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IMPLIED TREESIN ILLIQUID MARKETS:
A CHOQUET PRICING APPROACH

SilviaMuzzioli, Costanza Torricellit

ABSTRACT

Implied trees are necessary to implement the risk neutrd vauation approach and standard
methodologies for ther derivation are based on the vdidity of the Put Cdl Parity. However, in
illiquid markets the Put Cdl Paity fails to hold and the uniqueness of the atificid probabilities
leaves room to an interva. The contribution of this paper is twofold. Firds we propose a
methodology for the derivation of implied trees in illiquid markets. Such a methodology, by
contrast with standard ones, takes into account the informatiion stemming both from cal and put
prices. Secondly, we set up a framework for pricing derivatives written on an underlying traded on
an illiquid market. To this end we have extended the Choquet integrd definition to account for
interval payoffs of the underlying. The price interval we obtan may be interpreted as a bid-ask
price quoted by the intermediary that hasissued the derivative security.

Keywords. Binomia Modd, Put-Cal Parity, Choquet Pricing.
JEL classfication: G13, G14.

1. INTRODUCTION

The main drawback of the Black and Scholes equation and of the Cox-Ross-Rubingein binomid
implementation is that the sock evolves adong a risk neutrd binomid tree with congant voldility.
Derman and Kani (1994) suggested a preference free model that is consstent with the smile effect
and the term gtructure of implied voldility. The modd derives an implied binomia tree usng cdl
options for the upper part and put options for the lower part of the tree, implicitly assuming that the
put cal parity (PCP) holds. However, in illiquid markets, where the PCP is nat fulfilled, the implied
tree based on cdl pricesis different from the one obtained using put prices.

The am of this paper is twofold: to propose a methodology for the derivation of implied trees in
illiquid markets and to set up aframework for pricing derivatives written on the underlying asst.

! The authors acknowledge financial support from MURST. The authors thank Bernard De Baets for helpful comments
and suggestions on a previous version of the present paper. Usual disclaimer applies.
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Violations to PCP have been detected for American options on US stocks and stock indices in many
empirica works (eg. Stoll (1969), Gould and Gda (1974), Klemowski and Resnick (1979), Evnine
and Rudd (1985)). In order to overcome the problems linked with the estimation of the early
exercise premium, more recent studies tested the PCP using European options among others,
Kamara and Miller (1995), Chesney, Gibson and Loubergé (1995), Mittnick and Rieken (2000),
Cavdlo and Mammola (2000), report weeker, but ill sgnificant violations. In particular, Kamara
and Miller (1995) found that violations to PCP are not due to market inefficiency and reflect premia
for liquidity risk (Kamara and Miller (1995)). They show that, as liquidity risk increases, both the
gze and the frequency of deviations from PCP increase. Moreover, liquidity risk widens bid-ask
Spreads in option prices and can lead to overpricing or underpricing of cal and put options reative
to their PCP implied vdue. When the Black and Scholes formula is used, a difference in the implied
volatility of cadl and put prices is normdly observed. In paticular, the implied volatility computed
from put prices is generdly bigger then the implied volatility computed from cal prices (see eg.
Chesney, Gibson and Loubergé (1995) and Cavdlo and Mammola (2000)). The effect of pricing
cdls and puts with the same voldility esimate yidds in generd to mispricing phenomena This
leads to the conclusion that, in illiquid markets, cal and put prices focusng on different aspects of
the underlying process, cary different information on the voldility of the latter. By taking into
account only cal (put) prices and relying on PCP reaults in a loss of information about the
underlying process. Therefore standard methodologies used to derive implied trees, eg. Derman
and Kani (1994), when used in ailliquid market suffer from this shortfall.

