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Summary 

Financial institutions are struggling with larger volume, more specific and greater 

frequency of regulatory reporting after the global financial crisis in 2008, especially 

those that need to report to multiple jurisdictions. To help to improve reporting 

efficiency, this paper aims to assess the existence of similarities between templates 

related to credit and counter party credit risk of COREP and Pillar 3 regulatory 

reporting frameworks by applying Correspondence Analysis and Association Rules 

Mining. Our results suggest a high degree of overlap between these reporting 

frameworks, more prominently the three business functions as Front office, Finance 

and Risk. These patterns can be used as guidance for financial institutions to reshape 

their reporting architecture. 

Keywords: Regulatory Reporting Framework; Reporting Architecture; 

Correspondence Analysis; Association Rules Mining 
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1. Introduction 

 

After the 2008 Global Financial Crisis, financial regulators, international 

institutions and governments around the world proposed stricter reporting to more 

effectively monitor and mitigate risks. New regulations, such as Basel III and Dodd 

Frank Act and Markets in Financial Instruments Directive 2 (MiFID2) have, still and 

will drive the major changes to regulatory reporting (Degryse, 2009; Walker, 2011; 

Hortin, 2016; Covi, 2016). Relevant amount of research has been devoted on evaluating 

these regulatory frameworks (Maximilian, 2012; Viral and Ryan, 2016; Ryan, 2017), 

checking if they enhance financial stability and the economic impacts of this disclosure. 

The overall picture is that the volume, complexity and pace of regulatory reporting for 

financial institutions are growing significantly. 

For example, financial institutions under the supervision of U.S. Federal Reserve 

must submit multiple files including call reports, stress testing reports, in addition to 

increasing requirements on data granularity and submission frequency (FSOC, 2014). 

This trend is indicated by the document of Basel Committee on Banking Supervision 

(BCBS) named Principles for Effective Risk Data Aggregation and Risk Reporting 

(BCBS 239) (EBA, 2016; BCBS, 2016). Hence, financial institutions must fill and 

submit reports more frequently and with greater level of detail. When the financial 

institution is operating globally, the volume and complexity of reporting requirements 

increase dramatically (Covi, 2016; Leuz and Wysocki, 2016). 

In this sense, financial institutions are forced to improve their data quality and 

integration across business functions and product lines, given the short implementation 

time frames as well as the uncertainty in rule making (BCBS, 2013; Ernst and Young, 

2012; BCBS, 2015; Viral and Ryan, 2016). Such challenges tend to increase especially 

if the companies deal with each regulation separately (across different departments, 
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business lines and geographies, i.e. a fragmented response), instead of addressing 

common challenges across different reporting frameworks together (i.e. a harmonized 

response). It is easy to perceive that there are similar requirements from various 

regulatory frameworks, but very limited research has been devoted to building tools to 

quantify and check eventual overlaps. With the knowledge of these connections or 

affinities among the regulations, financial institutions would be able to optimize their 

business processes, technology platform and data infrastructure.  

In order to measure associations between a set of variables, the financial literature 

is populated of research that applies the Principal Component Analysis (Scheinkman 

and Litterman, 1991; Fontana and Scheicher, 2016; Poynter et al., 2015), mostly 

because the researchers are dealing with quantitative/continuous types of variables 

(such as returns, prices and yields). However, in the case of regulatory frameworks, 

most of the data that can be extracted are textual and categorical, being more 

conventionally displayed as contingency tables rather than in a time series. In this case, 

similar approaches such as Correspondence Analysis (Beh and Lombardo, 2014) and 

Association Rules Mining (Agrawal et al., 1993) are preferred techniques, being both 

popularly used in other areas, such as psychology, biology, marketing, etc. (Greenacre 

and Pardo, 2006; Költringer and Dickinger, 2015; Higuera-Mendieta et al., 2016).  

Therefore, this work quantifies the similarity between elements of two different 

regulatory reporting frameworks: the most up to date Common Reporting (COREP) 

issued by the European Bank Authority and Pillar 3 (EBA, 2017; BCBS, 2017). With 

this information at hand, the financial institutions can improve regulatory reporting 

efficiency and timeliness as well as reducing compliance costs. By applying the 

Correspondence Analysis and Association Rules Mining techniques, we aim to assess 

these relationships from different perspectives and levels of aggregation as well as 

intend to show that our findings are robust across methodologies. Our work also related 

to some previous contributions in the realm of data visualization and parsing in finance 

and business (Goel and Gangolly, 2012; Kleinknecht and Ng, 2015; Jaffe, 2015; Fisher 

et al., 2016). 

Hence, in terms of contributions, the visualized patterns displayed in this paper can 
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be used as a guidance for financial institutions to reshape their reporting architecture. 

For example, the templates which are more closed regarding their data source were 

clustered by our methods, i.e. three business functions as Front office, Finance and Risk, 

were assembled. This result can be used to clear reporting responsibilities and locate 

data in different IT systems. Secondly, the correspondence among templates and a 

particular data item or group of data items were uncovered. So, given a data item which 

is interested in, the templates that are positively or negatively correlated with particular 

data item could be figured out at a glance. All this can be used to streamline reporting, 

optimizing the reporting architecture, and assess points of failure along the process. 

