
Evolving a Multiagent System for
Landmark-Based Robot Navigation
Madhur Ambastha,1,* Dídac Busquets,2,† Ramon López de Màntaras,2,‡

Carles Sierra2,§

1Department of Computer Science, University of Rochester, Rochester,
NY 14627, USA
2Artificial Intelligence Research Institute (IIIA), Spanish Council for Scientific
Research (CSIC), Campus UAB, 08193 Bellaterra, Spain

In this article, we build upon a multiagent architecture for landmark-based navigation in unknown
environments. In this architecture, each of the agents in the navigation system has a bidding
function that is controlled by a set of parameters. We show here the good results obtained by an
evolutionary approach that tunes the parameter set values for two navigation tasks. © 2005
Wiley Periodicals, Inc.

1. INTRODUCTION

In landmark-based navigation, the robot must be able to start in an unknown
location and navigate to a desired target using visually acquired landmarks. The
specific scenario that we are studying assumes that there is a target landmark that
the robot is able to recognize visually. The target is visible from the robot’s initial
location, but it may subsequently be occluded by intervening objects. The chal-
lenge for the robot is to acquire enough information about the environment (loca-
tions of landmarks and obstacles) so that it can move along a path from the starting
location to the target position. The robot should do this quickly but safely.

We have proposed a bidding coordination architecture to accomplish this
objective.1 This architecture is composed of three systems: the Pilot system, the
Vision system, and the Navigation system. Each system competes for the two avail-
able resources: motion control (direction of movement) and camera control (direc-
tion of gaze). The three systems have the following responsibilities. The Pilot is

*Author to whom all correspondence should be addressed: e-mail: ambastha@cs.
rochester.edu.

†e-mail: didac@iiia.csic.es.
‡e-mail: mantaras@iiia.csic.es.
§e-mail: sierra@iiia.csic.es.

INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, VOL. 20, 523–539 (2005)
© 2005 Wiley Periodicals, Inc. Published online in Wiley InterScience
(www.interscience.wiley.com). • DOI 10.1002/int.20079

responsible for all motions of the robot. It selects these motions in order to carry
out commands from the Navigation system and, independently, to avoid obstacles.
The Vision system is responsible for identifying and tracking landmarks (includ-
ing the target landmark). Finally, the Navigation system is responsible for choos-
ing higher level decisions in order to move the robot to a specified target. This
requires requesting the Vision system to identify and track landmarks (in order to
build a map of the environment) and requesting the Pilot to move the robot in
various directions in order to reach the goal position or some intermediate target.

From the brief description of the robot architecture given above, it can be
observed that the three systems must cooperate and compete. They must cooper-
ate because they need one another in order to achieve the overall task of reaching
the target position. But at the same time they are competing for motion and camera
control.

The Navigation system is implemented as a multiagent system, where each
agent is competent in a specific task. Depending on its responsibilities and the
information received from other agents, each agent proposes which action the Nav-
igation system should take. Again, we find that the agents must cooperate, because
an isolated agent is not capable of moving the robot to the target, but they also
compete, because different agents want to perform different actions.

For both the overall robot system and the Navigation system, we have pro-
posed the use of a new competitive coordination system based on a bidding mech-
anism. In the overall robot system, the Navigation and the Pilot systems generate
bids for the services offered by the Pilot and Vision systems. These services are to
move the robot toward a given direction, and to move the camera and identify the
landmarks found on its view-field, respectively. The service actually executed by
each system depends on the winning bid at each point in time. Similarly, in the
Navigation system, each agent bids for the action it wants the robot to perform.
These bids are sent to a special agent that gathers all bids and determines the win-
ning action. The selected action is then sent as the Navigation system’s bid for the
services of the Vision and Pilot systems.

The bidding functions of each of the agents in the Navigation system are con-
trolled by a set of parameters. These parameters need to be tuned in order to achieve
the best performance of the Navigation system and of the overall system. Adjusting
these parameters manually can be very difficult, particularly because of the trade-
offs confronting the top-level agents. An alternative to manual tuning is to employ
an evolutionary approach to tune them. This article describes this approach.