In this paper we extend the Derman and Kani modd to teke into account liquidity risk, thus
dlowing for violaions to the PCP. We develop a tree that incorporates and reflects liquidity risk,
the amile effect and the time to expiraion bias of volatility for cdl and put options. This tree is
auiteble to vdue any derivative written on the underlying assst. When the PCP fails to hold, the
uniqueness of the atificia probabilities leaves room to an interval. In order to bound the atificia
probabilities and the underlying stock prices a each node of the tree, we derive two implied trees
one usng only cdl options and the other one usng only put options. In this way we ae able to
bound the artificia probabilities and the underlying stock prices a each node of the tree, generating
an implied tree  which is conagent with both cal and put prices. From now on we denote this tree
as the PC-implied tree. In order to be able to take expectations on such a binomia tree, we extend
the Choquet integra definition to take into account interval vaues for the underlying asset instead
of point estimates. The price interva for the derivative security may be interpreted as a bid ask price
quoted by the intermediary.



The plan of the paper is the following. In section 2 we briefly illugrate the effect of PCP violations
on the Derman and Kani modd. In section 3 we formdly set up the dgorithm for the derivation of
the PC-implied tree. In section 4 we gpply and extend the Choquet integra definition to teke into
account interva vaues of the derivative payoff. In section 5 we explain the pricing process of a

derivative written on the underlying asset. The last section concludes.

2. THE DERMAN AND KANI MODEL AND PCP VIOLATIONS

Derman and Kani (1994) develop a preference free mode based on a no-arbitrage argument, for the
derivation of the implied tree. The tree can be used to vaue options from easly observable data
They extend the Black and Scholes pricing framework, requiring the volatility to depend both on
time to expiraion and on the vdue of the underlying asset. They do not assume a particular
parametric form for the voldility, but they require the option prices to fit the empiricdly estimated
gmile curve. The gandard binomid modd is thus replaced by a digorted or implied tree, with
different volatility a each node.

The implied binomid tree, condgtent with the smile effect and with the term dructure of implied
volatilities, is built by forward induction starting from the first node. Let r be the risk free rate, S(0)
the initid stock price and C(S(0),1) the price of an a the money (ATM) cdl, i.e. with srike price
equa to §(0), expiring a T=1. By solving equations (1) (2) and (3):

F=S(0)(1+n)=p SH) + (1- p)S(L) @
C ($(0),1) = U(1+) p [S(H) - (0)] e
S(H) S(L) = S(0)? ©)

the modd provides three outputs. the risk neutrad probability of an up move, p, and the vaue of the
sock a time one in state up, S(H), and in state down, S(L). Figure 1 depicts the first leve of the
tree. Equations (1) and (2) require respectively the stock price and the cdl price to be consstent
with the risk neutrd vauation approach with probability p (note that as the cdl is in the money, it
pays out only in the upper date); equation (3) is a centring condition analogous to the one
introduced by Cox, Ross and Rubingtein (1979) that essentidly require the tree to develop around
the current pot price of the underlying.

In generd, at time n there are 2n +1 unknownsi.e. n+1 stock values and n risk neutra probabilities.

To determine the unknowns Derman and Kani use n equations representing the risk neutra
vauation of the forward price of the stock, n equations representing the risk neutrd vauation of call
(put) prices for the upper (lower) hdf of the tree, with strikes equa to the stock prices a the
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previous leve and expiraion a time n and fill the remaining degree of freedom by means of the
centring condition. The procedure isiterated up to the last expiration date.

T=0 T=1
p=7? S(H) = ?

S0)
C(S0), 1) (L) =2

Figure 1. Thefirg levd of the Derman and Kani tree.

In such a way, Derman & Kani congruct a tree which is conagtent with the smile since they use cdl
and put vaues interpolated from the smile curve?. Using call prices for the nodes in the upper half
and put prices for the nodes in the lower hdf of the tree has the computationd advantage that, at
each step, there are only afew nodesin which the option isin the money.

It has to be dressed that this methodology heavily relies on the vdidity of the PCP. In fact, if the
PCP holds, the equivalence between a cal and a put makes it indifferent to use ether a cdl or a put
price and thus judtifies the use of the most convenient one. However, if the PCP is violated, as it is
the case in illiquid markets, the indifference between the use of a cdl and a put price is lost and the
implied tree becomes sengtive to the type of option used to deriveit.

In sum, when the PCP fals to hold the Derman and Kani methodology may lead to a tree that
ignores the different information carried by in the money cdl prices (in the lower pat of the tree)
and by in the money put prices (in the upper part).