In this sense, this work is organized as follows: next section presents a background 

review, outlining some fundamentals on the COREP and Pillar 3 frameworks and 

describing the two techniques used in this work: Correspondence Analysis and 

Association Rules Mining. The third section exhibits the modelling strategy, showing 

how the data was fetched from the regulatory reporting frameworks, how they were 

transformed and manipulated, and the procedure pursued to apply both techniques 

appropriately. Then, we move to the results and analysis section, starting from the 

Correspondence Analysis and moving to Association Rules Mining. In both cases, we 

have begun by reporting the results from a high-level of aggregation and then moving 

to analyzes at the template level. After suggesting the main overlaps between COREP 

and Pillar 3, section 5 closes this work with some final remarks.  

 

2. Background Review 

 

2.1. Common Reporting (COREP) 

 

The European Banking Authority (EBA) published a standardized reporting 

framework to address the Capital Requirements Regulation and Directive (CRR/CRD) 

reporting. It applies to all credit institutions and investment firms operating in European 

Economic Area, and almost 30 European countries have adopted this reporting 

framework. Since the first publication in 2006, the EBA has updated COREP several 
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times to the newest version of DPM 2.7 (Data Point Model, see Table 1) in 2017, which 

contains 111 templates and covers capital adequacy and group solvency, credit and 

counter party credit risk, market risk, liquidity risk and operational risk, etc. The DPM 

is a structured representation of the data, identifying all the business concepts and its 

relations, as well as validation rules (EBA, 2012). To increase transparency in 

regulatory reporting, COREP has a relatively high level of data requirements in terms 

of volume and granularity (more than 12,000 data points in all). In this paper, we refer 

to data point as the data to be filled in templates. 

On a case by case basis, the COREP templates will have to be completed and 

delivered monthly, quarterly or annually to the EBA in the XBRL format (Extendable 

Business Reporting Language), and it is expected that most national regulatory 

authorities will pass that requirement to financial institutions. Although COREP reports 

are highly standardized regarding content and delivery format, it can pose significant 

challenges for many financial institutions given the time available to complete the 

construction of the internal frameworks required to produce these reports. 

 

 

 

2.2. Pillar 3 of Basel Accords 

 

The Basel Accords refer to the sets of guidelines and recommendations for 

banking regulations issued by the BCBS. Although the Committee does not have the 

authority to enforce recommendations, a significant number of national regulators tend 

to implement the Committee’s policies through national laws and regulations. The third 

instalment of the Basel Accords (Basel III) was developed as a response to the 

deficiencies of financial regulations indicated by the financial crisis in 2008. Basel III 

is based upon three essential aspects, which are called the “3 pillars”. These three pillars 

are Capital adequacy requirements, Supervisory review and Market discipline. The 

Pillar 3, i.e. market discipline, refers to requirements for the public disclosure of 

regulatory information by financial institutions and aims to improve the transparency 

of financial markets and to promote comparability of banks’ risk profiles within and 
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across countries. 

The first set of Pillar 3 disclosure requirements were issued in 2004 and were 

amended in 2009. The BCBS issued a revised standard of Pillar 3 in January 2015, 

followed by a consultative document in 2016 and the latest standard document in 2017 

which sets out new proposals of disclosure requirement (see Table 2). According to the 

specifications document, the disclosure scope includes details for capturing the 

financial institution’s risk profile, risk management, capital adequacy, liquidity, 

remuneration practices, among others.  

The Pillar 3 report must be published concurrently with financial reports for the 

corresponding period (BCBS, 2017). There are 63 templates in all, and 16 of them 

require qualitative information disclosure. The format of some templates is flexible and 

can be adjusted by jurisdiction or financial institutions. Regarding quantitative data 

disclosure, a financial institution needs to disclosure at least 4000 data points under the 

requirements of the 2017 standard document. Compared with COREP, the data 

granularity of Pillar 3 is relatively low, and this is in accordance with their oriented 

objects. The data in COREP is only provided to the regulator, but the information in 

Pillar 3 report is publicly disclosed. 

This paper does not cover all the templates in COREP and Pillar 3. It will focus 

on templates related to credit and counter party credit risk (CR and CCR). The 

quantitative information report templates are also not included in the scope of this paper. 

In terms of assessing CR, there are 12 templates in COREP and 25 templates in Pillar 

3 related, and the total data points are 4007 and 1833, respectively. For some templates 

which report detailed information, such as C14.00 in COREP or CCR4 in Pillar 3, it is 

impossible to calculate the exact number of total data points, so we use some columns 

or sub-total data points instead. 

 

 

2.3. Correspondence Analysis (CA) 

 

CA is a technique of data analysis for approximating a high-dimensional tabular 

data into a low-dimension representation that can be displayed graphically (Greenacre, 
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2007). The basic idea of CA is like principal component analysis (PCA), with the main 

difference is that PCA applies to continuous data, but CA applies to categorical data. 