The article is organized as follows. Section 2 is devoted to relevant related
work. The multiagent architecture of the Navigation system is described in Sec-
tion 3. Section 4 describes each one of the agents and their bidding parametric
functions. Section 5 describes the evolutionary approach to tune these functions.
Finally, the experimental results are discussed in Section 6.

2. RELATED WORK

In the last years research has been mainly focused on behavior-based archi-
tectures.2 The most representative of such architectures are Brook’s subsumption

524 AMBASTHA ET AL.

architecture,3 Maes’ action selection,4 and Arkin’s motor schema.5 Since then, many
other architectures have been proposed. Liscano et al.6 use an activity-based black-
board consisting of two hierarchical layers for strategic and reactive reasoning. A
blackboard database keeps track of the state of the world and a set of activities to
perform the navigation. Arbitration between competing activities is accomplished
by a set of rules that decides which activity takes control of the robot and resolves
conflicts. Other hierarchical centralized architectures similar to that of Liscano
et al. are those of Stentz7 to drive Carnegie Mellon University’s (CMU) Navlab
and Isik,8 among others. Our approach is completely decentralized, which means
that the broadcast of information is not hierarchical. This approach is easier to
program and is more flexible and extensible than centralized approaches. Arkin5

also emphasized the importance of a nonhierarchical broadcast of information.
Furthermore, we propose a model for cooperation and competition between activ-
ities based on a simple bidding mechanism. A similar model was proposed by
Rosenblatt9 in the CMU’s DAMN project. A set of modules cooperated to control
a robot’s path by voting for various possible actions, and an arbiter decided which
was the action to be performed. However, the set of actions was predefined, whereas
in our system each agent can bid for any action it wants to perform. Moreover,
in the experiments carried out with this system (DAMN), the navigation system
used a grid-based map and did not at all use landmark-based navigation. Also at
CMU, the FIRE project10 uses a market-oriented approach to model the coopera-
tion of a team of robots. Sun and Sessions11 have also proposed an approach for
developing a multiagent reinforcement learning system that uses a bidding mech-
anism to learn complex tasks. The bidding is used to decide which agent gets con-
trol of the learning process. The agents bid according to the expected reward that
they would receive if they were given control. Thus, although they are competing
for control, they also cooperate, because they seek to maximize the overall system
reward.

The map-building approach we use is based on the work by Prescott,12 who
proposed a network model that stores the spatial relationships among landmarks
for robot navigation. By matching a perceived landmark with the network, the
robot can find its way to a target, provided it is represented in the network. Whereas
Prescott’s approach is quantitative, ours uses a fuzzy extension of his model to
work with fuzzy qualitative information about distances and directions. Levitt and
Lawton13 also proposed a qualitative approach to the navigation problem, but
assume unrealistically accurate distance and direction information between the
robot and the landmarks. Another qualitative method for robot navigation was pro-
posed by Escrig and Toledo,14 using constraint logic. However, they assume the
robot has some a priori knowledge of the spatial relationship of the landmarks,
whereas we build these relationships while exploring the environment.

There is a vast literature on evolutionary approaches to parameter optimiza-
tion. For this reason we will not single out any particular work. Nonetheless, an
application of genetic algorithms to a similar problem on path planning was done
in Ref. 15, where the low-level parameters tuned correspond to an insect-inspired
pheromone-based model defining a potential field over the space, whereas our
approach is based on a group of deliberative agents. Also, in Ref. 16, an evolution-
ary approach to the generation of an optimal colony of robots is presented.