To better illudrate this point we compute for example the underlying asset price a time one in date
up. The solution of equations (1) to (3), i.e. the use of a cdl to derive the implied tree, yidds the
following price

5(0)* c(s(0) + X

- 1+r
=59 cs00 ©

If aput P(S(0), 1) were used, i.e. if equation (2) were replaced by the following:
P (K=5(0),1) = 1/(1+r) (1-p) [S(0) - S(L)] 2)

2 The smile curveis obtained using call prices for strikes above the underlying spot and put prices for strikes below.
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The lution of equations (1), (2') and (3) would yied the following price for the spot at time one in
state up:

S(0)% +P(S(0))* S(0)

1+r

(10)

It is easy to prove that if PCP holds, equations (9) and (10) are equivaent, if it does not hold,
different prices for the underlying asset are in generd obtained. In fact, if the cdl (put) is worth less
then its replicating portfolio, i.e. C(S(0))<P(S(0))+S(0)-X(1+r), the corresponding put (cal) is
worth more. It follows that the underpriced call (put) implies a price for S(H) lower and a price for
S(L) higher then the corresponding overpriced put (cdl) i.e, the volatility implied by underpriced
cdls or puts is lower then the one implied by overpriced cdls or puts. As a consequence, in markets
where the PCP is not fulfilled, different trees for the same underlying assst may be implied
depending on the type of option price used. Therefore in markets where PCP violaions are
observed, in order to apply the Derman and Kani methodology, the problem of an arbitrary choice
of the type of option (call vs. put) to be used a each node needs to be solved.

3. THE PC-IMPLIED TREE

In this section we s&t up a methodology for the derivation of an implied tree that can be used in
illiquid markets and is conggent with the whole information avalable in the market. To this end,
we build an implied tree taking a each node stock vaues and artificia probabilities implied by both
cal and put prices. Our method basicaly extends Derman and Kani's in order to use cdl prices aso
in the lower part of the tree and put prices dso in the upper part. As the PCP is not fulfilled, using
an additiond set of n eguations for in the money cdl and put prices would make the system
impossible.

We propose to develop two implied trees, one usng only cdls and one udng only puts and to
aggregate the conflicting information by teking the cdl and put implied sock prices and
probabilities as bounds for an interva of prices and probabilities respectively. Such a tree with
interval values for the underlying stock prices and probabilities will be denoted as PC-implied tree.

Given the stylised empirical fact that volatility varies across both moneyness and time to expiration,
there are badcaly two ways of congructing an implied tree, depending on which phenomenon we
want to capture. In modelling dependence on time to expiration, we are faced with the problem of a
limited number of expiration dates for the options traded in the market. Therefore, if we need an
implied tree condgtent with both the empirica biases, we are condrained to build a tree with only a
few levels and we can read the rdevant cdl or put price directly from the data set by interpolation.
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We do not examine in detail this case. By contrad, if we accept to build a tree that is consstent only
with the firg bias, we can suppose that the amile is the same across dates and we can build a tree

with as many levels as needed.

Level n-1 Level n
Shein
Shn-1
Shn
Sn-l,n-l
Sn-l,n
pi,n S+1,n
Sin-1 | i+1,n-1
.
i,n-1 S,n
| in
S2,n-1 SSn
Son
S1,n-1
S1,n

Figure 3. Levelsn-1 and n of the tree.

Let j=0,...,n be the number of levels of the tree. As we assume that the tree recombines, let
i=1,...,j+1 be the number of nodes at level j. We use forward induction to compute level n variables
from the inputs of levd n-1. We compute firs the implied tree usng only cal prices, then the
implied tree using only put prices and as a last sep we take the implied prices and probabilities
from the previoudy computed trees as bounds for a unique PC-implied tree.

