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IMPLIED TREES IN ILLIQUID MARKETS: 

 A CHOQUET PRICING APPROACH 
 

Silvia Muzzioli, Costanza Torricelli1 

 

 

ABSTRACT 

Implied trees are necessary to implement the risk neutral valuation approach and standard 

methodologies for their derivation are based on the validity of the Put Call Parity. However, in 

illiquid markets the Put Call Parity fails to hold and the uniqueness of the artificial probabilities 

leaves room to an interval. The contribution of this paper is twofold. First we propose a 

methodology for the derivation of implied trees in illiquid markets. Such a methodology, by 

contrast with standard ones, takes into account the information stemming both from call and put 

prices. Secondly, we set up a framework for pricing derivatives written on an underlying traded on 

an illiquid market. To this end we have extended the Choquet integral definition to account for 

interval payoffs of the underlying. The price interval we obtain may be interpreted as a bid-ask 

price quoted by the intermediary that has issued the derivative security. 

 

Keywords: Binomial Model, Put-Call Parity, Choquet Pricing. 

JEL classification: G13, G14. 

 

1. INTRODUCTION 

 

The main drawback of the Black and Scholes equation and of the Cox-Ross-Rubinstein binomial 

implementation is that the stock evolves along a risk neutral binomial tree with constant volatility. 

Derman and Kani (1994) suggested a preference free model that is consistent with the smile effect 

and the term structure of implied volatility. The model derives an implied binomial tree using call 

options for the upper part and put options for the lower part of the tree, implicitly assuming that the 

put call parity (PCP) holds. However, in illiquid markets, where the PCP is not fulfilled, the implied 

tree based on call prices is different from the one obtained using put prices.  

The aim of this paper is twofold: to propose a methodology for the derivation of implied trees in 

illiquid markets and to set up a framework for pricing derivatives written on the underlying asset.  

                                                 
1 The authors acknowledge financial support from MURST. The authors thank Bernard De Baets for helpful comments 
and suggestions on a previous version of the present paper. Usual disclaimer applies. 
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Violations to PCP have been detected for American options on US stocks and stock indices in many 

empirical works (e.g. Stoll (1969), Gould and Galai (1974), Klemowski and Resnick (1979), Evnine 

and Rudd (1985)). In order to overcome the problems linked with the estimation of the early 

exercise premium, more recent studies tested the PCP using European options: among others, 

Kamara and Miller (1995), Chesney, Gibson and Loubergé (1995), Mittnick and Rieken (2000), 

Cavallo and Mammola (2000), report weaker, but still significant violations. In particular, Kamara 

and Miller (1995) found that violations to PCP are not due to market inefficiency and reflect premia 

for liquidity risk (Kamara and Miller (1995)). They show that, as liquidity risk increases, both the 

size and the frequency of deviations from PCP increase. Moreover, liquidity risk widens bid-ask 

spreads in option prices and can lead to overpricing or underpricing of call and put options relative 

to their PCP implied value. When the Black and Scholes formula is used, a difference in the implied 

volatility of call and put prices is normally observed. In particular, the implied volatility computed 

from put prices is generally bigger then the implied volatility computed from call prices (see e.g. 

Chesney, Gibson and Loubergé (1995) and Cavallo and Mammola (2000)). The effect of pricing 

calls and puts with the same volatility estimate yields in general to mispricing phenomena. This 

leads to the conclusion that, in illiquid markets, call and put prices focusing on different aspects of 

the underlying process, carry different information on the volatility of the latter. By taking into 

account only call (put) prices and relying on PCP results in a loss of information about the 

underlying process. Therefore standard methodologies used to derive implied trees, e.g. Derman 

and Kani (1994), when used in a illiquid market suffer from this shortfall. 

In this paper we extend the Derman and Kani model to take into account liquidity risk, thus 

allowing for violations to the PCP. We develop a tree that incorporates and reflects liquidity risk, 

the smile effect and the time to expiration bias of volatility for call and put options. This tree is 

suitable to value any derivative written on the underlying asset. When the PCP fails to hold, the 

uniqueness of the artificial probabilities leaves room to an interval. In order to bound the artificial 

probabilities and the underlying stock prices at each node of the tree, we derive two implied trees: 

one using only call options and the other one using only put options. In this way we are able to 

bound the artificial probabilities and the underlying stock prices at each node of the tree, generating 

an implied tree  which is consistent with both call and put prices. From now on we denote this tree 

as the PC-implied tree. In order to be able to take expectations on such a binomial tree, we extend 

the Choquet integral definition to take into account interval values for the underlying asset instead 

of point estimates. The price interval for the derivative security may be interpreted as a bid ask price 

quoted by the intermediary. 
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The plan of the paper is the following. In section 2 we briefly illustrate the effect of PCP violations 

on the Derman and Kani model. In section 3 we formally set up the algorithm for the derivation of 

the PC-implied tree. In section 4 we apply and extend the Choquet integral definition to take into 

account interval values of the derivative payoff. In section 5 we explain the pricing process of a 

derivative written on the underlying asset. The last section concludes. 