EVOLVING A MULTIAGENT SYSTEM FOR ROBOT NAVIGATION 525

3. THE MULTIAGENT ARCHITECTURE

The architecture is composed of three systems (see Figure 1). Each system
competes for two available resources: motion and vision. The Pilot is responsible
for all motions of the robot. It selects these motions to carry out commands from
the Navigation system and (independently) to avoid obstacles. The Vision system
is responsible for identifying and tracking landmarks (including the goal). Finally,
the Navigation system is responsible for choosing higher level robot motions to
move the robot to a specified goal. This requires requesting the Vision system to
identify and track landmarks and to build a map of the environment and requesting
the Pilot to move the robot toward the goal position or toward some intermediate
target position.

From this brief description, two observations can be made. First, these three
systems must cooperate to achieve the overall task of reaching the goal landmark
position. For instance, the Pilot needs the Vision system to identify obstacles and
it needs the Navigation system to select a path to the goal. Second, the systems are
also competing—there are some trade-offs between them. For example, both the
Pilot and the Navigation system compete for the Vision system. The Pilot needs
vision for obstacle avoidance, while the Navigation system needs vision for land-
mark detection and tracking.

To manage this cooperation and competition, we use a bidding mechanism.
Each system generates bids for the services offered by the Pilot and Vision sys-
tems. The service actually executed by each system depends on the winning bid at
each point in time.

The Navigation system itself is implemented as a multiagent system (see Fig-
ure 2). This system is composed of six agents with the following responsibilities:

• keep the target located with maximum precision and reach it (Target Tracker)
• keep the risk of losing the target low (Risk Manager)
• recover from blocked situations (Rescuer)

Figure 1. Robot architecture.

526 AMBASTHA ET AL.

• keep the error in the distance to landmarks low (Distance Estimator)
• keep the information on the map consistent and up to date (Map Manager)

There is an additional agent, Communicator, that manages the communica-
tion between the Navigation system with the other systems. As with the overall
system, the Navigation system employs a bidding mechanism to coordinate these
agents. Each agent bids for the action it wants the robot to perform. These bids are
sent to the Communicator agent, which determines the winning action. The selected
action is then sent as the Navigation system’s bid for the services of the Vision and
Pilot systems. Each action can involve a combination of requests to the Vision and
the Pilot systems. The resulting bids coming from the agents depend on bidding
functions associated to each agent. These functions depend on the values of differ-
ent sets of parameters, which affect the overall performance of the Navigation
system. Because a manual adjustment is extremely difficult, we propose to employ
a genetic algorithm to find optimal sets of values. The next section describes the
bidding functions in detail and the rest of the article is devoted to describing this
evolutionary approach and the results of our experiments.

For map representation and wayfinding, we have extended Prescott’s beta-
coefficients system.12 Prescott’s model stores the relationships among the land-
marks in the environment to build a map. The location of a landmark is encoded
based on the relative locations (headings and distances) of three other landmarks.
This relationship is unique and invariant to viewpoint. Once this relationship has
been stored, the location of each landmark can be computed from the locations of
the three landmarks encoding it, no matter where the robot is located, as long as
the robot can compute the heading and distance to each of the three landmarks.

As the robot explores the environment, it stores the relationships among the
landmarks it sees. This creates a network of relationships among the landmarks in

Figure 2. Multiagent Navigation System.

EVOLVING A MULTIAGENT SYSTEM FOR ROBOT NAVIGATION 527

the environment. If this network is sufficiently richly connected, it provides a com-
putational map of the environment. Given the headings and distances to a subset
of currently visible landmarks, the network allows the robot to compute the loca-
tions of all landmarks, even if they are currently not visible.

Prescott’s model assumes that the robot is able to measure the exact location
of the landmarks. But this is not the case in our robot: The vision system gives
only imprecise information about the location of the landmarks, and we cannot
rely on the odometry of the robot, as it is also imprecise. To deal with this impre-
cision, our extended model represents all the network coordinates as fuzzy num-
bers and carries out all map computations using fuzzy arithmetic.17 The focus of
this article is on the evolutionary approach to tune the agents’ bidding behavior.
For this reason, from now on, we will skip the details of the map representation
(see Ref. 1 for details).

