ventricle motion 

In this section, we are interested in modeling the right ventricle (RV) motion for analysis. 

We propose to model the spatio-temporal trajectory of the points belonging to the 

endocardial (respectively epicardial) contour of the RV using a harmonic linear motion 

model that can describe the RV dynamics. This model is based on the hypothesis of the 

quasi-periodicity of the heart rhythm. It uses a Kalman filter as an estimation tool. It is 

inspired and strongly guided by Oumsis et al. [63] approach initially introduced for LV 

motion tracking. The descriptor models of the cardiac function can be classified into two 

large families.  

 

The harmonic decomposition in Fourier series of the cardiac movement [64], [65] is based 

on the hypothesis of quasi-periodicity of the cardiac rhythm of which a descriptor s(t) 

can be decomposed into a Fourier series as shown in equation (1). In fact, s(t) represents 

an attribute extracted from the sequence of images, which may be local like the 
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coordinates of a point on the wall of the RV, or more global like the main radius or axes 

of the RV. �̅� represents its average value. This model of movement, known as the 

harmonic model, is therefore in the form of a harmonic series of order n. The coefficient 

ω represents the pulsation while φ(i) represents the phases of the different harmonics of 

the model. 

 

Sn(t)=𝑠̅+A(1)sin(ωt +ϕ(1))+...+A(n)sin(nωt +ϕ(n))           (1) 

 

The State vector linear dynamic modeling methods provide a complete description of 

the motion of the system under study [42], [45]-[47]. In continuous time, system evolution 

is governed by a linear differential equation. In discrete time, the state of the system at 

the instant k+1 is given by equation (2); where k is the time variable, F is the transition 

matrix allowing the shift of the state vector S(k) from one instant to another; a Gaussian 

noise ζ(k) with a zero mean of covariance matrix Q(k). 

 

S (k + 1) = F*S(k) + ζ(k)                                                                                                            (2)  

 

The two previously mentioned motion models are solely temporal (1D) models, 

independent of any geometric representation of the RV. They can be merged with a 2D 

or 3D spatial model that models the shape of the RV to provide spatiotemporal models. 

 

Assuming that the motion of the right ventricle is quasi-periodic, we consider s(t) as an 

attribute of the ventricle extracted from a temporal sequence of heart images. The 

attribute can be for example the coordinates of a point having a value that evolves during 

the cycle in a periodic way. We will consider it as a signal which can be decomposed 

according to equation (1) in the Fourier domain into a sum of harmonics. The objective 

is to have a linear state model without limiting the number of harmonics using equation 

(2) which corresponds to the harmonic decomposition of equation (1).  

5.1 State vector characterization    

For the sample k corresponding to time t, the motion of the RV as described in equation 

(1) will be characterized as follows: 

 

s(n)(k)=s(n)(t)=s̅+A(1)sin(ωt+ϕ(1))+...+A(n)sin(nωt+ϕ(n))                                                              (3) 

 

The sample k+1 corresponds to the time t+∆t ; it will be characterized as follows: 

 

s(n)(k+1)=s(n)(t+∆t)=s̅+A(1)sin(ω(t+∆t)+ϕ(1))+...+A(n) sin(nω(t+∆t)+ϕ(n))                                   

s(n)(t+δt)=s̅+A(1)sin(ωt+ϕ(1))cos(ω∆t) +...+ A(n)cos(nωt+ϕ(n))sin(nωδt)                         (4) 

 

In equation (3), s(n)(t) is a linear combination of the terms A(i)sin(iωt +ϕ(i)). In equation 

(4), s(n)(t+∆t) is also expressed by a linear combination of the same A(i)sin(iωt +ϕ(i)) and 

A(i)cos(iωt +ϕ(i)) .  

 

The objective here is to find a state vector S(n) that contains the element s(n) and allows 

s(n)(t+∆t) computing according to s(n)(t). Considering 𝑠(𝑛)
(𝑖)

(𝑡) the derivative of s(n)(t) in 

order i with respect to t, the following equations system is then extracted:    

 

{

𝑠𝑛(t) = s̅ + 𝐴1 sin(ωt + ϕ1) + ⋯ + 𝐴𝑛sin(nωt + ϕ𝑛) 

𝑠(𝑛)
(2)

(𝑡) = −ω2A1sin(ωt + ϕ1) − ⋯ − (nω)2Ansin(nωt + ϕ𝑛)

𝒔(𝒏)
(𝟐(𝒏−𝟏))

(𝒕) = (−1)n−1ω2(𝑛−1)  A1 sin(ωt + ϕ1)  + ⋯ + (−1)n−1(nω)2(n−1)Ansin(nωt + ϕ
n
)

