Nonhierarchical Document Clustering
Based on a Tolerance Rough Set Model

Tu Bao Ho,"™ Ngoc Binh Nguyen?

Japan Advanced Institute of Science and Technology,
Tatsunokuchi, Ishikawa 923-1292, Japan

2Hanoi University of Technology,

DaiCoViet Road, Hanoi, Vietnam

Document clustering, the grouping of documents into several clusters, has been recognized as a
means for improving efficiency and effectiveness of information retrieval and text mining. With
the growing importance of electronic media for storing and exchanging large textual databases,
document clustering becomes more significant. Hierarchical document clustering methods, having
a dominant role in document clustering, seem inadequate for large document databases as the time
and space requirements are typically of order O(N?) and O(N?), where N is the number of index
terms in a database. In addition, when each document is characterized by only several terms or
keywords, clustering algorithms often produce poor results as most similarity measures yield many
zero values. In this article we introduce a nonhierarchical document clustering algorithm based
on a proposed tolerance rough set model (TRSM). This algorithm contributes two considerable
features: (1) it can be applied to large document databases, as the time and space requirements
are of order O(NlogN) and O(N), respectively; and (2) it can be well adapted to documents
characterized by a few terms due to the TRSM’s ability of semantic calculation. The algorithm has
been evaluated and validated by experiments on test collections. © 2002 John Wiley & Sons, Inc.

1. INTRODUCTION

With the growing importance of electronic media for storing and exchanging
textual information, there is an increasing interest in methods and tools that can
help find and sort information included in the text documents.* It is known that
document clustering—the grouping of documents into clusters—plays a significant
role in improving efficiency, and can also improve effectiveness of text retrieval as
it allows cluster-based retrieval instead of full retrieval. Document clustering is a
difficult clustering problem for a number of reasons,*”-!* and some problems occur
additionally when doing clustering on large textual databases. Particularly, when
each document in a large textual database is represented by only a few keywords,
current available similarity measures in textual clustering'-* often yield zero values
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that considerably decreases the clustering quality. Although having a dominant role
in document clustering,'” hierarchical clustering methods seem not to be appropriate
for large textual databases, as they typically require computational time and space
of order O(N?) and O(N?), respectively, where N is the total number of terms in
a textual database. In such a case, nonhierarchical clustering methods are better
adapted, as their computational time and space requirements are much less.’

Rough set theory, a mathematical tool to deal with vagueness and uncertainty in-
troduced by Pawlak in the early 1980s,' has been successful in many applications.®!!
In this theory each set in a universe is described by a pair of ordinary sets called lower
and upper approximations, determined by an equivalence relation in the universe.
The use of the original rough set model in information retrieval, called the equiva-
lence rough set model (ERSM), has been investigated by several researchers.!>!® A
significant contribution of ERSM to information retrieval is that it suggested a new
way to calculate the semantic relationship of words based on an organization of the
vocabulary into equivalence classes. However, as analyzed in Ref. 5, ERSM is not
suitable for information retrieval due to the fact that the requirement of the transitive
property in equivalence relations is too strict the meaning of words, and there is no
way to automatically calculate equivalence classes of terms. Inspired by some works
that employ different relations to generalize new models of rough set theory, for ex-
ample, Refs. 14 and 15 a rolerance rough set model (TRSM) for information retrieval
that adopts tolerance classes instead of equivalence classes has been developed.’

In this article we introduce a TRSM-based nonhierarchical clustering algorithm
for documents. The algorithm can be applied to large document databases as the time
and space requirements are of order O(NlogN ) and O(N ), respectively. It can also be
well adapted to cases where each document is characterized by only a few index terms
or keywords, as the use of upper approximations of documents makes it possible
to exploit the semantic relationship between index terms. After a brief recall of the
basic notions of document clustering and the tolerance rough set model in Section
2, we will present in Section 3 how to determine tolerance spaces and the TRSM
nonhierarchical clustering algorithm. In Section 4 we report experiments with five
test collections for evaluating and validating the algorithm on clustering tendency
and stability, efficiency, and effectiveness of cluster-based information retrieval in
contrast to full retrieval.