4. THE AGENTS

The Navigation system is decomposed into six different agents that are respon-
sible for different tasks, which, when coordinated by the Communicator, provide
the desired effect of leading the robot to a desired target. As mentioned before,
each agent has certain parameters that affect its bidding behavior. The agents and
their parameters are described next.

4.1 Map Manager ~Parameters: none!

This agent is responsible for maintaining the information of the explored envi-
ronment as a map. Because the Map Manager does not bid, there are no param-
eters to tune and therefore it is not the focus of this article. The details of the map
management algorithmics are also not given here due to space limitations (see
Ref. 1 for details).

4.2 Target Tracker ~Parameters: a,b,k1,k2!

The goal of this agent is to keep the target located at any time. The impreci-
sion Ia associated with the location of the target is computed as a function on the
size of the angle arc, ea calculated from the robot’s current position to where the
target is thought to be located, and the agent acts to keep the imprecision as low as
possible. The bids for moving toward the target start at the value k1 and decrease
polynomically to 0, depending on the parameter a. The rationale of this is that
when the imprecision about the target location is low, this agent is confident about
the target position and therefore bids high to move toward the target. As the impre-
cision increases, this confidence decreases and so does the bid. Bids for looking at
the target increase from 0 to a maximum of k2 and then decrease again to 0. The
rationale behind this is that when the imprecision is low there is no urgency in
looking to the target as its location is known with high precision. This urgency
starts to increase as the imprecision increases. When the imprecision reaches a
level in which the agent has no confidence on the target location it starts decreas-

528 AMBASTHA ET AL.

ing the bid so as to give the opportunity to better informed agents to win the bid.
The equations involved are

Ia � ~ea /2p!b

bid~move~ea!! � k1~1 � Ia
1/a !

bid~look~ea!! � k2 sin~pIa !

where b controls the shape of the imprecision function.

4.3. Distance Estimator ~Parameters: k,f,d!

The goal of this agent is to keep the distance error to the target landmark as
low as possible. This agent plays a very important role at the beginning of the
navigation. When analyzing the first viewframe to obtain the initial landmarks,
the error in distance is maximal; there is no reference view to obtain an initial
estimation of the distance to the target. This agent generates high bids to move
orthogonally with respect to the line connecting the robot and the target in order to
get another view on it and establish an initial estimation of the distances to the
target. Similarly, when a target switch is produced (by the intervention of the Res-
cuer) this agent may become relevant again if the distance value to the new selected
target is very imprecise. Again, the same process will have as consequence a
decrease in the new target distance error.

We model distance imprecision as the size of the support of the fuzzy number
modeling distance. We note et the imprecision error to the current target. Thus, the
imprecision in distance to the target can be modeled as Id �1 � 1/eket , where k is
a parameter that changes the shape of Id ; high values of k give faster increasing
shapes. At the beginning of a run the distance is the fuzzy number @0,`# , et �
�`, and hence Id � 1.

This agent is relevant when the imprecision is very high. Its action is to bid to
move the robot in an orthogonal direction using as bid the value of Id , that is,

bid�move�ea�
p

2 �� � Id

This agent is also responsible for deciding (up to a certainty degree f) whether
the robot is at target. It considers that the robot has reached the target if the upper
bound of the a-cut of level f of the fuzzy number modeling the distance to the
target is less than d times the body size of the robot.

4.4. Risk Manager ~Parameters: gA,gB,gr !

The goal of this agent is to keep the risk of losing the target as low as possi-
ble. To do so, it tries to keep a reasonable number of landmarks, as noncollinear as
possible, in the surroundings of the robot. The fewer landmarks around, the more
risky is the current situation and the higher the probability of losing the target.

EVOLVING A MULTIAGENT SYSTEM FOR ROBOT NAVIGATION 529

Also, the more collinear the landmarks the higher the error in the location of the
target and thus the higher the imprecision on its location.