We firg show how to compute the cal implied tree. The initid inputs are the riskless interest rate,
the stock price a time zero and the amile function for cal prices. We read from the amile function
the volatility corresponding to the gtrike price needed in order to have an a the money cal. We
generate a binomia tree with congant volatility and we compute the price of the cal a time zero.
We use the stock price, the call price and the centring condition to imply thefirst leve.
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In generd a levd n there are 2n+1 unknowns. n+1 stock prices and n risk neutra probabilities.
Figure 3 focuses on levels Rl and n. The inputs are the n stock prices a level n1 and the prices of
n ATM cdls with strikes equa to the n stock prices (computed as explained for te firg leve). The
stock price Spn1 takes value S+1, in State up, and S, in State down and the risk neutrd probability
of an up jump is pn. The Arrow-Debreu price in node (i,n-1) is | i n-1 and is computed by forward
induction as the sum over dl pahs leading to node (i,n1) of the product of the trangtion
probabilities discounted at the riskfree rate at each node in each path. All | ;.1 are known since the
trangtion probabilities of levelsj=0,...,n-1 have dready been implied.

We use the following 2n+1 equations (13) and (14), i.e. we require the theoreticd vaue of n
forwards and n cdl options dl expiring a time n to match ther maket vdues and for the
remaning equation we use the centring condition. The centring condition, tha requires the tree to
develop around the spot price of the underlying, is given by equation (11) if the leve is even and by
equation (12) if the leve is odd:

Sn+1)2=So (11)
Stny/2S(ny/2+1=S0 (12)
Thefirgt set of n equations requires the stock price to be consistent with the risk neutral vauation:
Fi.n=Pin Si+1nt(1-Pi,n)Sin "i=1,.,n (13)
where F n=(1+r) S .1 and
_ Fin-Sn
Pin= m (14

The second st of n eguations is given by the risk neutrd vauation of n cal options, each with
drike price equa to S .1 for i=1,n, with expiration a time n. The condition imposed on each cdl
option to be a the money grants that only the nodes above the strike contributes to the payoff of the
cdl:

1 g
C o1 :ma_ (i Pin # @ Prgp)) max(S;,y - S,0.1,0) (15)

j=1

where to smplify notationc(s,.,,n) =C, ., iSthe cal price a time zero.
In order to separate the effect of the firs in the money node from other nodes, we can write
equation (15) asfollows.
A+1)C0 s =1 P(Suin- S0 ) + A 10 a(Fr- S,00) (16

j=i+l
where the first term depends on the unknown vaues p, and S:1,, while the second one is computed

using quantities that are known at level n. From now on we denote the summation termby S.



By solving smultaneoudy equations (13) and (16) for $.1n We get a recursve formula to compute
S+ingiven S, . For every levd j=1,...,n we get:
_ Sl,j((1+r)ci,j-l - S)' I i,j—lsl,j—l[Fi,j - Si,j]
T e -S-1  [F .- S ] (17)
ij-1 ij-1Llmj a9

In order to use equation (17) we need an initial node §;. If the number of nodes is odd we choose
the central node to be equa to the current spot. If the number of nodes is even, we subdtitute
equation (12) in equation (17) and we get.

_ S(A+NCo 1 (jaay2,j-1S0- )

R 18

S(J R | (j+1)/2,)- lF(j+l)/2,j - (1+r)Co +3 ( )

For the nodes below the central values we use the following equetion thet yields S given S+

S = S+1,j ((1+r)C|,j-1' S)‘ I i,j-lFi,j[S+1,j - S,j-l] (19)
)]

@+n)C - S- 15 ulSa - § 4l

By repesting this process at each level we are able to generate the entire tree.
The atificid probabilities of each node must belong to ]0,1[. A violaion of this condition implies
the presence of riskless arbitrage opportunities. Thus, a each iteration, we require the implied stock
price in node up to fal above the forward price and the implied stock price in node down to fal
below the forward price. If his is not verified, we use the same procedure as Derman and Kani
(1994) to override it, i.e. we determine the stock price $; by means of the following condition for
nodes below the center of the tree:

IN(Si,;) +IN(S.1;) =IN(S j.1) +IN(Si1j1)

and by means of the following condition for nodes above the center of the tree:

IN(S;,;) +IN(S.1;)=IN(Si;.1) +IN(S.1j.1)

Intuitively, for nodes below (above) the center of the tree, we keep the volatility of stock prices in
nodesi and i+1 (i-1) a level j the same asin the corresponding nodes at the previous levd j-1.