CA allows the user to display or summarizes information in a low-dimensional 

graphical form, usually two-dimensional, to inspect their correspondences or 

associations at a category level.  

Suppose we have a sample of items, and we can use two categorical variables 

𝑋 and 𝑌 that contains 𝐼 and 𝐽 categories respectively, to describe the characteristics 

of each item. 

𝑋 = {𝑋1, 𝑋2, … , 𝑋𝐼}, 𝑌 =  { 𝑌1, 𝑌2, … , 𝑌𝐽} 

 

Now a 𝐼 × 𝐽 data matrix 𝑁 (a.k.a contingency table), can provide a summary 

of notation. The element 𝑛𝑖𝑗  of 𝑁  denotes the joint frequency of items which are 

classified into 𝑖 -th row category and 𝑗 -th column category at the same time.The 𝑖 

rows consisting of 𝑗 elements can be thought as 𝑖 points in a 𝑗-dimensional space. 

Similarly, the 𝑗 columns consisting of 𝑖 elements can be thought as 𝑗 points in a 𝑖-

dimensional space. 

It is not easy to represent those points graphically for 𝐼 and 𝐽 larger than 3. 

Then, to obtain a reasonable view of the relationship between variable 𝑋 and 𝑌, we 

need to find a low-dimensional approximation on the premise of not losing too much 

information. Although the loss of information is inevitable, since the information 

contained in high dimensions cannot be simply ignored, our main objective is to 

minimize it. The fundamental mathematical technique used in CA to reduce 

dimensionality is the singular value decomposition (𝑆𝑉𝐷), which is briefly outlined 

step by step in Appendix I.  

In CA, to quantify the overall association between the categorical variables 𝑋 

and 𝑌, a measure named 𝜒2 distance is introduced. The 𝜒2is calculated as: 

 

𝜒2 =  ∑
(𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 )2

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑
=  ∑ ∑

(𝑛𝑖𝑗 −
(𝑛𝑖.𝑛.𝑗)

𝑛
)2

(
𝑛𝑖.𝑛.𝑗

𝑛
)

𝐽

𝑗=1

𝐼

𝑖=1

                                  (1) 
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where 𝑛𝑖., 𝑛.𝑗  represents the number of items in the i-th row and j-th column 

respectively, and 𝑛  is the grand total. The expected count is produced under the 

assumption that 𝑋 and 𝑌 are independent of each other, that is, the frequencies are 

produced by chance. The larger the value of 𝜒2, the less valid is the assumption of 

independence. A hypothesis test called Pearson 𝜒2 -test can be used to assess the 

statistical significance (i.e., to compute a p-value) on the dependency of 𝑋 and 𝑌. 

By applying the SVD decomposition over the contingency table, we get a matrix 

S. Some useful metrics can be obtained from it, such as the total inertia, inertia of a row 

or column. The total inertia of a data matrix is the amount of information contained in 

the table. It can be calculated as the sum of squares of the matrix 𝑆 or the sum of 

squares of the singular values or eigenvalues. 

𝑡𝑜𝑡𝑎𝑙 𝑖𝑛𝑒𝑟𝑡𝑖𝑎 = 𝑡𝑟𝑎𝑐𝑒(𝑆𝑆𝑇) =  ∑ 𝛼𝑘
2

𝐾

𝑘=1

= ∑ 𝜆𝑘
2

𝐾

𝑘=1

                                                            (2) 

The square root of total inertia can be interpreted as the correlation coefficient. 

As a rule of thumb, any value of the trace > 0.2 indicates a significant correlation 

between row variable and column variable (Bendixen, 2003). The inertia of a row (or 

column) shows the amount of information it contains. For a given row, its inertia is 

calculated as the row mass multiplied by the squared distance between the row and the 

average row profile.   

 

2. 4. Association Rules Mining (ARM) 

 

The methodology for mining frequent items and association rules was 

originated and gradually developed in processing data in large databases. Piatetsky-

Shapiro (1991) firstly proposed the concept of “strong rules” and analyzed strong rules 

that were uncovered through some measures of interestingness. Agrawal et al. (1993) 

deepened this concept and expanded this problem to mining association rules from 

transaction data. 

Let 𝐼 = {𝑖1, 𝑖2, … , 𝑖𝑛} be a set of n binary attributes called items and let 𝐷 =

{𝑡1, 𝑡2, … , 𝑡𝑛} be a set of transactions called the database. Each transaction in 𝐷 has a 
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unique transaction ID and contains a subset of the items in 𝐼. An itemset is a subset of 

I, and a k-item set contains k items. A rule is defined as an implication of the form: 

𝑋 ⇒ 𝑌, where 𝑋, 𝑌 ⊆ 𝐼 and 𝑋 ∩ 𝑌 =  ∅. The itemset X and Y are called antecedent 

(left hand side or LHS) and consequent (right hand side or RHS) of the rule, and X and 

Y are mutually exclusive, i.e. they do not contain same items. 