 

 

2. THE DERMAN AND KANI MODEL AND PCP VIOLATIONS  

 

Derman and Kani (1994) develop a preference free model based on a no-arbitrage argument, for the 

derivation of the implied tree. The tree can be used to value options from easily observable data. 

They extend the Black and Scholes pricing framework, requiring the volatility to depend both on 

time to expiration  and on the value of the underlying asset. They do not assume a particular 

parametric form for the volatility, but they require the option prices to fit the empirically estimated 

smile curve. The standard binomial model is thus replaced by a distorted or implied tree, with 

different volatility at each node.  

The implied binomial tree, consistent with the smile effect and with the term structure of implied 

volatilities, is built by forward induction starting from the first node. Let r be the risk free rate, S(0) 

the initial stock price and C(S(0),1) the price of an at the money (ATM) call, i.e. with strike price 

equal to S(0), expiring at T=1. By solving equations (1) (2) and (3):  

 F =S(0)(1+r)= π  S(H) + (1- π)S(L)         (1) 

C (S(0),1) = 1/(1+r) π  [S(H) – S(0)]          (2) 

S(H) S(L) = S(0)2            (3) 

the model provides three outputs: the risk neutral probability of an up move, π, and the value of the 

stock at time one in state up, S(H), and in state down, S(L). Figure 1 depicts the first level of the 

tree. Equations (1) and (2) require respectively the stock price and the call price to be consistent 

with the risk neutral valuation approach with probability π  (note that as the call is in the money, it 

pays out only in the upper state); equation (3) is a centring condition analogous to the one 

introduced by Cox, Ross and Rubinstein (1979) that essentially require the tree to develop around 

the current spot price of the underlying. 

In general, at time n there are 2n +1 unknowns i.e. n+1 stock values and n risk neutral probabilities. 

To determine the unknowns Derman and Kani use n equations representing the risk neutral 

valuation of the forward price of the stock, n equations representing the risk neutral valuation of call 

(put) prices for the upper (lower) half of the tree, with strikes equal to the stock prices at the 
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previous level and expiration at time n and fill the remaining degree of freedom by means of the 

centring condition. The procedure is iterated up to the last expiration date. 

 

  T=0     T=1 

 

 

 

 

 

 

Figure 1. The first level of the Derman and Kani tree. 

 

In such a way, Derman & Kani construct a tree which is consistent with the smile since they use call 

and put values interpolated from the smile curve2. Using call prices for the nodes in the upper half 

and put prices for the nodes in the lower half of the tree has the computational advantage that, at 

each step, there are only a few nodes in which the option is in the money.  

It has to be stressed that this methodology heavily relies on the validity of the PCP. In fact, if the 

PCP holds, the equivalence between a call and a put makes it indifferent to use either a call or a put 

price and thus justifies the use of the most convenient one. However, if the PCP is violated, as it is 

the case in illiquid markets, the indifference between the use of a call and a put price is lost and the 

implied tree becomes sensitive to the type of option used to derive it. 

In sum, when the PCP fails to hold the Derman and Kani methodology may lead to a tree that  

ignores the different information carried by in the money call prices (in the lower part of the tree) 

and by in the money put prices (in the upper part).  

To better illustrate this point we compute for example the underlying asset price at time one in state 

up. The solution of equations (1) to (3), i.e. the use of a call to derive the implied tree, yields the 

following price: 
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If a put P(S(0), 1) were used, i.e. if equation (2) were replaced by the following: 

P (K=S(0),1) = 1/(1+r) (1-π) [S(0) – S(L)]         (2’) 

                                                 
2 The smile curve is obtained using call prices for strikes above the underlying spot and put prices for strikes below. 

S(0) 
C(S(0), 1) 

S(H) = ? 

S(L) = ? 

π = ? 
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The solution of equations (1), (2’) and (3) would yield the following price for the spot at time one in 

state up: 

)1),0((
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−

+

+=          (10) 

It is easy to prove that if  PCP holds, equations (9) and (10) are equivalent, if it does not hold, 

different prices for the underlying asset are in general obtained. In fact, if the call (put) is worth less 

then its replicating portfolio, i.e. C(S(0))<P(S(0))+S(0)-X(1+r), the corresponding put (call) is 

worth more. It follows that the underpriced call (put) implies a price for S(H) lower and a price for 

S(L) higher then the corresponding overpriced put (call) i.e., the volatility implied by underpriced 

calls or puts is lower then the one implied by overpriced calls or puts. As a consequence, in markets 

where the PCP is not fulfilled, different trees for the same underlying asset may be implied 

depending on the type of option price used. Therefore in markets where PCP violations are 

observed, in order to apply the Derman and Kani methodology, the problem of an arbitrary choice 

of the type of option (call vs. put) to be used at each node needs to be solved.  

 

3. THE PC-IMPLIED TREE 

 

In this section we set up a methodology for the derivation of an implied tree that can be used in 

illiquid markets and is consistent with the whole information available in the market. To this end, 

we build an implied tree taking at each node stock values and artificial probabilities implied by both 

call and put prices. Our method basically extends Derman and Kani’s in order to use call prices also 

in the lower part of the tree and put prices also in the upper part. As the PCP is not fulfilled, using 

an additional set of n equations for in the money call and put prices would make the system 

impossible.  