2. PRELIMINARIES
2.1. Document Clustering

Consider a set of documents D = {d, d,, ..., dy} where each document d ;
is represented by a set of index terms #; (for example, keywords) each is associ-
ated with a weight w;; € [0, 1] that reflects the importance of #; in d;, that is, d; =
(t1j, wijs taj, waji .. .5 tyj, wrj). The set of all index terms from D is denoted by
T ={t1,tp, ..., ty}. Givenaquery in the form Q = (g1, wig; g2, Wags - - -5 s, Wsq)
where ¢; € T and w;, € [0, 1], the information retrieval task can be viewed as to
find ordered documents d; € D that are relevant to the query Q.

A full search strategy examines the whole document set D to find relevant doc-
uments of Q. If the document set D can be divided into clusters of related documents,
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the cluster-based search strategy can considerably increase retrieval efficiency as
well as retrieval effectiveness by searching the answer only in appropriate clusters.
The hierarchical clustering of documents has been largely considered.>% 81 How-
ever, with the typical time and space requirements of order O(N?) and O(N?), hierar-
chical clustering is not suitable for large collections of documents. Nonhierarchical
clustering techniques, with their costs of order O(NlogN) and O(N), certainly are
much more adequate for large document databases.” Most nonhierarchical clustering
methods produce partitions of documents. However, according to the overlapping
meaning of words, nonhierarchical clustering methods that produce overlapping
document classes serve to improve the retrieval effectiveness.

2.2. Tolerance Rough Set Model

The starting point of rough set theory is that each set X in a universe U can be
“viewed” approximately by its upper and lower approximations in an approxima-
tion space R = (U, R), where R C U x U is an equivalence relation. Two objects
x,y €U are said to be indiscernible regarding R if x Ry. The lower and upper ap-
proximations in R of any X C U, denoted respectively by L(R, X) and U(R, X),
are defined by

LR, X)={xeU:[x]g € X} (1)
UR,X)={xeU:[x]lgNX # ¢} (2)

where [x ]z denotes the equivalence class of objects indiscernible with x regarding the
equivalence relation R. All early work on information retrieval using rough sets was
based on ERSM with a basic assumption that the set 7 of index terms can be divided
into equivalence classes determined by equivalence relations.'>'® In our observation
among the three properties of an equivalence relation R (reflexive, x Rx; symmetric,
X Ry — yRx; and transitive, xRy A yRz — xRz for Vx, y, z € U), the transitive
property does not always hold in certain application domains, particularly in natural
language processing and information retrieval. This remark can be illustrated by
considering words from Roget’s thesaurus, where each word is associated with a
class of other words that have similar meanings. Figure 1 shows associated classes
of three words, root, cause, and basis. It is clear that these classes are not disjoint
(equivalence classes), but overlapping, and the meaning of the words is not transitive.
Overlapping classes can be generated by folerance relations that require only
reflexive and symmetric properties. A general approximation model using tolerance
relations was introduced in Ref. 14 in which generalized spaces are called tolerance
spaces that contain overlapping classes of objects in the universe (tolerance classes).
In Ref. 14, a tolerance space is formally defined as a quadruple R = (U, I, v, P),
where U is a universe of objects, 1 : U — 2Y is an uncertainty function, v : 2U x
2V — [0, 1] is a vague inclusion, and P : I(U) — {0, 1} is a structurality function.
We assume that an object x is perceived by information Inf(x) about it. The
uncertainty function 7 : U — 2V determines I (x) as a tolerance class of all objects
that are considered to have similar information to x. This uncertainty function can
be any function satisfying the condition x € I(x) and y € I (x) iff x € I (y) for any
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Figure 1. Overlapping classes of words.

x,y € U. Such a function corresponds to a relation Z € U x U understood as xZy
iff y € 1(x).Z is a tolerance relation because it satisfies the properties of reflexivity
and symmetry.

The vague inclusion v : 2Y x 2Y — [0, 1] measures the degree of inclusion of
sets; in particular it relates to the question of whether the tolerance class 7 (x) of an
object x € U is included in a set X. There is only one requirement of monotonicity
with respect to the second argument of v, thatis, v(X, Y) < v(X, Z) forany X, Y,
ZCUandY C Z.