The 𝑠𝑢𝑝𝑝𝑜𝑟𝑡  for an item set or association rule 𝑋 ⇒ 𝑌  measures how 

frequently it occurs in the database D (Lantz, 2015). It can be calculated as the 

proportion of transactions in D that contains both X and Y. 

 

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑋 ⇒ 𝑌) =  
# 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑋 ∩ 𝑌

# 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠
                                            (3) 

 

The accuracy or “predictive power” of an association rule can be measured by 

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒, which is determined by the support of the item set containing both X and 

Y divided by the support of item set containing only X (Lantz, 2015).  

 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑋 ⇒ 𝑌) =
𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑋, 𝑌)

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑋)
=  

# 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑋 ∩ 𝑌

# 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑋
   (4) 

 

It can be noted that confidence can tell us the probability that the presences of 

X will result in the presence of Y. The rules that have either high support or high 

confidence are of the interested of analysts. Moreover, those rules that meet or surpass 

a certain threshold of support and confidence are so-called strong rules.  

Another important measure is 𝑙𝑖𝑓𝑡, as defined by: 

 

𝐿𝑖𝑓𝑡(𝑋 ⇒ 𝑌) =
𝑠𝑢𝑝𝑝𝑜𝑟𝑡 ( 𝑋 ∪ 𝑌 )

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑋)𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝑌)
                                                                       (5) 

 

Lift is also a measure of performance at predicting case, and it can be interpreted 

as the deviation of the support of 𝑋 ⇒ 𝑌  from the support expected under 

independence given the supports of X and Y (Hahsler and Chelluboina, 2011). An 

association rule 𝑋 ⇒ 𝑌 is strong if lift value is large (i.e. 𝑙𝑖𝑓𝑡 ≫ 1).  
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The principal problem for association rules mining algorithm is that as the 

number of items grows, the number of potential rules will increase exponentially. If 

there are k unique elements in the database, there are 2𝑘 possible association rules, 

which make the searching work to be hopeless. A smarter rule learning algorithm called 

Apriori Algorithm limits the research scope for rules to a manageable size. The 

generating process can be summarized into two steps (Larose and Larose, 2014): 

 

• Step 1: Dig out all frequent itemsets, i.e. find all itemsets with 

frequency ≥ 𝜑 . The frequency of an itemset can be calculated as the number of 

transactions that contain this itemset. 

• Step 2: Generate association rules from the frequent itemsets, by the 

minimum support 𝜎 and minimum confidence 𝛿 constraints. 

 

To reduce the search scope of association rules, the Apriori algorithm makes use 

of a priori belief called Apriori property. The property states that all subsets of a 

frequent itemset must also be frequent, or put in another way, if an itemset is not 

common, then adding another item to it will not make it more frequent (Lantz, 2015). 

 

 

3. Experimental Framework and Modeling Strategy  

 

3.1. Correspondence Analysis (CA) 

        In this section, we explain how we are using CA to conduct similarity and 

affinity analysis for COREP and Pillar 3 templates (we show two typical cases of 

templates belonging to these frameworks in Appendix II). From the previous section, 

we know that categorical data is needed. But the information available for us are only 

the template formats and legislative packages such as Capital Requirements Directive 

IV (CRD IV), which is issued by EBA and comprised by the Regulation (EU) No. 

575/2013 and the Directive 2013/36/UE. Fortunately, the blank templates contain a 
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wealth of information that can be transformed into data. The main idea is to categorize 

all the data points of templates into different kinds, then the number of data points of 

each kind can be calculated. Finally, a contingency table can be obtained, in which the 

row and column variables are categories and templates, and the values are numbers of 

data points. 

Being more specific, to extract and transform the information contained in the 

regulatory templates into proper data that satisfy the format requirements of CA, we 

made a three-step processing to the templates. Firstly, recognize the most likely source 

of each data point in our templates. According to the work distribution and business 

process in a financial institution, the required regulatory data can be generated by 

different departments. By analyzing the data requirements of COREP and Pillar 3, we 

concluded that all the data can be acquired from three kinds of departments: Front 

Office (FR), Risk Department(R) and Finance Department (FI). For example, customer 

number, credit risk exposure and net income can be obtained from front office, risk 

department and finance department, respectively.  

 Then, we calculated the number of data points of each source for every template. 

Finally, the numbers obtained were structured in the form of a contingency table (Table 

3), in which the templates were regarded as column variables. The 13 columns named 

C7, C8, etc., are templates or groups of templates from COREP and Pillar 3; the values 

are the number of the data points sourced from FR, R and FI. 

Also, to make a more thorough analysis, a detailed classification was developed. 

Given the similarity of definition, the data points have been summarized into several 

items, which are defined individually as a “theme”. Each theme includes one kind of 

data, which has the possibility of being calculated by the same department, process or 

from the same type of business transaction. After eliminating the repeated themes, the 

data points in our templates were categorized into 12 unique themes (Table 4). For 

example, the data theme with short name “EXP2” includes all the data points reporting 

credit and counter party credit risk exposures. The data theme ‘VAP1’ includes all the 

data points related to value adjustment and provisions, such as guarantees, credit 

derivatives, etc. The numbers at the end of each short name represent its data source, 
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as 1 pose for FI, 2 for FR and 3 for R. 