We propose to develop two implied trees, one using only calls and one using only puts and to 

aggregate the conflicting information by taking the call and put implied stock prices and 

probabilities as bounds for an interval of prices and probabilities respectively. Such a tree with 

interval values for the underlying stock prices and probabilities will be denoted as PC-implied tree. 

Given the stylised empirical fact that volatility varies across both moneyness and time to expiration, 

there are basically two ways of constructing an implied tree, depending on which phenomenon we 

want to capture. In modelling dependence on time to expiration, we are faced with the problem of a 

limited number of  expiration dates for the options traded in the market. Therefore, if we need an 

implied tree consistent with both the empirical biases, we are constrained to build a tree with only a 

few levels and we can read the relevant call or put price directly from the data set by interpolation. 
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We do not examine in detail this case. By contrast, if we accept to build a tree that is consistent only 

with the first bias, we can suppose that the smile is the same across dates and we can build a tree 

with as many levels as needed. 

 

  Level n-1      Level n 

 

    ………………………………… 

 

 

………………………………………… 

 

Figure 3. Levels n-1 and n of the tree. 

 

Let j=0,…,n be the number of levels of the tree. As we assume that the tree recombines, let 

i=1,...,j+1 be the number of nodes at level j. We use forward induction to compute level n variables 

from the inputs of level n-1. We compute first the implied tree using only call prices, then the 

implied tree using only put prices and as a last step we take the implied prices and probabilities 

from the previously computed trees as bounds for a unique PC-implied tree.  

We first show how to compute the call implied tree. The initial inputs are the riskless interest rate, 

the stock price at time zero and the smile function for call prices. We read from the smile function 

the volatility corresponding to the strike price needed in order to have an at the money call. We 

generate a binomial tree with constant volatility and we compute the price of the call at time zero. 

We use the stock price, the call price and the centring condition to imply the first level. 

 

Sn+1,n

Sn,n-1 

Sn,n 

S1,n 

S2,n 

Sn-1,n 

S2,n-1 S3,n 

Si,n-1 

Si,n 

Si+1,n 

Sn-1,n-1 

S1,n-1 

λi,n-1 

λi,n 

λi+1,n-1 
pi,n 
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In general at level n there are 2n+1 unknowns: n+1 stock prices and n risk neutral probabilities. 

Figure 3 focuses on levels n-1 and n. The inputs are the n stock prices at level n-1 and the prices of 

n ATM calls with strikes equal to the n stock prices (computed as explained for the first level). The 

stock price Si,n-1 takes value Si+1,n in state up, and Si,n, in state down and the risk neutral probability 

of an up jump is pi,n.. The Arrow-Debreu price in node (i,n-1) is λi,n-1 and is computed by forward 

induction as the sum over all paths leading to node (i,n-1) of the product of the transition 

probabilities discounted at the riskfree rate at each node in each path. All λi,n-1 are known since the 

transition probabilities of levels j=0,...,n-1 have already been implied.  

We use the following 2n+1 equations (13) and (14), i.e. we require the theoretical value of n 

forwards and n call options all expiring at time n to match their market values, and for the 

remaining equation we use the centring condition. The centring condition, that requires the tree to 

develop around the spot price of the underlying, is given by equation (11) if the level is even and by 

equation (12) if the level is odd: 

S(n+1)/2=S0            (11) 

S(n)/2S(n)/2+1=S0
2           (12) 

The first set of n equations requires the stock price to be consistent with the risk neutral valuation: 

Fi,n=pi,n Si+1,n+(1-pi,n)Si,n   ∀i=1,..,n      (13) 

where Fi,n=(1+r) Si,n-1 and  

, ,
,

1, ,

i n i n
i n

i n i n

F S
p

S S+

−
=

−
           (14) 

The second set of n equations is given by the risk neutral valuation of n call options, each with 

strike price equal to Si,n-1 for i=1,n, with expiration at time n. The condition imposed on each call 

option to be at the money grants that only the nodes above the strike contributes to the payoff of the 

call: 

, 1 , 1 , 1, 1 1, 1, , 1
1

1
( (1 ))*max( ,0)

1

n

i n j n j n j n j n j n i n
j

C p p S S
r

λ λ− − + − + + −
=

= + − −
+ ∑     (15) 

where to simplify notation , 1 , 1( , )i n i nC S n C− −= is the call price at time zero. 

In order to separate the effect of the first in the money node from other nodes, we can write 

equation (15) as follows: 

, 1 , 1 , 1, , 1 , 1 , , 1
1

(1 ) ( ) ( )
n

i n i n i n i n i n j n j n i n
j i

r C p S S F Sλ λ− − + − − −
= +

+ = − + −∑      (16) 

where the first term depends on the unknown values pi,n and Si+1,n while the second one is computed 

using quantities that are known at level n. From now on we denote the summation term by Σ. 
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By solving simultaneously equations (13) and (16) for Si+1,n we get a recursive formula to compute 

Si+1,n given Si,n . For every level j=1,…,n we get:  

 
, , 1 , 1 , 1 , ,

1,
, 1 , 1 , ,

((1 ) ) [ ]

(1 ) [ ]
i j i j i j i j i j i j

i j
i j i j i j i j

S r C S F S
S

r C F S

λ

λ
− − −

+
− −

+ − Σ − −
=

+ − Σ − −       (17) 

In order to use equation (17) we need an initial node Si,j. If the number of nodes is odd we choose 

the central node to be equal to the current spot. If the number of nodes is even, we substitute 

equation (12) in equation (17) and we get. 