Finally, the structurality function is introduced by analogy with mathematical
morphology.'* In the construction of the lower and upper approximations, only toler-
ance sets being structural elements are considered. We define that P : I (U) — {0, 1}
classifies I (x) for each x € U into two classes—structural subsets (P(/(x))=1)
and non-structural subsets (P (I (x)) = 0). The lower approximation £(R, X) and
the upper approximation (R, X) in R of any X C U are defined as

LR, X)={xeU|PUx)=1&vI(x),X) =1} 3)
UR,X)={x e U|PUx) =1&vIx),X)> 0} (4)

The basic problem of using tolerance spaces in any application is how to determine
suitably 7, v, and P.

3. TRSM NONHIERARCHICAL CLUSTERING
3.1. Determination of Tolerance Spaces

We first describe how to determine suitably /, v, and P for the information
retrieval problem. First of all, to define a tolerance space R, we choose the universe
U as the set 7 of all index terms

U={nth,....ty} =T 5)
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The most crucial issue in formulating a TRSM for information retrieval is identifica-
tion of tolerance classes of index terms. There are several ways to identify conceptu-
ally similar index terms, for example, human experts, thesaurus, term co-occurrence,
and so on. We employ the co-occurrence of index terms in all documents from D
to determine a tolerance relation and tolerance classes. The co-occurrence of index
terms is chosen for the following reasons: (1) it gives a meaningful interpretation in
the context of information retrieval about the dependency and the semantic relation
of index terms!’; and (2) it is relatively simple and computationally efficient. Note
that the co-occurrence of index terms is not transitive and cannot be used automati-
cally to identify equivalence classes. Denote by fp(#;, t;) the number of documents
in D in which two index terms #; and ¢; co-occur. We define the uncertainty function
I depending on a threshold 6 as

Io(t;) = {t; | fp(ti,t;) =0} U {1} (6)

It is clear that the function I, defined above satisfies the condition of ¢; € Iy(¢;) and
tj € Ip(t;) ifft; € Iy(t;) foranyt;, t; € T,and so Iy is both reflexive and symmetric.
This function corresponds to a tolerance relation Z € 7 x 7 thatt;Zt; iff t; € Iy(t;),
and Iy(¢;) is the tolerance class of index term ;. The vague inclusion function v is
defined as

IXNY]|
| X|

This function is clearly monotonous with respect to the second argument. Based on
this function v, the membership function u for; € 7, X C 7T can be defined as
[1o(1;) N X]|
e, X) = v(lp(1), X) = ol ®)
’ ’ 1o (1)

Suppose that the universe 7 is closed during the retrieval process; that is, the query Q
consists of only terms from 7. Under this assumption we can consider all tolerance
classes of index terms as structural subsets; that is, P(Iy(#;)) = 1 forany t; € 7.
With these definitions we obtained the tolerance space R = (7, I, v, P) in which
the lower approximation L(R, X) and the upper approximation U(R, X) in R of
any subset X C 7 can be defined as

LR, X)={t; € T | v(Is(t;), X) = 1} )
UR,X) ={t; € T | vIs(t;), X) > 0} (10)

v(X,Y) @)

Denote by fy,(#;) the number of occurrences of term 7; in d; (term frequency),
and by fp(#;) the number of documents in D that term # occurs in (document
frequency). The weights w;; of terms #; in documents d is defined as follows. They
are first calculated by

(1 +log(fu, (1)) x log 22 if 1 € dj,
wij = . 1 (1)
0 if t; ¢d;

then are normalized by vector length as wi;j <= wi;/\/> 2, cq, (wpj)?. This
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term-weighting method is extended to define weights for terms in the upper ap-
proximation U (R, d;) of d;. It ensures that each term in the upper approximation
of d;, but not in d;, has a weight smaller than the weight of any term in d;:

(14 log(fy, (1)) x log % if #; €d;,

. log(M i :
Wij = mlnthedjwhj X % lf ti S U(R, dj)\d] (12)

0 if  ¢U(R,d;)

The vector length normalization is then applied to the upper approximation 4 (R, d,)
of d;. Note that the normalization is done when considering a given set of index terms.