The condruction of the put implied tree is anadogous to the one dready described for the cal. The
initid inputs are the risk free interest rate, the price of the sock and the price of an ATM put with
expiration a time one. The empiricaly derived smile function for put prices is used to compute the
amile-conggtent put prices for the next level. Depending on the drike price needed to imply the
next node, we read from the smile function the gppropriate volatility and we @mpute the price of a
put using a non digtorted binomia mode with congant volatility.

To imply level n we use the following 2n+1 equations. we require the theoretica risk neutrad vaues
of n forwards and n put options expiring a time n to maich the interpolated market vaues, and we



use the centring condition given by equation (11) if the levd is even and by equation (12) if the
level isodd.
The vaue of aput with srike S -1 isgiven by the following:

n

1 o
I:f,n—l ZE a (I j,n—l(l' pj,n)+| j—l,n—l(pj—ln ))*max(s,n—l' Sj,n'O) (20)
j=1

where to smplify notationP(S,...n) =P, IS the put price today computed usng the smile function
to obtain the appropriate implied volatlity and generating a n step tree with constant appropriate
voldility.
Rewriting equation (20) in order to separate the effect of the first in the money node yidds:
A+0)Rn1=1ina@- Pin)(Sn1- S,n)"‘ljé_.ll' in-16in1- Fjn) (21)
where the firg term depends on the unknown vaues of pi,, and S, while the summdtion term is
computed usng quantities that are known a leve n, for notationd smplicity we denote by S’ the
summation term in equation (21).
Solving equations (13) and (21) for a level j=1,...,n we obtain a recursive formula that provides §;
given S+q;:
_ S j((@+N)R .1~ S)+1 1S - alFij - Siea ]

(1+r)Pi,j_1- S+l i’J-_l[Fm- - 51+1,j]
To use equation (22) we need an initid stock price S+1j. As in the case of the cdl, if the number of
nodes is odd we take as initid node the centra node of the level that is equa to the spot. If the
number of nodes is even we subgtitute equation (12) in equation (22) and we get:
Siem = ISO(S" (1;0'30 +Ij-j +1)12,j-1%)

Gz, j-1Feyz, ) T AR - S

For the nodes above the centra node we use the following recursive equation that computes S.j

S, (22)

(23)

given S;:

S, = S,j((1+r)Fi),j-1- S)- | i,j—lFi,j[S,j—l- S,]
! (1+r)Pi,j—l' I i,j-1[S1,j-1‘ S,j]- S'

By repesting this process a each level we are able to generate the entire tree.

(24)

If an implied sock price does not respect the no arbitrage condition, we use the same procedure
explained for cal prices to override it. Once we have congructed both the call and the put implied
trees, we are able to compute the PC-implied tree.

Let us indicate with T; the stock price a node i, level j computed using put prices and with §; the
stock price at node i, level j computed with call prices, q; be the artificid probabilty of an up move

10



from node (i,j-1) to node (i+1,)) computed usng put prices and p;; be the atificid probability
computed using call prices.

For each node, we take min(S§;,Ti;) ahd max (S, Ti;) as the lower and the upper bound respectively
for the stock price and min(p;;,0;;) and max (pi;,0i;) as the lower and the upper bound respectively
for the artificia probability. In this way we are able to incorporate in a unique implied tree dl the
information semming from cal and put prices.

This is a dmple way of deriving interva vaues for the probabilities and the underlying process
from market data. In the following section we explan how to use the PC-tree to take expectations
and thus vaue any derivative on the underlying asset.

4. CHOQUET PRICING WITH INTERVAL VALUESFOR THE UNDERLYING ASSET

The pricing of derivetives by means of the risk-neutral vaudion approach implies discounting
expected vadues under the risk-neutrd probabilitiess When probabilities are crigp vaues, the
classca probability theory provides the appropriate framework for taking expectations, when
probabilities are represented by intervals, one has to resort to the theory of capacities® in order to
take expectations and to price aderivative (see eg. Cherubini (1997)).