0 0

( 1)/2, 1 ( 1)/2, 0

0 ( 1)/2, 1
( 3)/2,

((1 ) )

(1 )j j j j

j j
j j

S r C S
S

F r C

λ

λ + − +

+ −
+

+ + − Σ
=

− + + Σ        (18) 

For the nodes below the central values we use the following equation that yields Si,j given Si+1,j: 

1, , 1 , 1 , 1, , 1
,

, 1 , 1 1, , 1

((1 ) ) [ ]

(1 ) [ ]
i j i j i j i j i j i j

i j
i j i j i j i j

S r C F S S
S

r C S S

λ
λ

+ − − + −

− − + −

+ − Σ − −
=

+ − Σ − −       (19) 

By repeating this process at each level we are able to generate the entire tree. 

The artificial probabilities of each node must belong to ]0,1[. A violation of this condition implies 

the presence of riskless arbitrage opportunities. Thus, at each iteration, we require the implied stock 

price in node up to fall above the forward price and the implied stock price in node down to fall 

below the forward price. If this is not verified, we use the same procedure as Derman and Kani 

(1994) to override it, i.e. we determine the stock price Si,j by means of the following condition for 

nodes below the center of the tree: 

)ln()ln()ln()ln( 1,11,,1, −+−+ +=+ jijijiji SSSS  

and by means of the following condition for nodes above the center of the tree: 

)ln()ln()ln()ln( 1,11,,1, −−−− +=+ jijijiji SSSS         

Intuitively, for nodes below (above) the center of the tree, we keep the volatility of stock prices in 

nodes i and i+1 (i-1) at level j the same as in the corresponding nodes at the previous level j-1.  

The construction of the put implied tree is analogous to the one already described for the call. The 

initial inputs are the risk free interest rate, the price of the stock and the price of an ATM put with 

expiration at time one. The empirically derived smile function for put prices is used to compute the 

smile-consistent put prices for the next level. Depending on the strike price needed to imply the 

next node, we read from the smile function the appropriate volatility and we compute the price of a 

put using a non distorted binomial model with constant volatility. 

To imply level n we use the following 2n+1 equations: we require the theoretical risk neutral values 

of n forwards and n put options expiring at time n to match the interpolated market values, and we 
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use the centring condition given by equation (11) if the level is even and by equation (12) if the 

level is odd. 

The value of a put with strike Si,n-1 is given by the following: 

, 1 , 1 , 1, 1 1, , 1 ,
1

( (1 ) ( ))*max( ,0)
1 1

i n j n j n j n j n i n j n

n
P p p S S

r j
λ λ− − − − − −= − + −∑

+ =
     (20) 

where to simplify notation , 1 , 1( , )i n i nP S n P− −= is the put price today computed using the smile function 

to obtain the appropriate implied volatility and generating a n step tree with constant appropriate 

volatility. 

Rewriting equation (20) in order to separate the effect of the first in the money node yields: 

1

, 1 , 1 , , 1 , , 1 , 1 ,
1

(1 ) (1 )( ) ( )
i

i n i n i n i n i n j n i n j n
j

r P p S S S Fλ λ
−

− − − − −
=

+ = − − + −∑       (21) 

where the first term depends on the unknown values of pi,n, and Si,n while the summation term is 

computed using quantities that are known at level n, for notational simplicity we denote by Σ’ the 

summation term in equation (21). 

Solving equations (13) and (21) for a level j=1,…,n we obtain a recursive formula that provides Si,j 

given Si+1,j: 

 
1, , 1 , 1 , 1 , 1,

,
, 1 , 1 , 1,

((1 ) ') [ ]

(1 ) ' [ ]
i j i j i j i j i j i j

i j
i j i j i j i j

S r P S F S
S

r P F S

λ

λ
+ − − − +

− − +

+ − Σ + −
=

+ − Σ + −
      (22) 

To use equation (22) we need an initial stock price Si+1,j. As in the case of the call, if the number of 

nodes is odd we take as initial node the central node of the level that is equal to the spot. If the 

number of nodes is even we substitute equation (12) in equation (22)  and we get: 

0 0 ( 1)/2, 1 0
( 1)/2,

( 1)/2, 1 ( 1)/2, 0

( ' (1 ) )

(1 )
j j

j j
j j j j

S r P S
S

F r P

λ

λ
+ −

+
+ − +

Σ − + +
=

+ + − Σ        (23) 

For the nodes above the central node we use the following recursive equation that computes Si+1,j 

given Si,j: 

, , 1 , 1 , , 1 ,
1,

, 1 , 1 , 1 ,

((1 ) ') [ ]

(1 ) [ ] '
i j i j i j i j i j i j

i j
i j i j i j i j

S r P F S S
S

r P S S

λ

λ
− − −

+
− − −

+ − Σ − −
=

+ − − − Σ
       (24) 

By repeating this process at each level we are able to generate the entire tree.  