      (5) 
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This linear system of n equations has n unknowns represented by equation (6): 

 

V(n)(t)=(A(1)sin(ωt +ϕ(1)),...,A(n)sin(nωt+ϕ(n)))T                                                                                                                         (6) 

 

The resolution of system (5) allows to write each element of the vector Vn(t) as a linear 

combination of the elements of the vector (�̅�,s(n)(t),𝑠(𝑛)
(2)

(𝑡),𝑠(𝑛)
(4)

(𝑡),..., 𝒔(𝒏)
(𝟐(𝒏−𝟏))

(𝒕))(T) of 

dimension n+1. Let be �̅�𝑖  and r(ij) (i=1,..., n; j =0,...,n-1) the coefficients of this combination: 

 

𝐴(𝑖)sin(𝑖ωt + ϕ(𝑖)) = �̅�𝑖  s̅ + ∑ 𝑟(𝑖,𝑗)
𝑛−1
𝑗=0 𝑠(𝑛)

(2𝑗)
(t)                                                                          (7) 

 

So by derivation, we obtain: 

𝐴(𝑖)cos(𝑖ωt + ϕ(𝑖)) =
∑ 𝑟(𝑖,𝑗)𝑠

(𝑛)
(2𝑗+1)

(𝑡)𝑛−1
𝑗=0

𝑖ω
                                                                                      (8)                                  

 

According to A(i)sin (iωt +ϕ(i)) and A(i)cos (iωt +ϕ(i)) previously defined; we can express 

s(n)(t+∆t) using the following vector S(n)(t)=(�̅�, s(n)(t), 𝒔(𝒏)
(𝟏)

(𝒕), 𝒔(𝒏)
(𝟐)

(𝒕),..., 𝒔(𝒏)
(𝟐(𝒏−𝟏))

(𝒕), s(2n-1)(t))(T) of 

dimension 2n+1.  

 

Thus, the vector S(n)(t) of dimension 2n+1 can be chosen as the state vector of the harmonic 

state model:  S(n) (t)=(s̅, s(n) (t),...,𝒔(𝒏)
(𝟐𝒏−𝟏)

(𝒕))(T)                                                                                                                             (9) 

5.2 Transition matrix computing    

The evolution equation of the harmonic equation model will be described as follows 

s(n)(t+∆t) = F(n) 𝑆(𝑛)(𝑘)+ ζ(k)     

 

The transition matrix F(n) can be directly computed by solving system (5). This system 

expresses the vector V(n)(t) as a function of the vector S(n)(t) which allows for determining 

the matrix elements. The transition matrix can also be determined recursively from the 

transition matrix of the harmonic model of order n-1 following equation (10) that 

expresses the second line of the matrix F(n+1). As explained by Ousmis et al. [63], the 

expressions 𝑠𝑛+1
𝑖 (𝑡 + ∆𝑡) are calculated by deriving this expression with respect to (∆𝑡). 

The state model thus obtained [63] is a canonical model that has the advantage of 

providing the successive derivatives of the observed parameter as its state vector. 

 

s(n+1)(t+∆t )= [a̅1 −  r̅ ∑ (−1)j  a1,2j((n + 1)ω)
2j

+ r̅ cos ((n + 1)ω∆t)n−1
j=0 ] s̅ 

+∑ [a1,2i −  ri ∑ (−1)j  a1,2j((n + 1)ω)
2j

+ ri cos((n + 1)ω∆t)n−1
j=0 ]n−1

i=0 sn+1
2i  

+ ∑ [a1,2i+1 − ri ∑ (−1)j+1a1,2j+1((n + 1)ω)
2j+1

+ ri
sin((n+1)ω∆t)

(n+1)ω

n−1
j=0 ] sn+1

2i+1 n−1
i=0   

+ [− rn ∑ (−1)j  a1,2j((n + 1)ω)
2j

+ r𝑛cos ((n + 1)ω∆tn−1
j=0 )] sn+1

2n (t) 

+[− rn ∑ (−1)(j+1)  a1,2j+1((n + 1)ω)
2j+1

+ rn
 sin ((n+1)ω∆t)

(n+1)ω

n−1
j=0 ] sn+1

2n+1(t)                              (10)                                                

5.3 Recursive filter building: 

 