In illiquid markets, where the PCP fals to hold, uniqueness of the atificia probabilities leaves
room to an intevd. In our modd, nether the atificid probability measure is unique, nor the
process of the underlying asset takes precise values snce we have aggregated partid and conflicting
information coming from cdl and put prices. It follows that the theory of capacities cannot be used
draightftorward and we have to extend it in order to take into account interval vaues for the
underlying ast.

In order to give an intuitive representation of the issue, we begin by teking a one period binomid
modéd, i.e. two dates 0,1 and two states X={U, D}. Figure 4 illustrates our problem. The stock price

& time zero is S and it takes interva values in both states a time one [SU,Su] in state up, and

[Sd ,g] in state down, where SU and Sd are the lower bounds of the intervals, U and S the
upper bounds.

3 Capacities were first introduced by Schmeidler (1989) in individual decision theory, and used by Dow and Werlang
(1992), in a portfolio selection model. In both papers capacities are used as a representation of individual behaviour, by
contrast in thismodel they arise at an aggregate level from the different information carried by call and put prices.
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The risk free rate is equa to r>0. A derivative is traded on the market and its payoff is a function of
the underlying asset. Since the latter takes an interva vaue, the payoff for the derivative security in

each stateis an interval too, i.e. f[Su, Sl =[ fu, fu] , f[Sd,Sd] = [fd ,fd].

We have to derive the derivative price at time zero, §. We firsd examine the case in which f isan
increesing function of S,

T=0 T=1
[Su,Su]
[ fu, fu]
S
fo

[Sd,sd]
[fd, fd]

Figure 4. The binomid tree with interval vaues for the underlying asst.

Suppose that the artificid probability messure of an up move is incuded in a convex s
p 1 [p,. plWhere p, £ p, . If we take a st function mP(x) ® [0,1] suchthat: nt&) =0, ngx)=1 and is
monatone non decreasing with respect to set inclusion, and we set n(U) =p, and 1- n(D) = p,, we
can observe that mis weakly subadditive, snce &Ep_u implies nU) + ngD) £1. Such a set function

Iscommonly caled a capacity.
We can compute the boundaries of the expected vaue of the security on the set of probability
measures in the following way:

1, :171 min{pul fu Tl + @ po)Lfd T, pul [P, pul =[Pl fu TU+ @~ p[fd Tl (25)
r 1+r

To=—ma{ pulfu,Tul+ (1= U, TAL R, T (R R} == (A1 T+ - LTI 26)

Or equivaently, usng the st function m

fo:i[[fd,fd]+mu)([fu,fu]+[fd,fd])]:—1 E.(f(S)) (27)

= 14r— — — 1+r

f, =i[[ fu, fu] - m{D)([ fu, fu] - [ fd, fd])] =1 E'(f(9)) (28)
1+r — — — 1+r

where the operators E- and E-  are known as upper and lower Choquet integral respectively.
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Define m as the dua capacity of msuch that nU)=1- ngD), niD)=1- nfUJ), mis superadditive,

i.e nfU)+ntD)3 1.Usng min equation (28) we obtain:
T, =2 ([ fd, Td] +nU)([fu, Tu] - [fd, Td])] =———E. (£ (), (29)
1+r — - — 1+r

The upper Choquet integral with respect to a subadditive capacity may be computed as the lower
Choquet integral with respect to the dud superadditive capacity.
Suppose that the probability measure of a down move is included in a convex set p,T [pg ,ps]Where

pa £y - If Weset 1- nU) = p, and m(D) =p, , then we get:

0=

f, =2 [(1- Py)[fu,Tu]+ Pyl fd Td]] (30)
1+r — —

Ty = [(A- p,)[fu,Tu]+p,[fd,Td]] (31)
1+r — —

As the underlying asset takes interva vaues in sate up and down, it follows that both the lower and

the upper Choquet integra for the derivetive security are themsdves intervas, i.e ET [ & : &*]

_n —

and f,I [fo*,f_o*] , Where:

fo, = {0 Py)fu+ P, fd] (32)

fy = ——{(1- p,) fu+p, fQ) (33)

— 1+r

fo =@ p)furpfd (34)