If an implied stock price does not respect the no arbitrage condition, we use the same procedure 

explained for call prices to override it. Once we have constructed both the call and the put implied 

trees, we are able to compute the PC-implied tree.  

Let us indicate with Ti,j  the stock price at node i, level j computed using put prices and with Si,j the 

stock price at node i, level j computed with call prices, qi,j be the artificial probabilty of  an up move 
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from node (i,j-1) to node (i+1,j) computed using put prices and pi,j be the artificial probability 

computed using call prices.  

For each node, we take min(Si,j,Ti,j) and max (Si,j,Ti,j) as the lower and the upper bound respectively 

for the stock price and min(pi,j,qi,j) and max (pi,j,qi,j) as the lower and the upper bound respectively 

for the artificial probability. In this way we are able to incorporate in a unique implied tree all the 

information stemming from call and put prices.  

This is a simple way of deriving interval values for the probabilities and the underlying process 

from market data. In the following section we explain how to use the PC-tree to take expectations 

and thus value any derivative on the underlying asset.  

 

 

4. CHOQUET PRICING WITH INTERVAL VALUES FOR THE UNDERLYING ASSET 

 

The pricing of derivatives by means of the risk-neutral valuation approach implies discounting 

expected values under the risk-neutral probabilities. When probabilities are crisp values, the 

classical probability theory provides the appropriate framework for taking expectations, when 

probabilities are represented by intervals, one has to resort to the theory of capacities3 in order to 

take expectations and to price a derivative (see e.g. Cherubini (1997)).  

In illiquid markets, where the PCP fails to hold, uniqueness of the artificial probabilities leaves 

room to an interval. In our model, neither the artificial probability measure is unique, nor the 

process of the underlying asset takes precise values since we have aggregated partial and conflicting 

information coming from call and put prices. It follows that the theory of capacities cannot be used 

straightforward and we have to extend it in order to take into account interval values for the 

underlying asset. 

In order to give an intuitive representation of the issue, we begin by taking a one period binomial 

model, i.e. two dates 0,1 and two states X={U, D}. Figure 4 illustrates our problem. The stock price 

at time zero is S and it takes interval values in both states at time one: [ , ]Su Su  in state up, and 

[ , ]Sd Sd  in state down, where Su  and Sd  are the lower bounds of the intervals, Su  and Sd  the 

upper bounds.  

                                                 
3 Capacities were first introduced by Schmeidler (1989) in individual decision theory, and used by Dow and Werlang 

(1992), in a portfolio selection model. In both papers capacities are used as a representation of individual behaviour, by 

contrast in this model they arise at an aggregate level from the different information carried by call and put prices.  
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The risk free rate is equal to r>0.  A derivative is traded on the market and its payoff is a function of 

the underlying asset. Since the latter takes an interval value, the payoff for the derivative security in 

each state is an interval too, i.e. [ , ] [ , ]f Su Su fu fu= , [ , ] [ , ]f Sd Sd fd fd= .  

We have to derive the derivative price at time zero, f0. We first examine the case in which f  is an 

increasing function of S. 

 

T=0     T=1 

 

 

 

 

 

 

 

 

Figure 4. The binomial tree with interval values for the underlying asset. 

 

Suppose that the artificial probability measure of an up move is included in a convex set 

[ , ]u u up p p∈ where u up p≤ . If we take a set function : ( ) [0,1]P Xµ →  such that: ( ) 0, ( ) 1Xµ µ∅ = =  and is 

monotone non decreasing with respect to set inclusion, and we set ( ) uU pµ = and 1 ( ) uD pµ− = , we 

can observe that µ is weakly subadditive, since u up p≤  implies ( ) ( ) 1U Dµ µ+ ≤ . Such a set function 

is commonly called a capacity. 

We can compute the boundaries of the expected value of the security on the set of probability 

measures in the following way: 

{ } ]],)[1(],[[
1

1
],[],,)[1(],[min

1
1

0
fdfdpfufup

r
pppfdfdpfufup

r
f uuuuuuu −+

+
=∈−+

+
=      (25) 

{ }0
1 1

max [ , ] (1 )[ , ], [ , ] [ [ , ] (1 )[ , ]]
1 1u u u u u u uf p fu fu p fd fd p p p p fu fu p fd fd

r r
= + − ∈ = + −

+ +
                 (26) 

Or equivalently, using the set function µ: 

0 *

1 1
[[ , ] ( )([ , ] [ , ])] ( ( ))

1 1
f fd fd U fu fu fd fd E f S

r r
µ= + + =

+ +
     (27) 

*
0

1 1
[[ , ] ( )([ , ] [ , ])] ( ( ))

1 1
f fu fu D fu fu fd fd E f S

r r
µ= − − =

+ +
     (28) 

where the operators E* and E*  are known as upper and lower Choquet integral respectively. 