In this subsection, a Kalman filter is defined from the computed harmonic state model to 

overcome the noisy measurements obtained from cardiac image sequences. The Kalman 

filter-based process can be divided into two stages: The first step consists in predicting the 

estimation according to the model of the system. To achieve this, the Kalman filter takes 

the previous estimate of the parameters with eventual errors and predicts the new 

parameters according to the modeling of the system. The second step will update this 

prediction by virtue of the new measurements. In fact, this update step will rectify any 

errors that would exist in the model. 
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The complete state model of a linear system consists of the state equation (2) and the 

measurement equation that relates the state vector to the measured quantities. In the 

present case, the only variable S(k) with H (0,1,0,….,0) and ζ(k) is a zero main additive 

Gaussian noise of a covariance matrix of Q(k). sz(k) is the measurement vector that groups 

together the observations made on the system at time k, which is reduced to the 

measurement of the attribute s(k). It is linked to the state vector by the measurement 

equation H. η(k) is a zero main Gaussian noise of covariance matrix R(k). 

 

𝑆(𝑘 + 1) = 𝐹𝑆(𝑘) + 𝜁(𝑘) 
𝑆(𝑧)(𝑘) = 𝐻𝑆(𝑘) + 𝜂(𝑘)                                                                                                                          (11) 

 

The use of such a filter allows the estimation of the state vector to converge towards 

optimal estimates of the parameters of the dynamic system. Thus, after convergence over 

a sufficient number of periods, the information contained in the state vector will allow 

describing the evolution of this parameter. It is important to note that the matrix R(k) was 

reduced to a matrix (1∗1) of a single element. Q(k) is chosen as a diagonal matrix 

(2n+1)∗(2n+1). The values of this diagonal represent the noise present in the system.  

 6. Results and Discussion 

To evaluate the proposed approach, an intern database of twenty patients was used. 

These data, made anonymous, come from classical clinical exams performed at Fattouma 

Bourguiba University Hospital, Monastir, Tunisia. They concern both healthy volunteers 

as well as pathological cases. Moreover, they were collected following the Declaration of 

Helsinki, and the protocol was approved by the Ethics Committee of Laboratory of 

Medical Imaging Technology - LTIM-LR12ES06, Faculty of Medicine of Monastir 

Tunisia, (December 15, 2021). Before taking part in this study, all volunteers gave their 

informed consent for inclusion. 

 

The simulation of the motion was initially developed using a third-order harmonic 

equation (13). �̅�, A(1), A(2), A(3) , φ(1) , φ(2) , φ(3), ω are set out in Table 4.    

 

s(t)=s̅+A(1)sin(ωt+ϕ(1))+A(2) sin(2ωt+ϕ(2))+A(3)sin(3ωt+ϕ(3))                                                    (13) 

 

The same test conditions announced in [63] are maintained: The measurement of noise is 

simulated by adding a white Gaussian noise of mean zero and variance σ2. The number 

of samples is fixed at 16. This data is fed to the Kalman filter which estimates the state 

vector S(n)(t) of the harmonic state model. 

TABLE.4- Fixed Data for Kalman estimation      

𝒔 A1 A2 A3 φ1 φ2 φ3 ω/2π 

4.50 13.06 -0.64 4.33 -1.37 1.66 0.65 100/60 

                                                 
These data are used in the Kalman filter which estimates the state vector S(n)(t) of the 

harmonic state model. Figure 12 illustrates the behavior of the filter from any 

initialization to convergence. After a learning period of two cycles, the Kalman filter 

converges towards optimal estimates of dynamic system parameters. Thus, the 

information contained in the state vector will enable the description of the evolution of 

this parameter. However, this experience was a preliminary result that established the 

feasibility of the approach and required the implementation of a broader strategy to 

evaluate and clinically validate the method. 
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Figure 12. Behavior of the filter built from the 3rd order model. 

Two estimation errors are calculated and for each filter [63]: the mean square error ε1 

between the filter estimate and the exact signal values (without noise), and the mean 

square error ε2 between the filter estimate and the noisy measurements as shown by the 

following equations.   

ɛ1 =√1

𝑁
∑ ‖�̃�

𝑘

𝑘
− 𝑠(𝑘)‖

2
𝑁
𝐾−1

 

ɛ2 =√1

𝑁
∑ ‖�̃�

𝑘

𝑘
− 𝑠𝑧(𝑘)‖

2
𝑁
𝐾−1

 

 

We notice that the model of order 3 ensures the smallest error ε1, which is indeed a logical 

result. The order of the state model corresponds to the number of harmonics of the signal. 

Error ε1 is impossible to calculate in practice; as a result, it impedes us from choosing this 

order. Error ε2 decreases as the order of the harmonic state model increases so that the 

high-frequency components of the noise can be taken into account. Figure 13 shows the 

evolution of the two errors ε1 and ε2 as a function of the order of the harmonic model. 