We model the risk as a function that combines (1) the number of landmarks
ahead (elements in set A!, (2) the number of landmarks around (elements in set B!,
and (3) their “quality” ~qA and qB !. These qualities are computed by the Map
Manager. A minimum risk of 0 is assessed when there are at least four visible
landmarks in the direction of the movement and minimally collinear. A maximum
risk of 1 is assessed when there are no landmarks ahead nor around:

R � 1 � min�1,qA� 6A64 �gA

� qB� 6B 64 �gB�
The values gA and gB determine the relative importance of the position of land-
marks (ahead or around).

Given that the robot cannot decrease the collinearity of the landmarks, the
only way to decrease the risk level is by increasing the number of landmarks. We
privilege the fact of having landmarks ahead by bidding

bid�look�random���p4 ,�
p

4 ���� � gr{R

for the action of looking at a random direction in front of the robot and tyring to
identify the landmarks in that area, and

bid�look�random���
p

4
,�

7p

4 ���� � gr{R2

(which is obviously smaller than gr{R! for the action of looking at a random direc-
tion around the robot and trying to identify landmarks, where gr is a parameter to
control the maximum value of the bidding function.

4.5. Rescuer ~Parameters: NIa, OR!

The goal of the Rescuer agent is to rescue the robot from problematic situa-
tions. These situations may happen for three reasons. First, the Pilot can lead the
robot to a position with an obstacle ahead. Second, the imprecision of the location
of the target (see Section 4.2) is over the threshold NIa . Finally, the robot can be at a
very risky place, that is, a place where the risk to get lost (see Section 4.4) is over
a threshold OR. If any of these situations happen, the Rescuer Agent asks the Map
Manager for a diverting target and communicates it to the other agents. The algo-
rithm uses a stack where the different diverting targets are stacked to avoid repeat-
ing them.

4.6. Communicator ~Parameters: none!

The Communicator agent is responsible for managing the communication
between the Navigation system and the Pilot and Vision systems. It is also respon-

530 AMBASTHA ET AL.

sible for gathering the bids of the other agents and deciding which are the actual
Navigation system’s bids. It has no parameters to tune.

5. EVOLVING THE MULTIAGENT SYSTEM

As we have already mentioned, trying to manually find the best values for the
parameters of the bidding functions is an extremely difficult task. In this section
we follow an evolutionary approach to do this optimization.

5.1. Representation

We seek to optimize the Navigation system with respect to its 10 parameters:
Target tracker ~a,b,k1,k2 !, Distance Estimator (k), Risk Manager ~gA ,gB ,gr !,
and Rescuer ~ NIa , OR!. f and d are fixed to 0.7 and 2, respectively, as they do not
affect the efficiency of the system. We use a real valued chromosome, each chro-
mosome being a vector in 10 dimensions. The initial population is generated
randomly.

5.2. Navigation Tasks

For a given environment we consider two different navigation tasks, each one
of them with a different level of complexity. The best parameter set may change
depending on the complexity of the task. We conjecture that the parameters found
depend mainly on the complexity of the navigation task and not so much on the
structure of the overall environment. This complexity is dependent, though not
equal, to the cartographic complexity of the world in which the agent moves, and
is based on the following factors:

• number of visible landmarks at any time
• density of obstacles in the region of navigation
• visibility of the target at any time.

Using this notion of navigational complexity, the total space of all navigation
tasks can be split into two representative classes: going toward the target free of
obstacles, and reaching targets located behind obstacles. In our experiments we
use clusters C1 and C2 (encircled targets in Figure 3) as representatives of the two
task complexity classes. The best parameter set is determined for both these classes.
The aim of the experiments is to endow the Navigation system of the robot with
the capability to switch between these two parameter sets according to the actual
task complexity it is facing.