S 
f0 
 

[ , ]Su Su  

[ , ]fu fu  

[ , ]Sd Sd  

[ , ]fd fd  

[ , ]u up p

[ , ]d dp p
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Define µ  as the dual capacity of µ such that ( ) 1 ( ), ( ) 1 ( )U D D Uµ µ µ µ= − = − , µ is superadditive, 

i.e. ( ) ( ) 1U Dµ µ+ ≥ . Using  µ  in equation (28) we obtain: 

*0

1 1
[[ , ] ( )([ , ] [ , ])] ( ( ), )

1 1
f fd fd U fu fu fd fd E f S

r r
µ µ= + − =

+ +
     (29) 

The upper Choquet integral with respect to a subadditive capacity may be computed as the lower 

Choquet integral with  respect to the dual superadditive capacity.  

Suppose that the probability measure of a down move is included in a convex set [ , ]d d dp p p∈ where 

d dp p≤ . If we set 1 ( ) dU pµ− = and ( ) dD pµ = , then we get: 

0

1
[(1 )[ , ] [ , ]]

1 d df p fu fu p fd fd
r

= − +
+

        (30) 

0

1
[(1 )[ , ] [ , ]]

1 d df p fu fu p fd fd
r

= − +
+

        (31) 

As the underlying asset takes interval values in state up and down, it follows that both the lower and 

the upper Choquet integral for the derivative security are themselves intervals, i.e. *
0 0 0*

[ , ]f f f∈  

and 
*

0 0 0*,[ ]f f f∈ , where: 

0 *

1
[(1 ) ]

1 d df p fu p fd
r

= − +
+

         (32) 

*
0

1
[(1 ) )]

1 d df p fu p fd
r

= − +
+

         (33) 

0*

1
[(1 ) ]

1 d df p fu p fd
r

= − +
+

         (34) 

*
0

1
[(1 ) ]

1 d df p fu p fd
r

= − +
+

         (35) 

Since, 
**

0 0 0 0**
f f f f≤ ≤ ≤  it follows that the largest bound of the derivative price is 

*

0 0*
[ , ]f f .  

Analogously, if the derivative payoff is a decreasing function  f of  the underlying asset S, i.e. its 

payoff is higher in state down than in state up, its price bounds at time zero are computed using the 

lower and the upper bound respectively of the probability of state down (where the derivative has 

higher payoff): 

0 *

1
[(1 ) ]

1 d df p fu p fd
r

= − +
+

         (36) 

*

0

1
[(1 ) )]

1 d df p fu p fd
r

= − +
+

         (37) 

It is easy to show that these are the largest bounds. This observation leads to the following 

proposition.  



 14

Proposition 1. The expected value of a derivative whose payoff is an increasing (decreasing) 

function of the underlying asset that takes interval values in state up [ , ]Su Su  and in state down 

[ , ]Sd Sd when the artificial probability measure of an up move is included in a convex set 

[ , ]u u up p p∈ where u up p≤ , is a bounded interval 
*

0 0*
[ , ]f f , where 0 *

f  is computed evaluating the 

lower (upper) Choquet integral of the lower bound of the derivative payoff in each state with 

respect to the subadditive capacity, discounted at the risk free rate and 
*

0f  is computed as the upper 

(lower) Choquet integral of the upper bound of the derivative payoff in each state with respect to 

the subadditive capacity, discounted at the risk free rate.  

 

 

5. PRICING A DERIVATIVE  

 

In this section we explain how to compute a derivative price on the PC-implied tree and how to use 

the results obtained. 

In a n-period tree, the expected value of a derivative security can be computed by backward 

induction. Decomposing the entire n-period tree in (n(n+1))/2 binomial sub-trees, we compute by 

means of Proposition 1 the derivative value at each node (i,j), with i=1,...,j+1; j=0,...,n-1 until the 

initial node is reached, i.e. the current price of the derivative is found. 

In order to give an example, we compute the price of a derivative whose payoff is an increasing 

function of the underlying asset payoff e.g. a call option, with strike price K. Figure 5 illustrates the 

case. Note that at time two, because of the centring condition, the underlying asset takes a precise 

value; we can always consider a crisp value as a collapsed interval. 

Starting from the terminal nodes, we compute the call prices at time one as follows: 

1
(2,1) [ (2,2)( (3,2) ) (1 (2,2))( (2,2) )]

1
f pu S K pu S K

r
= − + − −

+
 

1
(2,1) [ (2,2)( (3,2) ) (1 (2,2))( (2,2) )]

1
f pu S K pu S K

r
= − + − −

+
 

1(1,1) [ (1,2)( (2,2) ) (1 (1,2))( (1,2) )]
1

f pu S K pu S K
r

= − + − −
+  

1(1,1) [ (1,2)( (2,2) ) (1 (1,2))( (1,2) )]
1

f pu S K pu S K
r

= − + − −
+  
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T=0      T=1      T=2 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. A two periods PC-implied tree. 