Ty =——[(1- p,)Tu+p,Td] (35)
1+r — —

Since, f, £1, £, £, itfollowstha thelargest bound of the derivative priceis [ f, . f, 1.
Andogoudy, if the derivative payoff is a decreesng function f of the undelying asset S i.e its
payoff is higher in state down than in Sate up, its price bounds at time zero are computed using the
lower and the upper bound respectively of the probability of state down (where the derivative has
higher payoff):

fo, =——[(- p,)fu+ p, fd] 36)

0T =

T, =—{a- ) Tu+ p, Td) @)
r

It is easy to show that these are the largest bounds. This observation leads to the following

proposition.
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Proposition 1. The expected vdue of a derivative whose payoff is an increesng (decreasing)
function of the underlying asset that tekes interva vaues in state up [Su,Su] and in state down

[Sd,Sd]when the atificid probability messure of an up move is incduded in a convex st
p.T [p,p]Where p, £p,, is a bounded intervel [f,, ,f—o*], where f, is computed evauating the
lower (upper) Choquet integrd of the lower bound of the derivative payoff in each date with

respect to the subadditive capacity, discounted at the risk free rate and f_o is computed as the upper

(lower) Choquet integral of the upper bound of the derivative payoff in each State with respect to
the subadditive capacity, discounted at the risk free rate.

5. PRICING A DERIVATIVE

In this section we explain how to compute a derivetive price on the PC-implied tree and how to use
the results obtained.

In a nperiod tree, the expected vaue of a derivative security can be computed by backward
induction. Decomposing the entire n-period tree in (n(n+1))/2 binomia sub-trees, we compute by
means of Propostion 1 the derivative value a each node (i), with i=1,...j+1; j=0,...,n-1 until the
initid node is reached, i.e. the current price of the derivativeis found.

In order to give an example, we compute the price of a derivative whose payoff is an increasing
function of the underlying asset payoff eg. a cal option, with strike price K. Figure 5 illudtrates the
case. Note that at time two, because of the centring condition, the underlying asset takes a precise
value; we can aways consder acrigp vaue as a collgpsed interval.

Starting from the termina nodes, we compute the call prices at time one as follows:

(21 =ﬁ[ PUR2)(S(32)- K) +(1- pu(22)(92.2)- K]
T2 =$[E(2,2)(‘S(3,2) LK) +H(L- PU2,2)(322) - K)]
fLy= Hir[ PL2(S(22)- K)+(1- pu(L)S(L2)- K)]

@D =ﬁ[ﬁ(1,2)(5(2,2) - K)+(1- pu(12)(S(1,2)- K)]
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T=0 T=1 T=2

[S(3.2),5(32)]

[pu(22), pu(2,2)
[S(21),S(2.1)]

[ pu(1), pu(L1)] [f(22), T(22)]

_ S22)
[puL2), puL2)]

[f, ol _
— [S(L1), S(LD]
[f (D), (L]
[S(1,2),S(12)]

Figure 5. A two periods PC-implied tree.

And findly thecdl pricea timezerois

f o= = [PULY(F (23) +(1- PUD)(f WD)

Fo = (Pue(T(2) + - PUCHIT D)

If we price aput option with strike price K>5(3,2),, then we get:
@Y= [FE2)(K- 532)+ (- PiR2)K- S22)
T21) =——{pu22)(K- S3.2)+(- pu22)(K- S22)]
1A= [PIE2(K - S22)+(- PL2)(K- (L)

fLy= % [Pu(L2)(K - S(2,2)) +(1- pu(L,2)(K - S(1,2))]
And findly the put pricea time zero is

f,= ﬁ[ﬁ(l,l)( D)+ @ puL)(f(L1)]

T, = ﬁ[ puL(T(21)+ (1~ puLD)(T (L)

If we draw a comparison with the classcal Derman and Kani moddl, a few comments are in order.

It has been detected, see e.g. Chesney, Gibson and Loubergé (1995) and Cavalo and Mammola

(2000), that the volatlity implied by cal prices is generdly lower then the one implied by put
15



prices. If this is the case, the Derman and Kani tree, being congructed usng cdl prices for the
upper hdf and put prices for the lower hdf, give a higher voldility to lower nodes then it does for
upper nodes. As a consequence, the classca Derman and Kani model overprices derivatives whose
payoff is a decreasng function of the underlying asset and underprices derivatives whose payoff is
an increasing function of the underlying asset.