By calculating the number of data points which belong to data themes, we can 

construct another contingency table with 12 categories (Table 5). This table contains 

the same total number of data points as Table 4, yet they are classified more detailed as 

different data themes for nuanced research. In Table 5, we have 12 row variables which 

refer to data themes and 13 column variables which refer to templates or group of 

templates. Therefore, we focus our analyzes into this 12×13 matrix data. 

It’s worth to mention that the outliers can cause serious consequences to CA. 

Therefore, some special handling was made during the data transformation process to 

reduce the number of variables and control outliers. Some of the templates were 

grouped given similarity, and their data points were summed up. For instance, the 

variable “C9” represent a group of three templates including C 09.01, C 09.02 and C 

09.03, while the variable “SEC” represent a group of four templates including SEC1, 

SEC2, SEC3 and SEC4 (Table 6). Also, certain templates, like C 14.00, require 

transaction-level reporting and financial institutions should list all the transactions one 

by one. This raises a problem with our data point counting since the number of rows in 

such templates is unknown. Another example is CR6 of Pillar 3, which require 

disclosing risk exposure and breakdown by portfolio. In both occasions, the number of 

data points was multiplied by the number of portfolios under internal rating-based 

approach. 

Then the two contingency tables are analysed by CA. As stated before, our goal 

is to uncover the relationship between different groups of templates as well as if a 

correspondence exists between templates and departments in financial institution, or 

templates and data themes. The strength of association was evaluated through 

correlation coefficient, and a Chi-squared test, with the correlated patterns being 

visualized by symmetric and asymmetric bi-plot. 

 

3.2. Association Rules Mining (ARM) 

 

To conduct association rules mining, the information contained in templates 
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needed to be transformed into binary attribute data. Firstly, the headers and first column 

of templates were categorized into “measures” and “dimensions”. For example, the 

measure “risk weighted exposure” and dimension “risk class - credit risk” define a 

specific data element “risk weighted exposure of credit risk” in the template. For the 37 

templates concerned a list of 140 data elements, i.e. combinations of measures and 

dimensions, were generated after excluding the repeated ones with each other.  

Then, based on the data elements, we generated binary attribute data for each 

template and obtained a binary incidence matrix with 37 rows (number of templates 

covered) and 140 columns (number of data elements). The matrix entries represent the 

presence 1 or absence 0 of data element in particular template (omitted here the data 

matrix). Although we lose some information on this process, we believe that this loss 

is offset by CA as well as the analytical capacity that can be obtained from ARM. 

 

 

4. Results and Analysis 

 

4.1. Correspondence Analysis 

 

4.1.1. Analysis of Workload in Regulatory Reporting 

We first apply CA to the contingency data in Table 3. It is a special case of the 

global picture because it only has three dimensions in categories. Then, by using only 

two CA components, it is possible to explain 100% of the data variability – only in 

cases where the features have no relationship at all, we would be able to explain around 

66-70%. In our case the dimensions have a clear relationship: Front Office (FR), Risk 

Department (R) and Finance department (FI). For example, customer number, credit 

risk exposure and net income can be obtained from front office, risk department and 

finance department, respectively. This result suggest that one of the dimensions can be 

replicated by linearly combining the other two: we may be able to combine information 

from the FR and FI to replicate the same numbers of R. 

The summary of the CA result is listed in Table 7. The table 7 (top) contains the 
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variances and the percentage of variances retained by each dimension; Table 7 (middle) 

contains the coordinates, the contribution and the cos2 (quality of representation in [0, 

1]) of the first 10 active column variables on the dimensions 1 and 2; and Table 7 

(bottom) contains the coordinates, the contribution and the cos2 of the first 3 active row 

variables on the dimensions 1 and 2. 

 

The trace, i.e. inertia, of this contingency (the sum of the eigenvalues) is 0.32, 

and the correlation coefficient is 0.565, which indicating a strong dependency between 

row and column variables. Besides, the chi-square = 2537.724, p = 0, which also means 

a strong link. Note that, the chi-square statistics = trace * n, where n is the grand total 

of the table (total frequency). 

 

Then since the correspondence analysis has calculated the distance values 

across the rows and columns of the contingency table, it is understandable to plot them. 

There are two dimensions in a biplot of CA, and each dimension explains a certain 

percentage of the data variation or inertia (Figure 1). Theoretically, it is possible to plot 

any two dimensions in one plot, but in practice, most of the reported CA displays the 

first two principles because a combination of the first two dimensions captures the 

largest percentage of the variation and offers the most accurate and interpretable 

visualization.  