We illustrate the notions of TRSM by using the JSAI database of articles and
papers of the Journal of the Japanese Society for Artificial Intelligence (JSAI) after
its first ten years of publication (1986—1995). The JSAI database consists of 802
documents. In total, there are 1,823 keywords in the database, and each document
has on average five keywords. To illustrate the introduced notions, let us consider
a part of this database that consists of the first ten documents concerning “machine
learning.” The keywords in this small universe are indexed by their order of ap-
pearance, that is, f; = “machine learning,” #, = “knowledge acquisition”, ..., 390 =
“neural networks,” t3; = “logic programming.” With 6 = 2, by definition (See
Equation 6) we have tolerance classes of index terms I,(¢;) = {t1, t2, ts, t16}, [2(t2) =
{t1, 12, 14, 15, a6}, 2 (t4) = {12, 14}, I (t5) = {11, 12, 15}, Io(t6) = {16, 17}, Lo (t7) = {t6, 17},
L (ti6) = {11, ti6}, I (t26) = {12, 126}, and each of the other index terms has the corre-
sponding tolerance class consisting of only itself, for example, I,(#3)={t3}.
Table I shows these ten documents, and their lower and upper approximations with
0 =2.

3.2. TRSM Nonhierarchical Clustering Algorithm

Table II describes the TRSM nonhierarchical clustering algorithm. It can be
considered as a reallocation clustering method to form K clusters of a collec-
tion D of M documents.® The distinction of the TRSM nonhierarchical clustering

Table I. Approximations of first 10 documents concerning “machine learning.”

Keywords L(R,d}) UR,d))
d 1, 1,13, 14,15 13,14, 15 I, 12, 13, 14, 15, 116, 126
dy Ie, t7, 13, 19 t6, 17, 13, 19 t6, 17, 13, I9
d3 15, 11, 1o, 11, 12 15, 110, 111 I, 12, 14, 15, 1o, 111, 116, 126
dy 16, 17, 112, 113, 114 I, 17, 112, 113, 114 I, 17, 112, 113, 14
ds 12, 115, 14 14, 115 1, 12, 14, 15, 115, 126
de 11, e, 117, 118, 119, 120 Hes 117, 118, 119, 120 11, 2, 15, L, 117, 118, 119, 120
d7 01, 122, 123, 124, 125 01, 122, 123, 124, 125 01, 122, 123, 124, 125
ds 12, 112, 126, 127 ha, e, 127 1, 12, 14, 15, 112, 126, 127
do 16, 12, 128 126, 128 11, 12, 14, 15, 126, 128

dio 11, tie, 121, 126, 129, 130, 131 e, 121, 126, 129, 130, 131 h, 12, 15, le, 121, 126, 129, 130, 131
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Table II. The TRSM nonhierarchical clustering algorithm.

Input  The set D of documents and the number K of clusters
Result K overlapping clusters of D associated with cluster membership of each document

1. Determine the initial representatives Ry, R, ..., Rg of clusters Cy, C3, ..., Cg as K randomly selected
documents in D.

2. For each d; € D, calculate the similarity S/ (R, d;), Ry) between its upper approximation U (R, d;)
and the cluster representative Ry, for k = 1, ..., K. If this similarity is greater than a given threshold,
assign d; to Cy and take this similarity value as the cluster membership m(d;) of d; in Cy.

3. For each cluster Cy, re-determine its representative Ry.

Repeat steps 2 and 3 until there is little or no change in cluster membership during a pass through D.

5. Denote by d, an unclassified document after steps 2, 3, and 4, and by NN(d,,) its nearest neighbor
document (with non-zero similarity) in formed clusters. Assign d,, into the cluster that contains NN(d,,),
and determine the cluster membership of d, in this cluster as the product m(d,) =m(NN(d,)) X
SU(R, dy), U(R,NN(d,))). Re-determine the representatives Ry, fork =1, ..., K.