On the other hend, if the volatlity implied by cdl prices is higher than the one implied by put
prices, the Derman and Kani implied tree overprices derivatives whose payoff is an incressng
function of the underlying asset and underprices derivatives whose payoff is a decreasng function
of the underlying asst.

In our model, the interval of prices for the derivative security better reflects the information
available on the market regarding the underlying process.

The PC-implied tree can be used in markets where PCP deviations have been observed, to vaue
illiquid options or other derivatives that are not traded in the market (for example, the derivative
part of a structured note issued by an intermediary). The price interva obtained, that arises because
of the market illiquidity, represents a bid-ask price quoted by an intermediary. To make this point
more clear, let us andyse gans and losses of an intermediay that issues a derivaive on the
underlying asset whose process is represented by the PC-implied tree in Figure 4. In order to make a
podtive profit, the intermediary quotes the following prices she buys the derivative a the lowest
price and Hlsit at the highest.

Let us assume the deriveive is an increasng function of the underlying asset. The gain from buying
one unit of the derivative at a price P, is a least equd to the expected vaue of the derivative payoff
minusthe price P, i.eitisa least equd to:

fo - Prr{p fu+ - p)fdl- P

and & most equd to:

Ty - P=——[p,Tur(t- p)Td)- P.

The gain from sdling the derivative a a price P is equd to the price P minus the expected vaue of
the derivative payoff that the writer hasto pay to the holder, i.e. itisasleast equd to:

P- T, =P-——[p,Tu+ (- p,)Td)
1+r
and at most equal to:

P-f =p-—L [p fu+(- p,)fd].
—o 1+r —— —
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It follows that the intermediary is willing to buy the derivative if price P is less then f. and is

willing to i it if its price P is more then f," . At prices between the bounds, then there is no

incentive for the intermediary to issue the derivative®. This stuation is illustrated in Figure 6. Thus
the derivative price bounds represent the bid-ask prices quoted by the intermediary that has issued

the security.

Figure 6. The bid-ask price for the derivative security.

6. CONCLUSIONS

In this paper we have proposed and implemented a procedure to construct implied trees in illiquid
markets and we have extended the Choquet integrd definition in order to take into account interva
vaues for the stock payoff. Our modd accounts for violaions of the Put Cal parity in illiquid
markets and exploits dl the information contained in such deviaions.

When the Put Cdl parity fals to hold, uniqueness of the artificid probabilities leaves room to an
interval. In order to bound the artificia probabilities and the underlying stock prices a each node of
the tree, we have derived two implied trees: one using only cdl options and the other one using only
put options. The implied tree we obtain incorporates al the information in cal and put prices.

In order to use the PC-tree to take expectations and thus vaue any derivative on the underlying
stock, we have to resort to the use of capacities. To this end we have extended the Choquet integral
in order to take into account interval values for the stock payoff, that arise because of the conflicting
information coming from cal and put prices.

The PC-implied tree can be used in markets where PCP deviaions have been observed, to vaue
illiquid options or other derivatives that are not traded in the market (for example, the derivative
part of a sructured note issued by an intermediary). The price interva obtained represents a bid-ask
price quoted by an intermediary.

4 Dow and Werlang (1992) explained the portfolio inertia puzzle using a non additive probability measure to represent
agents' preferences. Differently from their approach, in our model the capacity is derived from the conflicting
information of call and put prices, at amarket level and the stock payoffs take imprecise values.
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Future research work includes, from an empirica point of view, a vaidation of the modd proposed
and from atheoretica one, an dternative derivation of the PC-implied tree.

Specificaly, we believe that the contemporary use of both a cdl and a put option a each node of
the tree to imply the next levd variables would dlow a more accurate edimate of the future
variables. However, it should be sressed that this extenson would lead to a subgantia increese of

the computationa complexity and thereforeiit is suitable only for trees with afew levels.
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