The left picture of Figure 1 outlines a symmetric biplot in which both rows (red 

triangles) and columns (blue points) are plotted in the same space using the principal 

coordinates. In this plot, the distance between any row points or column points, which 

are approximate Chi-squared distance, gives a measure of their similarity (or 

dissimilarity). Column points with the similar profile are closed, C9 and C11 are the 

most different ones (looking from the perspective of the first component), whilst there 

are many similar profiles with short distance such as C12 and C13, SEC and C14, etc. 

(the ones clustered together). Being closer in this case mean that some of the templates 

are often used in a certain department (e.g., FI). 

It is worth to notice that in the symmetric plot, the inter-distance between rows 
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and columns cannot be interpreted. For example, we cannot conclude that C9 and FI 

have strong association directly from their closeness in the symmetric plot. This is 

because the symmetric plot is just an overlay of two separate maps and the distance 

between row points and column points is not defined or intended in this map. In this 

sense, to illustrate the associations between templates (columns) and departments 

(rows), the so-called asymmetric plot can be used.  

The right picture of Figure 1 exhibits an asymmetric bi-plot in which the 

columns data points are in principal coordinates and the rows points are in standard 

coordinates. To interpret the distance between rows and columns, an analyst should 

connect a column point with the origin by an arrow: if the angle between row arrow 

and column row is acute, then there is a strong association between corresponding row 

and column. In this way, some pairs of row and column with strong association can be 

figured out in the asymmetric plot, such as FI and C9, R and C8, FR and CR1, and so 

on. Take FI and C9 as example, the association can be interpreted as that compare with 

other departments, there are more data points in C9 were generated from finance 

department (FI). 

 

Figure 1.Scatter plot of CA result to 3-dimensional data in table 3 (In the symmetric plot, the distance 

between any points gives a measure of their similarity. In the asymmetric plot, the correlation between 

templates and departments can be found.) 

 

In this section we focused on an aggregated perspective of our results, aiming 

to give an intro over the type of analysis and discussions that will be performed 
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thoroughly in the Full Templates results section. 

 

4.1.2. Full Templates Results 

 

In this section, the 12×13 contingency data in Table 5 is analyzing. The research 

emphasis shifts to correspondence between templates and data themes, i.e. the 

distribution pattern of data items across templates. To start with, the strength of 

association between rows and columns was evaluated through the Chi-squared test – 

since we are dealing with a contingency table, this is the natural statistical test to 

evaluate potential association between rows and columns. In this case, the Chi-squared 

statistic equals to 10003, and the p-value is 0, which reveal the existence of a significant 

dependence; in other words the templates are not randomly distributed across data 

themes, but they have a structure that can be exploited to reduce some of the replications 

across data themes, 

 

As CA is a method for dimensionality reduction, a target dimensionality need 

to be selected. This is not a problem when we only have a small number of rows or 

columns, like in our previous section, but it needs to be solved in this section. There is 

no clear-cut rule guiding the analyst’s choice in CA (Lorenzo-Seva, 2011) and different 

approaches have been proposed, each one having its pros and cons. We adopted three 

methods, which are the scree plot, a cut-off threshold for total inertia retained and the 

average rule.  

Firstly, a scree plot (Figure 2, left part) helps to identify how many of the 

components are needed, in which dimensions are plotted in order of the decreasing 

amount of explained inertia. The optimal dimensionality can be identified at which the 

scree plot shows a bend, which should be 4 or 5. The second approach is setting a cut-

off threshold at an arbitrary level and keeping as many dimensions as necessary to 

account for the majority of the total inertia. Here we set the threshold to 80% (Figure 2, 

right part). Thus, the first four dimensions would be enough to achieve the satisfying 

level of total inertia explained. Furthermore, according to the average rule, all the 
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dimensions that can explain more than the average inertia (expressed regarding 

percentages) should be considered as important and kept. Our data contains 12 rows 

and 13 columns, if the data were random, the expected value of inertia for each axis 

would be 1/12=8.33% in terms of columns and 1/11=9.1% in terms of rows. In left part 

of Figure 2, the level of 9.1% is plotted as a reference line, and the first five dimensions 

have eigenvalue above this threshold. In conclusion, our results suggest that a 4-

dimensional solution seems appropriate. 

 

Figure 2.Inertia and cumulative inertia of principal components (The plots imply that  the target 

dimensionality could be 4) 

 

To understand the similarity of the templates by the proportion of the high-level 

data items present in each template, we need to plot in the relative position of column 

points in the space defined by the rows. Since we have determined the number of 

dimensions retained for interpretation, the next step is to assess which rows, i.e. themes, 

are determining those dimensions. This can be accomplished by inspecting the bar plot 

(Figure 3) which displays the contributions of themes to the definition of the first four 

dimensions. Moreover, the average contribution served as a threshold is indicated by a 

reference line, so the contributions above the average level can be considered as 

important for the definition of that dimension (Greenacre, 2007).  
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Figure 3. Bar plot of contributions of data with a threshold line (The plots display the contributions of 

data themes to the first 4 dimension’s definition, or in another word we can find which data themes are 

mainly explaining the dimensions). 