~

algorithm is that it forms overlapping clusters and uses approximations of documents
and cluster’s representatives in calculating their similarity. The latter allows us to
find some semantic relatedness between documents even when they do not share
common index terms. After determining initial cluster representatives in step 1, the
algorithm mainly consists of two phases. The first does an iterative re-allocation of
documents into overlapping clusters by steps 2, 3, and 4. The second does, by step 5,
an assignment of documents, that are not classified in the first phase, into clusters
containing their nearest neighbors with non-zero similarity. Two important issues of
the algorithms will be further considered: (1) how to define the representatives of
clusters; and (2) how to determine the similarity between documents and the cluster
representatives.

3.2.1. Representatives of Clusters

The TRSM clustering algorithm constructs a polythetic representative R; for
each cluster Cy, k =1, ..., K. In fact, Ry is a set of index terms such that:

® Each document d; € C; has some or many terms in common with Ry
® Terms in Ry are possessed by a large number of d; € C;
® No term in R; must be possessed by every document in Cy

Itis well known in Bayesian learning that the decision rule with minimum error
rate to assign a document d; in the cluster Cy is

P(d; | C)P(Cr) > P | Cr)P(Cy), Yh #k (13)
When it is assumed that the terms occur independently in the documents, we have

P(dj|Co) = P(t; |CHP;, [ Cp) ... P(t;, | Ci) (14)
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Denote by f, (t;) the number of documents in Cy, that contain #;; we have P (t; | Cy) =
fc, () /1Ck|. In step 3 of the algorithm, all terms occurring in documents belonging
to Cy in step 2 will be considered to add to Ry, and all terms existing in R; will
be considered to remove from or to remain in R;. Equation 14 and heuristics of the
polythetic properties of the cluster representatives lead us to adopt rules to form the
cluster representatives:

(1) Initially, R, = ¢
(2) Foralld; € Cy and for all t; € d;, if f¢,(t;)/|Ci| > o, then R, = R, U {t;}
(3) Ifd; € Cyandd; N Ry = ¢, then Ry = Ry U argmax,, ., Wij

The weights of terms #; in Ry are first averaged by weights of terms in all docu-
ments belonging to Cy, that means w;; = (Zdjeck w;;)/I{d; :t; € d;}|, then normal-
ized by the length of the representative R.

3.2.2.  Similarity between Documents and the Cluster Representatives

Many similarity measures between documents can be used in the TRSM clus-
tering algorithm. Three common coefficients of Dice, Jaccard, and Cosine'* are
implemented in the TRSM clustering program to calculate the similarity between
pairs of documents d;, and d},. For example, the Dice coefficient is

N
2 x Zk:l(wkjl X ijz)

Sp(dj,.dj,) = (15)
R S/ Wi, + i Wi,
When binary term weights are used, this coefficient is reduced to
Soldy. dy) = -2 (16)
D\&js Cjp) = A+ B

where C is the number of terms that d; and d;, have in common, and A and B
are the number of terms in d;, and d;,. It is worth noting that the Dice coefficient
(or any other well-known similarity coefficient used for documents'-?) yields a large
number of zero values when documents are represented by only a few terms, as many
of them may have no terms in common (C =0). The use of the tolerance upper
approximation of documents and of the cluster representatives allows the TRSM
algorithm to improve this situation. In fact, in the TRSM clustering algorithm, the
normalized Dice coefficient is applied to the upper approximation of documents
U(R,d;); thatis, Sp(U(R, d;), Ry)) is used in the algorithm instead of Sp(d;, Ry).
Two main advantages of using upper approximations are:

(1) To reduce the number of zero-valued coefficients by considering documents themselves
together with the related terms in tolerance classes.

(2) The upper approximations formed by tolerance classes make it possible to retrieve
documents that may have few (or even no) terms in common with the query.
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Table III. Test collections.