5.3. Evaluation

Each individual in the population specifies a particular parameter set for the
system and is evaluated by running a simulation with the specified parameters in a
given environment. Consider that the agent navigates from an initial position p0 to
the target cluster C containing the n target positions ~t1, t2, . . . , tn ! and that it takes
di steps to reach the target ti from p0 with a success value si . A threshold is defined

EVOLVING A MULTIAGENT SYSTEM FOR ROBOT NAVIGATION 531

for the number of steps that are taken to reach the target, above which the agent is
said to have failed in its attempt to navigate to the target, that is, its success value
is 0; otherwise it is 1.

This formalization gives the clues to define the fitness function, f, that per-
mits the selection of the best parameter sets. It is clear that the average cost, Sc, of
reaching a target from the initial position p0 is defined as the summation of the
steps required to reach each target divided by the number of targets. Similarly, we
can naturally define the average success, Ss. The best behavior for a Navigation
system is the one that has a high success rate with a low average cost and with a
low standard deviation sc for this average cost:

Sc �
(
i�1

n

di

n
Ss �
(
i�1

n

si

n
f �

Ss
Sc � sc

5.4. Evolution

We follow an elitist approach. That is, from a population of individuals, the
fittest individual is passed to the next generation. The remaining individuals form
the pool from which the new generation offspring are created. We randomly select
two individuals from the mating pool whose fitness is more than a randomly deter-
mined value. Then we apply crossover and mutation on them to generate new
individuals.

5.5. Crossover

A simple two-point crossover is used with the two parents exchanging their
genetic material between two randomly generated breakpoints in the gene string.

Figure 3. Cluster C1 (left) and C2 (right). White polygons are nonoccluding obstacles.

532 AMBASTHA ET AL.

Chromosomes are broken only at agent boundaries (see Figure 4). The idea is that
one of the parents may have good genes for a particular agent whereas the other
parent may have good genes for another agent. This way the crossover could result
in an offspring having a higher fitness value than both its parents.

5.6. Mutation

The mutation operator for the genetic algorithm has been adopted from the
Breeder Genetic Algorithm.18 Given any set of parameters as a chromosome, we
can view it as a point x within a 10-dimensional space. Using our mutation opera-
tor, we seek to search for optimality within a “small” hypercube centered at x.
How small this hypercube is depends on the ranges in each parametric dimension
within which we allow the chromosome to mutate. The parametric dimensions are
not homogeneous; hence, mutation ranges differ for each dimension, being directly
proportional to the variance allowed in that parameter. Another feature of this muta-
tion operator is that although it searches within the hypercube centered at x, it tests
more often in the very close neighborhood of x, the idea being that, although we
want to conduct a global search for optimum using our recombination, mutation is
used for a more restricted local search. Having understood the broad features that
the mutation operator should demonstrate, we formally define the mutation as
follows.

Given a chromosome x, each parameter xi is mutated with probability 0.1.
The number of parameters being 10 implies that at least one parameter will prob-
ably be mutated. Further, given the mutation range for the parameter xi as rangei ,
the parameter xi is mutated to the value xi

* given by

xi
* � xi6 rangei{r

As previously discussed, r should be such that it lies between 0 and 1 (to generate
the hypercube centered at x! and also it should probabilistically take on small val-
ues so as to test more often in the close neighborhood of x. This is realized by
computing r from the distribution

r �(
j

aj 2�j

where each aj is probabilistically either 0 or 1.

Figure 4. Chromosome with the set of parameters.

EVOLVING A MULTIAGENT SYSTEM FOR ROBOT NAVIGATION 533

5.7. Diversity

The convergence of the genetic algorithm is estimated through its population
diversity. Initially, the population has a high diversity because all the individuals
are randomly selected. As the algorithm converges, the individuals in the popula-
tion converge toward the best solution, thus decreasing the diversity. In our case,
the individuals are points in a heterogeneous dimension space, with a, b, gA , and
gB � ℜ� whereas the other parameters range between 0 and 1. Hence we use the
Mahalanobis distance measure to determine the diversity of a population.19

The Mahalanobis distance takes into account the heterogeneity in dimen-
sions and correspondingly scales each dimension while estimating the distance
between two points. Given a set of data points $zi % with each data point zi being
an n-tuple ^zij 61 � j � n&, the Mahalanobis distance dm between two points zk

and zl is given as

dm~zk , zl ! � ~zk � zl !
TS�1~zk � zl !