 

And finally the call price at time zero is: 

))]1,1())(1,1(1())1,2()(1,1([
1

1
0

fpufpu
r

f −+
+

=  

))]1,1())(1,1(1())1,2()(1,1([
1

1
0 fpufpu

r
f −+

+
=  

If  we price a put option with strike price K> (3,2)S , then we get:  

1(2,1) [ (2,2)( (3,2)) (1 (2,2))( (2,2))]
1

f pu K S pu K S
r

= − + − −
+  

1
(2,1) [ (2,2)( (3,2)) (1 (2,2))( (2,2))]

1
f pu K S pu K S

r
= − + − −

+
 

1(1,1) [ (1,2)( (2,2)) (1 (1,2))( (1,2))]
1

f pu K S pu K S
r

= − + − −
+  

1(1,1) [ (1,2)( (2,2)) (1 (1,2))( (1,2))]
1

f pu K S pu K S
r

= − + − −
+  

And finally the put price at time zero is: 

0

1
[ (1,1)( (2,1)) (1 (1,1))( (1,1))]

1
f pu f pu f

r
= + −

+
 

0
1

[ (1,1)( (2,1)) (1 (1,1))( (1,1))]
1

f pu f pu f
r

= + −
+

 

If we draw a comparison with the classical Derman and Kani model, a few comments are in order. 

It has been detected, see e.g. Chesney, Gibson and Loubergé (1995) and Cavallo and Mammola 

(2000), that the volatility implied by call prices is generally lower then the one implied by put 

S 
],[ 00

ff  
 

)]1,2(),1,2([ SS  

)]1,2(),1,2([ ff

 

)]1,1(),1,1([ SS  

)]1,1(),1,1([ ff  

)]1,1(),1,1([ pupu

)]2,3(),2,3([ SS  

 

)2,2(S  

 

)]2,2(),2,2([ pupu

)]2,1(),2,1([ SS  

 

)]2,1(),2,1([ pupu
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prices. If this is the case, the Derman and Kani tree, being constructed using call prices for the 

upper half and put prices for the lower half, give a higher volatility to lower nodes then it does for 

upper nodes. As a consequence, the classical Derman and Kani model overprices derivatives whose 

payoff is a decreasing function of the underlying asset and underprices derivatives whose payoff is 

an increasing function of the underlying asset. 

On the other hand, if the volatility implied by call prices is higher than the one implied by put 

prices, the Derman and Kani implied tree overprices derivatives whose payoff is an increasing 

function of the underlying asset and underprices derivatives whose payoff is a decreasing function 

of the underlying asset. 

In our model, the interval of prices for the derivative security better reflects the information 

available on the market regarding the underlying process.  

The PC-implied tree can be used in markets where PCP deviations have been observed, to value 

illiquid options or other derivatives that are not traded in the market (for example, the derivative 

part of a structured note issued by an intermediary). The price interval obtained, that arises because 

of the market illiquidity, represents a bid-ask price quoted by an intermediary. To make this point 

more clear, let us analyse gains and losses of an intermediary that issues a derivative on the 

underlying asset whose process is represented by the PC-implied tree in Figure 4. In order to make a 

positive profit, the intermediary quotes the following prices: she buys the derivative at the lowest 

price and sells it at the highest.  

Let us assume the derivative is an increasing function of the underlying asset. The gain from buying 

one unit of the derivative at a price P, is at least equal to the expected value of the derivative payoff 

minus the price P, i.e it is at least equal to: 

Pf −
*0

=
1

[ (1 ) ]
1 u up fu p fd P

r
+ − −

+
 

and at most equal to:  

Pf −*
0 =

1
[ (1 ) )]

1 u up fu p fd P
r

+ − −
+

. 

The gain from selling the derivative at a price P is equal to the price P minus the expected value of 

the derivative payoff that the writer has to pay to the holder, i.e. it is as least equal to:  

*
0fP − =

1
[ (1 ) )]

1 u uP p fu p fd
r

− + −
+

 

and at most equal to: 

*0
fP − =

1
[ (1 ) ]

1 u uP p fu p fd
r

− + −
+

. 
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 It follows that the intermediary is willing to buy the derivative if price P is less then 
0*

f  and is 

willing to sell it if its price P is more then *
0f . At prices between the bounds, then there is no 

incentive for the intermediary to issue the derivative4. This situation is illustrated in Figure 6. Thus 

the derivative price bounds represent the bid-ask prices quoted by the intermediary that has issued 

the security. 

 

 

Figure 6. The bid-ask price for the derivative security. 

 

 

6. CONCLUSIONS 

 

In this paper we have proposed and implemented a procedure to construct implied trees in illiquid 

markets and we have extended the Choquet integral definition in order to take into account interval 

values for the stock payoff. Our model accounts for violations of the Put Call parity in illiquid 

markets and exploits all the information contained in such deviations.  

When the Put Call parity fails to hold, uniqueness of the artificial probabilities leaves room to an 

interval. In order to bound the artificial probabilities and the underlying stock prices at each node of 

the tree, we have derived two implied trees: one using only call options and the other one using only 

put options. The implied tree we obtain incorporates all the information in call and put prices.  

In order to use the PC-tree to take expectations and thus value any derivative on the underlying 

stock, we have to resort to the use of capacities. To this end we have extended the Choquet integral 

in order to take into account interval values for the stock payoff, that arise because of the conflicting 

information coming from call and put prices.  