Collection Subject Documents Queries Relevant
JSAI Artificial Intelligence 802 20 32
CACM Computer Science 3,200 64 15
CISI Library Science 1,460 76 40
CRAN Aeronautics 1,400 225 8
MED Medicine 3,078 30 23

4. VALIDATION AND EVALUATION

We report experiment results on clustering tendency and stability, as well as on
cluster-based retrieval effectiveness and efficiency.®!° Table III summarizes test col-
lections used in our experiments, including JSAI where each document is represented
on average by five keywords, and four other common test collections.> Columns 3,
4, and 5 show the number of documents, queries, and the average number of relevant
documents for queries. The clustering quality for each test collection depends on
parameter 6 in the TRSM and on o in the clustering algorithm. We can note that
the higher value of 6, the larger the upper approximation and the smaller the lower
approximation of a set X. Our experiments suggested that when the average number
of terms in documents is high and/or the size of the document collection is large, high
values of 6 are often appropriate and vice versa. In Table VI of Section 4.3, we can
see how retrieval effectiveness relates to different values of 8. To avoid biased ex-
periments when comparing algorithms, we take default values K = 15,6 = 15, and
o = 0.1 for all five test collections. Note that the TRSM nonhierarchical clustering
algorithm yields at most 15 clusters, as in some cases several initial clusters can be
merged into one during the iteration process, and for 6§ > 6, upper approximations
of terms in JSAI become stable (unchanged).

4.1. Validation of Clustering Tendency

The experiments attempt to determine whether worthwhile retrieval perfor-
mance would be achieved by clustering a database, before investing the computa-
tional resources that clustering the database would entail.> We employ the nearest
neighbor test" by considering, for each relevant document of a query, how many
of its n nearest neighbors are also relevant, and by averaging over all relevant docu-
ments for all queries in a test collection in order to obtain single indicators. We use in
these experiments five test collections with all queries and their relevant documents.

The experiments are carried out to calculate the percentage of relevant docu-
ments in the database that had zero, one, two, three, four, or five relevant documents
in the set of five nearest neighbors of each relevant document. Table IV reports the
experimental results synthesized from those done on five test collections. Columns 2
and 3 show the number of queries and total number of relevant documents for all
queries in each test collection. The next six rows show the average percentage of
the relevant documents in a collection that had zero, one, two, three, four, and five
relevant documents in their sets of five nearest neighbors. For example, the meaning
of row JSAI column 9 is “among all relevant documents for 20 queries of the JSAI
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Table IV. Results of clustering tendency.

% average of relevant documents

# Relevant
Queries documents 0 1 2 3 4 5 Average
JSAI 20 32 19.9 19.8 18.5 18.5 11.8 11.5 22
CACM 64 15 50.3 22.5 12.8 7.9 4.2 2.3 1.0
CISI 76 40 454 25.8 15.0 7.5 43 1.9 1.1
CRAN 225 8 334 32.7 19.2 9.0 4.6 1.0 1.2
MED 30 23 104 18.7 18.6 21.6 19.6 11.1 2.5

collection, 11.5 percent of them have five nearest neighbor documents all as rele-
vant documents.” The last column shows the average number of relevant documents
among five nearest neighbors of each relevant document. This value is relatively
high for the JSAI and MED collections and relatively low for the others.

As the finding of nearest neighbors of a document in this method is based on the
similarity between the upper approximations of documents, this tendency suggests
that the TRSM clustering method might appropriately be applied for retrieval pur-
poses. This tendency can be clearly observed in concordance with the high retrieval
effectiveness for the JSAI and MED collections shown in Table VI.

4.2. The Stability of Clustering

The experiments were done for the JSAI test collection in order to validate
the stability of the TRSM clustering, that is, to verify whether the TRSM clustering
method produces a clustering that is unlikely to be altered drastically when further
documents are incorporated. For each value 2, 3, and 4 of 6, the experiments are
done ten times each for a reduced database of size (100 — s) percent of D. We
randomly remove a specified of s percentage documents from the JSAI database,
then re-determine the new tolerance space for the reduced database. Once having
the new tolerance space, we perform the TRSM clustering algorithm and evaluate
the change of clusters due to the change of the database. Table V synthesizes the
experimental results with different values of s from 210 experiments with s = 1, 2,
3,4,5, 10, and 15 percent.

Note that a little change of data implies a possible little change of clustering
(about the same percentage as for & = 4). The experiments on the stability for other
test collections have nearly the same results as those of the JSAI. That suggests that
the TRSM nonhierarchical clustering method is highly stable.

Table V. Synthesized results about the stability.