  

From the bar plots (Figure 3), EAD3, DET2 and EXP2 have substantial 

contributions to the first dimension, and they also have major roles in the definition of 

the third dimension. Furthermore, PD3 and VAP1 have a large contribution only to the 

second and fourth dimension, respectively. Given the distribution of the high-level data 

items present in each template, the similarity of the templates can be illustrated by the 

symmetric maps depicted in Figure 4. 
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Figure 4. Scatter plot of CA result to 12-dimensional data in table 5 (The distance between any 

templates gives a measure of their similarity on the basis of the proportion of themes present in each 

template. And the location of templates in each dimension indicates their correlation with themes). 

 

Now these maps can be interpreted to find similarities between templates. Take 

the first plot, which presents the first and second dimension, as an example, in the space 

mainly defined by EAD3, DET2 and EXP2, C7 is most close to the average profile, and 

other templates like OV and CR1 are also similar to average or C7. Also, C11 is the 

most different template, and some pairs of templates, such as C12 and C13, C8 and C9, 

have a strong association with each other. If interested in other high-level data items, 

the analyst can proceed to observe the other three plots. For example, if PD3 and VAP1 

are take into consideration, we can refer to the fourth plot. It can be seen that the 

association patterns of templates change in the plot, at least C8 are C9 no longer have 
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a strong correlation. 

It also can be assessed that the first dimension is determined by the opposition 

between EAD3 (negative pole) and DET2 and EXP2 (positive pole), and it is similar in 

the third dimension. The second dimension is determined by a larger number of themes, 

and each theme has a relatively smaller contribution. Regarding the greatest four items, 

PD3, EL3 and OB2 are in the positive pole and CA1 is in negative pole. The fourth 

dimension is determined by the opposition between VAP1, SME2 (positive pole) and 

CRM3 (negative pole).  

Then it is possible to interpret the position of the templates relative to the 

dimensions regarding the different influence of each dimension on the templates. Still, 

take the first plot as an example, the more they lie on the right (the positive side of the 

first dimension) the more they will be “associated” with DET2 and EXP2 or, put 

another way, the more DET2 and EXP2 will make a high proportion of their data points. 

Moreover, the more the templates lie in the upper part the plot, the more they will be 

correlated to PD3, EL3 and OB2, while CA1 will make a higher proportion of the data 

points of the templates lying in the lower part of the plot. 

To indicate the groups of templates that are similar regarding the distribution of 

high-level data items, a cluster analysis can be conducted and hence the templates can 

be isolated into groups in a scatter plot. The algorithm of cluster analysis is as follows 

(Greenacre M., 2007): Rows (or columns) are progressively aggregated in a way in 

which every successive merging produces the smallest change in the table's inertia, and 

this process goes on until the table is reduced to just one row “consisting of the marginal 

columns of the original table”. Here the mathematical details of cluster analysis are 

beyond the scope of this paper, so the solution provided by the ‘FactoMineR’ packages 

of R software were used. Figure 5 plots different combinations of dimensions. The plots 

tell us that the templates belonging to the same cluster: C12, C13 to cluster 1; C7, C8, 

C9, C10, OV, CR1, CR2, CCR, SEC to cluster 2; C11, C14 to cluster 3 are those with 

more similar profiles. In practice, each cluster represents the templates that are jointly 

more/less frequent across the different departments; hence, simplifications can be made 

in the reporting architecture to streamline the data generation and auditing processes. 
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Figure 5. Cluster analysis to templates (The templates belonging to the same cluster are with more 

similar profiles in terms of particular data themes.) 

 

 

 

4.2. Mining and visualization of association rules 

 

To start with, an item frequency plot (Figure 6) was used to find the most 

frequent templates, i.e. which with high support value. The highest support value 

among these templates is less than 0.3. 
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Figure 6. Item frequency for credit risk templates 

To uncover association rules among templates, we applied the Apriori method 

(See Appendix). We set the minimum support 𝜎 and minimum confidence 𝛿 to be 

0.05 and 0.5 respectively, as a result a total of 201 rules were generated. Among them, 

53 rules have a rule length (Antecedent and Consequent, a.k.a., lhs and rhs respectively) 

of 2, 108 rules have a rule length of 3 and 40 rules have a rule length of 4 (Table 8). 

 

To visualize these association rules, the most straightforward method is to use a 

scatter plot with two measures on the axes (Hahsler and Chelluboina, 2011). In the top 

plot of Figure 7, the support and confidence were used as X and Y axis respectively, 

and the lift measure is represented by the color (grey level) of the points. The color key 

can be found on the right side of the plot. In the second plot, we use lift in the Y axis 

and confidence as the dot color. 

Bayardo Jr. and Agrawal (1999) argue that these rules reside on the 

support/confidence border are the most interesting ones, which can be easily found in 

the first plot. Rules with high lift level usually have a relatively low support in the 

second plot. We conclude that the support value of most of the rules ranges from 0.05 

to 1, and the lift values are around 1 to 10. Hence, a support value larger than 0.1 was 

considered as a high level, and rules with lift values greater than 10 are high lift rules.  
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Figure 7.Scatter plot for association rules. 