Here S is the n � n variance–covariance matrix for the given data points. To com-
pare the diversity of populations across generations, the covariance matrix is com-
puted taking into account all the chromosomes over all generations. The diversity
of a population is then calculated as the average Mahalanobis distance of each
chromosome from the mean chromosome.

6. RESULTS

The genetic algorithm was run on the two task complexity classes repre-
sented by the target clusters C1 and C2 in our simulator. The population size was of
20 individuals, and we ran the genetic algorithm for 100 generations. The initial
position was the same for both with the crossover and the mutation rates being 0.8
and 0.1, respectively. In the algorithm, four of the parameters—a, b, gA , and
gB—lie on the positive real axis, and hence we have to choose an upper limit on
the real line. This upper limit is important because a low upper limit value implies
that we implicitly restrict our real valued parameters to that limit, whereas a high
upper limit value may increase the number of generations for which the genetic
algorithm may have to be run because the initial random generation will be very
disperse. a and b are exponents of numbers less than 1 and hence their large val-
ues will not be useful. Keeping these factors in consideration, the upper limit value
has been fixed to 5 in our simulations.

The genetic algorithm converges to an optimal solution for each cluster as
can be seen in Figures 5–10. The optimal values for some of the parameters differ
significantly for the two clusters as shown in Table I. The parameters associated to
the bidding function of the Risk Manager agent differ the most between the two
clusters. This is so because the Risk Manager is very sensitive to the complexity of
the task. The more obstacles, the higher the risk of losing sight of landmarks.

To check the results obtained for each of the clusters, we have tested the two
parameter sets found by the genetic algorithm on the two different navigation tasks
(going to cluster C1 and going to cluster C2 !. We have also tested our original

534 AMBASTHA ET AL.

Figure 5. Fitness of the fittest individual along generations (cluster C1!.

Figure 6. Average fitness of the population along generations (cluster C1!.

EVOLVING A MULTIAGENT SYSTEM FOR ROBOT NAVIGATION 535

parameter set, which we set by hand, on the same two navigation tasks. The results
obtained by each set on each of the tasks are shown in Table II. For each task, the
mean average success value ~ Ss!, average cost ~ Sc!, and the fitness value ~ f ! is
computed. As expected, the parameter set found for cluster C1 performs perfectly
when going to cluster C1 and it only reaches the targets of cluster C2 50% of the
time. On the other hand, the parameter set found for cluster C2 reaches the targets

Figure 7. Mahalanobis diversity (cluster C1!.

Figure 8. Fitness of the fittest individual along generations (cluster C2 !.

536 AMBASTHA ET AL.

Figure 9. Average fitness of the population along generations (cluster C2 !.

Table II. Results obtained by the different parameter sets.

Going to C1 Going to C2

Ss Sc f Ss Sc f

C1 set 1 50.5 0.017 0.5 127.5 0.003
C2 set 0.5 42.5 0.011 1 122 0.007
HT set 0.5 69 0.005 0 — 0

Figure 10. Mahalanobis diversity (cluster C2 !.

EVOLVING A MULTIAGENT SYSTEM FOR ROBOT NAVIGATION 537

of cluster C2 all the time, whereas it only reaches the targets of cluster C1 50% of
the time. Finally, the hand-tuned parameter set reaches targets in cluster C1 50% of
the time, and never reaches the targets of cluster C2. Therefore, the evolutionary
approach has improved the global navigation behavior.

In Figures 11 and 12 we can see some paths followed by the robot using each
of the parameter sets on each of the tasks. Successful paths are only shown for
those parameter set with a success value of 1. Otherwise, an example of a failing
path (marked with a cross at its end) is shown.

We are currently testing the parameter sets on a real robot, and we will ana-
lyze the generality, in terms of different environments and starting point, of the

Figure 11. Going to C1.