 

 
Figure 13 Evolution of the errors ε1 and ε2 according to the model’s order. 

 

 

For a faithful application of cardiac motion, a system with sufficient harmonics to model 

motion should be chosen. The study of the average value of the amplitude of each 

harmonic of the signals formed by the variation of the state model over time will allow 

making such a choice. In Figure 14, the mean value of the amplitudes of the first six 

harmonics is plotted. It can be noticed that the first three harmonics are sufficient to model 

the temporal variations of the external and internal rays as well as thickening. A model of 

order 3 is therefore used. 
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Figure 14 Mean amplitude of signal harmonics 

 

Finally, measuring the distance involves superimposing the two contours of the 

endocardium and the epicardium. This process is iterated until the last image (this 

sequence contains 14 images). Then, the Euclidean distance between each pair of 

corresponding points is calculated (Figure 15); and this is for each direction, by 

determining the intersection points of two lines. 
 

    
(a) (b) (c) (d) 

Figure 15. (a) Intersection of the segmented image with endocardium, (b) Intersection of 

the lines with the contour of the endocardium, (c) Intersection of the segmented image 

with epicardium, (d) Four myocardial distances. 

 

We note that the thickness of the walls in the normal case is between 2 to 5mm; when this 

value is above 6mm, it is a pathological case. Figures 16 illustrate results for diastole and 

systole phases. The evolution of the average distances between the different cuts is 

presented in Figure 17 for both systole (S) and diastole (D) phases.   
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(a)                                 (b) 

Figure 16. Distance computing for (a) diastolic and (b) systolic phases.  

 

Figure 17. Distance average for diastolic and systolic phases.  

To broaden the comparison spectrum, a second optical flow-based filter is tested. Thus, 

we present the result of the monitoring of the myocardial border points by the use of 

Lucas Kanade-Tomasi algorithm [66]. This standard algorithm uses spatial intensity 

information to orient and guide the search for the best matches. The objective of the KLT 

algorithm is to find the best alignment of the model with the distorted image by 

minimizing the sum of the squared errors between them. Figure 18 shows the obtained 

results. The region of interest detected in the selected area is marked by the white "+" 

symbols, as shown. Subsequently, the point tracking system will follow the RV image by 

image. The detected point is marked by the green "+" symbol. 
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(a) (b) (c) (d) 

Figure 18. Applying Lucas Kanade-Tomasi (KLT) feature tracking method:(a) Selected 

region, (b) Red box shows region object, (c) Detected points of interest, (d) Selected 

points. 

 

The algorithm was described on the basis of a point tracking system to recognize the RV 

myocardium. The input sequence used is grayscale and 240x280 in size, and it consists of 

approximately 14 frames as shown in figure 19. The filter appears to work properly as 

long as the slices are clear. If there is noise, the tracker gets lost and the edges are poorly 

detected.     

 

     

     
Figure 19. Estimated flow over the first ten cuts using Lucas Kanade-Tomasi (KLT) 

feature tracking method.  

7. Conclusions 

In this work, we initially proposed a segmentation method based on the topological 
transformation of the watershed line to detect the endocardial and epicardial contours. 

This segmentation was followed by the extraction of the right ventricular myocardium. 
Compared with conventional methods, the proposed approach is an efficient one since it 
ensures a faithful detection of ventricular contours. In addition to its preservation of 

topology, such segmentation provides a solid basis for calculating all parameters of right 
ventricular function such as ventricular mass, ejection fraction, ejection volume, and 

myocardial thickness as well as modeling the 3D volume. To perform motion tracking, a 
model adapted for temporal modeling of RV deformation is proposed. The periodicity 
assumption has been used to converge the Kalman filter. The proposed model was 

validated using an inter database of 20 patients. These data, which were anonymized, 
come from clinical exams performed at Fattouma Bourguiba University Hospital, 

Monastir, Tunisia. Indeed, the Kalman filter can be considered a powerful estimation and 
prediction tool when considering system modeling. Nevertheless, this filter is not 
necessarily a tool that can be applied in all cases. In fact, the system must be modeled 

accurately enough to design an effective filter. Additionally, this technique 
has lingering flaws. First, the covariance of the error does not necessarily converge. 



 

22 

 

Second, it causes a high computational cost. Another important limitation of such a 

method is that the Kalman filter allows considering only a Gaussian noise model while 
other types of noise need to be considered especially in image processing as Poisson noise. 

This restriction, therefore, limits the use of the Kalman filter. 
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