The PC-implied tree can be used in markets where PCP deviations have been observed, to value 

illiquid options or other derivatives that are not traded in the market (for example, the derivative 

part of a structured note issued by an intermediary). The price interval obtained represents a bid-ask 

price quoted by an intermediary.  

                                                 
4  Dow and Werlang (1992) explained the portfolio inertia puzzle using a non additive probability measure to represent 
agents’ preferences. Differently from their approach, in our model the capacity is derived from the conflicting 
information of call and put prices, at a market level and the stock payoffs take imprecise values. 

0*
f

P 
*

0fBUY SELL 
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Future research work includes, from an empirical point of view, a validation of the model proposed 

and from a theoretical one, an alternative derivation of the PC-implied tree.  

Specifically, we believe that the contemporary use of both a call and a put option at each node of 

the tree to imply the next level variables would allow a more accurate estimate of the future 

variables. However, it should be stressed that this extension would lead to a substantial increase of 

the computational complexity and therefore it is suitable only for trees with a few levels. 

 

REFERENCES  

 

Black F., Scholes M. (1973) “The pricing of options and corporate liabilities” Journal of Political 

Economy, 81, 637-654. 

Cavallo L., Mammola P. (2000) “Empirical tests of efficiency of the Italian index options market” 

Journal of Empirical Finance, 7, 173-193. 

Chesney M., Gibson R., Loubergé H. (1995) “Arbitrage trading and index option pricing at 

SOFFEX: an empirical study using daily and intradaily data” Finanzmarkt und Portfolio 

Management, 1, 35-60. 

Cherubini U.(1997) “Fuzzy measures and asset prices” Applied Mathematical Finance, 4, 135-149 

Choquet G. (1955) “Theory of Capacities” Annales de l’Institut Fourier, 5, 131-295. 

Cox J., Ross S. and Rubinstein M. (1979) “Option pricing, a simplified approach” Journal of 

Financial Economics, 7, 229-263. 

Dempster A.P. (1967) “Upper and Lower probabilities induced by a multivalued mapping” Annals 

of Mathematical Statistics, 38, 325-339. 

Derman E., Kani I. (1994) “Riding on a smile” Risk, 7, (2), 32-39. 

Dow J., Ribeiro Da Costa Werlang S.(1992) “Uncertainty aversion, risk aversion and the optimal 

choice of portfolio” Econometrica, 60, 197-204. 

Evnine J., Rudd A. (1985) “Index options, the early evidence” Journal of Finance, 40, 743-756. 

Gilboa I. (1987) “Expected utility theory with purely subjective non additive probabilities” Journal 

of Mathematical Economics, 16, 65-88. 

Gould J.P., Galai D. (1974) “Transaction costs and the relationship between put and call prices” 

Journal of Financial Economics, 1,105-129.  

Hull J., White A. (1987) “The pricing of options on assets with stochastic volatilities” Journal of 

Finance, 42, 281-300  

Jarrow, R.A. (1988) Finance Theory, Prentice-Hall International Editions, New York. 

Kamara A., Miller T.W. Jr. (1995) “Daily and intradaily tests of European put call parity”, Journal 



 19

of Financial and Quantitative Analysis, 30, (4), 519-539. 

Klemkosky R.C., Resnick B.G. (1979) “Put call parity and market efficiency” The Journal of 

Finance, 34, (5), 1141-1155. 

Merton R. (1976) “Options pricing when underlying stock returns are discontinuous” Journal of 

Financial Economics, 3, 125-144. 

Mittnik S., Rieken S. (2000) “Put –call parity and the informational efficiency of the German DAX 

index options market” International Review of Financial Analysis, 9, 259-279. 

Moore R.E. (1979) Methods and applications of interval analysis SIAM Studies in Applied 

Mathematics. 

Nelson D., B., Ramaswamy K. (1990) “Simple binomial processes as diffusion approximations in 

financial models” The Review of Financial Studies, 3, (3), 393-430. 

Nisbet M. (1992) “Put-call parity theory and an empirical test of the efficiency of the London 

Traded Options Market ” Journal of Banking and Finance, 16, 381-403. 

Rendleman R.J. Jr., Bartter B.J. (1979) “Two states option pricing” Journal of Finance, 34, (5), 

1093-1111.  

Rubinstein M. (1994) “Implied binomial trees” Journal of Finance, 64, (3), 770-818. 

Shimko D. (1993) “Bounds of probability” Risk, 6, 33-37.  

Scmeidler D. (1989) “Subjective probability and expected utility without additivity” Econometrica, 

57, (3), 571-587. 

Stapleton R.C., Subrahmanyam M.G. (1984) “The valuation of options when asset returns are 

generated by a binomial process” Journal of Finance,39, (5) 1525-1539.  

Stoll H.R. (1969) “The relationship between put and call options prices” Journal of Finance 24, 

801-824. 

Strong N., Xu X. (1999) “Do S&P500 index options violate the martingale restriction?” Journal of 

Futures markets, 499-521. 

 