Figure 12. Going to C2.

538 AMBASTHA ET AL.

parameters obtained by the genetic algorithm. Further work should also focus on
designing an agent capable of identifying the complexity of the task being per-
formed, so that the parameters can be switched from one set to another. We will
explore the use of Case-Based Reasoning techniques on this “situation identifier”
agent.

Acknowledgments

This work has been partially supported by the Spanish MCYT project QUALNAVEX
(DPI2003-05193-C02-02). Dídac Busquets enjoys a CIRIT doctoral scholarship 2000FI-00191.

References

1. Busquets D, Sierra C, López de Mantaras R. A multiagent approach to qualitative naviga-
tion in robotics. Autonom Robots 2003;15:129–154.

2. Arkin RC. Behavior-based robotics. Cambridge, MA: MIT Press; 1998.
3. Brooks R. A robust layered control system for a mobile robot. IEEE J Robot Autom

1986;RA-2:14–23.
4. Maes P. The dynamics of action selection. In: Proc IJCAI’89, Detroit, MI, 1989. pp 991–997.
5. Arkin RC. Motor schema-based mobile robot navigation. Int J Robot Res 1989;8:92–112.
6. Liscano R, Fayek RE, Manz A, Stuck ER, Tigli J-Y. Using a blackboard to integrate mul-

tiple activities and achieve strategic reasoning for mobile-robot navigation. IEEE Expert
1995;10:24–36.

7. Stentz A. The Codger system for mobile robot navigation. In: Thorpe CE, editor. Vision
and navigation, the Carnegie Mellon Navlab. Boston: Kluwer Academic; 1990. pp 187–201.

8. Isik C, Meystel AM. Pilot level of a hierarchical controller for an unmanned mobile robot.
IEEE J Robot Autom 1988;4:241–255.

9. Rosenblatt J. DAMN: A distributed architecture for mobile navigation. In: Proc 1995 AAAI
Spring Symposium on Lessons Learned from Implemented Software Architectures for Phys-
ical Agents, March 1995. pp 167–178.

10. Dias MB, Stentz A. A market approach to multirobot coordination. Pittsburgh, PA: Robot-
ics Institute, Carnegie Mellon University; 2001.

11. Sun R, Sessions C. Bidding in reinforcement learning: A paradigm for multi-agent sys-
tems. In: Etzioni O, Müller JP, Bradshaw JM, editors. Proc 3rd Annual Conf on Autono-
mous Agents, Seattle, 1999. pp 344–345.

12. Prescott TJ. Spatial representation for navigation in animats. Adapt Behav 1996;4:85–125.
13. Levitt TS, Lawton DT. Qualitative navigation for mobile robots. Artif Intell J 1990;44:

305–360.
14. Escrig MT, Toledo F. Autonomous robot navigation using human spatial concepts. Int J

Intell Syst 2000;15:165–196.
15. Sauter J, Matthews R, van Dyke Parunak H, Brueckner S. Evolving adaptive pheromone

path planning mechanisms. In: Proc AAMAS’02, Bologna, Italy, July 2002. pp 434– 440.
16. Agah A, Bekey GA. A genetic algorithm-based controller for decentralized multi-agent

robotic systems. In: Proc. IEEE Int Conf on Evolutionary Computation (ICEC’96), Nagoya,
Japan, May 1996. pp 431– 436.

17. Bojadziev G, Bojadziev M. Advances in fuzzy systems, Volume 5, Fuzzy sets, fuzzy logic,
applications. Singapore: World Scientific; 1995.

18. Muhlenbein H, Schlierkamp-Voosen D. The science of breeding and its application to the
breeder genetic algorithm (BGA). Evol Comput 1993;1:335–360.

19. Duda RO, Hart PE, Stork DG. Pattern classification. New York: John Wiley; 2001.

EVOLVING A MULTIAGENT SYSTEM FOR ROBOT NAVIGATION 539