Percentage of changed data

1% 2% 3% 4% 5% 10% 15%
0=2 2.84 5.62 7.20 5.66 5.48 11.26 14.41
0=3 3.55 4.64 4.51 6.33 7.93 12.06 15.85

0=4 0.97 2.65 2.74 4.22 5.62 8.02 13.78
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Table VI. Precision and recall of full retrieval.

JSAI CACM CISI CRAN MED
% P R P R P R P R P R

30 0.934  0.560 0.146  0.231 0.147  0.192 0.265 0.306 0416 0.426
25 0.934  0.560 0.158 0.242 0.151 0.194 0.266 0.310 0416 0.426
20 0.934  0.560 0.159 0.243 0.150  0.194 0.268 0.311 0.416  0.426
15 0.934  0.560 0.160 0.241 0.155 0.204 0.257  0.301 0415 0.421

10 0.934  0.560 0.141 0.221 0.142 0.178 0.255 0.302 0414 0.387
8 0.934  0.560 0.151 0.254 0.138 0.172 0242  0.291 0.393  0.386
6 0.945  0.550 0.141 0.223 0.146 0.178 0233  0.271 0.376  0.365
4 0.904  0.509 0.137  0.182 0.152  0.145 0.223  0.241 0.356  0.383
2 0.803  0.522 0.111  0.097 0.125  0.057 0.247 0.210 0.360 0.193

VSM 0934 0.560 0.147 0.232 0.139 0.184 0.258 0.295 0.429 0.444

4.3. Evaluation of Cluster-Based Retrieval Effectiveness

The experiments evaluate effectiveness of the TRSM cluster-based retrieval
by comparing it with full retrieval by using the common measures of precision and
recall. Precision, P, is the ratio of the number of relevant documents retrieved over
the total number of documents retrieved. Recall, R, is the ratio of relevant documents
retrieved for a given query over the number of relevant documents for that query in
the database. Precision and recall are defined as

_ |Rel N Ret| R— |Rel N Ret|

= 17
|Ret| |Rel| (D

where Rel C D is the set of relevant documents in the database for the query, and
Ret C D is the set of retrieved documents. Table VI shows precision and recall of the
TRSM-based full retrieval and the VSM-based full retrieval (vector space model®)
where the TRSM-based retrieval is done with values 30, 25, 20, 15, 10, 8, 6, 4, and
2 of 6. After ranking all documents according to the query, precision and recall are
evaluated on the set of retrieved documents determined by the default cutoff value as
the average number of relevant documents for queries in each test collection. From
this table we see that precision and recall for the JSAI are high, and they are higher
and stable for the other collections with 6 > 15. With these values of 6, the TRSM-
based retrieval effectiveness is comparable or somehow higher than that of VSM.

To evaluate the performance of cluster-based retrieval by the TRSM, we carried
out retrieval experiments on all queries of test collections. For each query in the test
collection, clusters are ranked according to the similarity between the query and the
cluster representatives. Based on this ranking order, this the cluster-based retrieval
is carried out.

Table VII reports the average of precision and recall for all queries in test
collections using the TRSM cluster-based retrieval with 1, 2, 3, and 4 clusters,
and full retrieval (20 clusters). Usually, along the ranking order of clusters, when
cluster-based retrieval is carried out on more clusters, we obtain, higher recall value.
Interestingly, the TRSM cluster-based retrieval achieved higher recall than that of full
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Table VII. Precision and recall of the TRSM cluster-based retrieval.

1 Cluster 2 Clusters 3 Clusters 4 Clusters 5 Clusters Full search
Col. P R P R P R P R P R P R

JSAI 0973 0375 0950 0.458 0937 0.519 0936 0.544 0932 0.534 0.934 0.560
CACM 0.098 0.063 0.100 0.127 0.117 0.166  0.132 0.221  0.144 0.240 0.160 0.241
CISI  0.177 0.078 0.141 0.139 0.151 0.179 0.156 0.206  0.158 0.212  0.155 0.204
CRAN 0.204 0.219 0.238 0.278 0.250 0.290 0.257 0.301 0.261 0.304 0.257 0.301
MED 0393 0277 0396 0.393 0372 0425 0367 0.445 0380 0472 0415 0421

retrieval on several collections. More importantly, the TRSM cluster-based retrieval
on four clusters offers precision higher than that of full retrieval in most collections.
Also, the TRSM cluster-based retrieval achieved recall and precision nearly as high
as that of full search just after searching on one or two clusters. These results show
that the TRSM cluster-based retrieval can contribute considerably to the problem of
improving retrieval effectiveness in information retrieval.

4.4. Evaluation of TRSM Nonhierarchical Clustering Efficiency

The proposed TRSM clustering algorithm in Table II has the linear time com-
plexity O(N) and space complexity O(N), where N is the number of index terms in
a text collection. The finding of the cluster representative Cy requires O(|Cy|), there-
fore steps 1 and 3 are of complexity O(M), where M is the number of documents in
the collection. Step 2 is a linear pass with complexity O(M). Step 4 repeats steps 2
and 3 in a limited number of iterations (in our experiments, step 4 terminated within
11 iterations of steps 2 and 3), and step 5 assigns unclassified documents once. Thus,
the total time complexity of the algorithm is O(N), because M < N.

However, the algorithm works on the base of data files associated with the
TRSM described in Section 3. From a given collection of documents, we need to
prepare all the files before running the TRSM nonhierarchical clustering algorithm.
It consists of making an index term file, term encoding, document-term and term-
document (inverted) relation files as indexing files, files of term co-occurrences, and
tolerance classes for each value of 6. A direct implementation of these procedures
requires the time complexity of O(N?), but we implemented the system by applying a
sorting algorithm (quick-sort) of O(N log N) to make the indexing files, then created
the TRSM-related files for the term co-occurrences, tolerance classes, upper, and
lower approximations in the time of O(N).

All the experiments reported in this article were performed on a conventional
workstation GP7000S Model 45 (Fujitsu, 250 MHz Ultra SPARC-II, 512 MB).
Theoretically, we can note that it requires on average m/K of the full search time,
where K is the number of clusters.

Concerned with generating the TRSM files for the JSAI database, the direct
implementation with O(N?) required up to 6 minutes (14 hours for CRAN), but the
quick-sort-based implementation with O(N log N) took about 3 seconds (23 minutes
for CRAN) for making the files by running a package of shell scripts on UNIX. The
efficiency of the algorithm is shown in Table VII, where the TRSM time includes
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Table VIII. Performance measurements of the TRSM cluster-based retrieval.

Size No. of TRSM Clustering Full 1-Cluster Memory
Col. (MB) queries time time (sec) search (sec) search (sec) (MB)
JSAI 0.1 20 245 8.0 0.8 0.1 12
CACM 2.2 64 22m22s 146.0 13.3 1.2 15
CISI 2.2 76 13m16.8s 18.0 40.1 34 13
CRAN 1.6 225 23m99s 13.0 20.5 1.8 13
MED 1.1 30 40.1s 4.0 2.5 0.3 28

the time from processing the original texts until generating all necessary files input
to the clustering algorithm. Thanks to a short time for preparing the database files,
as well as a shorter time for a cluster-based search compared with the full search,
the proposed method is able to be applied to large databases of documents.

5. CONCLUSION

We have proposed a document nonhierarchical clustering algorithm based on
the tolerance rough set model of tolerance classes of index terms from document
databases. The algorithm can be viewed as a kind of re-allocation clustering method
where the similarity between documents is calculated using their tolerance upper ap-
proximations. Different experiments have been carried out on several test collections
for evaluating and validating the proposed method on the clustering tendency and
stability, the efficiency, and effectiveness of cluster-based retrieval using the clus-
tering results. With the computational time and space requirements of O(NlogN)
and O(N), the proposed algorithm is appropriate for clustering large document col-
lections. The use of the tolerance rough set model and the upper approximations of
documents allows us to use efficiently the method in the case when documents are
represented by a few terms.

With the results obtained so far, we believe that the proposed algorithm con-
tributes considerable features to document clustering and information retrieval.
There is still much work to do in this research, such as (1) to incrementally up-
date tolerance classes of terms and document clusters when new documents are
added to the collections, and (2) to extend the tolerance rough set model by consid-
ering the model without requiring a symmetric similarity or tolerance classes based
on co-occurrence between more than two terms.
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