 

To make the representation of rules clearer and understand the patterns of rules, 

another graph-based visualization technique provided by the ‘aruleViz’ package in R 

software was adopted (Figure 8). To avoid cluttering of rules, only a small set of rules 

were chosen. In this plot, the templates and rules are represented as vertices connecting 

by directed edges, and the interest measures, here are also support and lift, are displayed 
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by the size and color of the labels on the edges. From Figure 8, we can conclude that 

the templates can be separated into three independent groups, and templates in each 

group are more similar with each other.. 

 

Figure 8.Graph-based visualisation for 30 rules. 

 

5.2.1. High lift and high support rules 

High lift implies strong association, so these templates which are highly 

connected with each other can be obtained by mining high lift rules. We explored the 

rules with lift larger than 10, thus 19 rules were obtained, and then listed and sorted by 

lift in Table 9. From Table 9, we can find the most high-lift rules are mainly related to 

the templates which require data of securitization transactions, such as C 14.00 and C 

13.00 in COREP, and SEC1 and SEC2 in Pillar 3. This result can be interpreted as that 

the templates about securitization transactions in COREP and Pillar 3 have the highest 

degree of similarity.  

 

In addition, the patterns of high support rules are also worth to be analyzed. This 
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is because strong support means that the template takes a large proportion of the dataset, 

i.e. most of the data elements. As mentioned previously, these rules with support values 

greater than 0.1 were selected as top support rules. It can be seen from Table 10 that the 

high support rules are all about the templates in COREP. This result is highly associated 

with the characteristic of data granularity of COREP and Pillar 3.  

 

 

5. Conclusions 

 

Many financial institutions are adopting a ‘fragmented response’ approach to 

regulatory reporting, i.e. response to different regulations across different departments, 

business lines and geographies, which is a low efficiency and high cost way. By 

verifying the existence of associations between different regulatory reporting 

frameworks, this paper has demonstrated the reasonableness and superiority of a 

“harmonized response”. The current reporting process could be optimized by creating 

or designating a specialized team whose responsibility is to centralized process 

regulatory reporting affairs. It can be inferred that the more templates an institution 

need to submit, the more linkages can be found among templates and the more efficient 

the harmonized approach could be. 

This paper has demonstrated that there are statistically significant correlations 

between the templates of COREP and Pillar 3. Hence, the templates are connected 

regarding data source with the existence of repeated or highly correlated data themes. 

These significant correlations can be also verified by the high level of total inertia of 

contingency tables. All this has been explored and visualized with the aid of 

Association Rules Mining and Correspondence Analysis techniques. 

In the long run, the information system of an institution could be improved 

accordingly. But there is a premise that the connections or affinities among the 

regulations are identified correctly. Furthermore, as the regulatory requirements are 

changing constantly, a once-and-for-all solution or system does not exist. In all, this 

paper adopted Correspondence Analysis and Association Rules Mining to analyses and 
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visualize the relationships between regulations and has proved their applicability and 

effectiveness. It can be a new start point for financial institutions who would like to 

develop a truly global, efficient and scalable reporting architecture. The future winners 

will be institutions that look beyond the basic compliance. A real opportunity presented 

is to transform the reporting function and make it more responsive to regulatory changes, 

while simultaneously improving operational efficiencies and reducing compliance costs. 
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Appendix I: Singular Value Decomposition for CA 

 

Consider the𝐼 × 𝐽data matrix𝑁, and the total sum of all values in the matrix is 

defined as grand total𝑛 =  ∑ ∑ 𝑛𝑖𝑗𝑗𝑖 =  1𝑇𝑁 1, where 1𝑇represent a  1 × 𝐼 vector of 

ones and 1  represent 𝐽 × 1  vector of ones to match the row and column lengths 

of𝑁.First, compute the correspondence matrix 𝑃 by normalizing the data matrix N: 

 

𝑃 =  
1

𝑛
𝑁 

 

It can be interpreted as a probability matrix, in which an element 𝑃𝑖𝑗 denotes 

the probability that the corresponding element 𝑁𝑖𝑗 appears.Then, we can get a series 

of metrics, including: 

 

𝑅𝑜𝑤 𝑎𝑛𝑑 𝑐𝑜𝑙𝑢𝑚𝑛 𝑚𝑎𝑠𝑠𝑒𝑠: 𝑟𝑖 =  ∑ 𝑝𝑖𝑗

𝐽

𝑗=1
𝑐𝑖 =  ∑ 𝑝𝑖𝑗

𝐼

𝑖=1
 

𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠 𝑜𝑓 𝑟𝑜𝑤 𝑎𝑛𝑑 𝑐𝑜𝑙𝑢𝑚𝑛 𝑚𝑎𝑠𝑠𝑒𝑠: 𝐷𝑟 = 𝑑𝑖𝑎𝑔(𝑟)𝐷𝑐 = 𝑑𝑖𝑎𝑔(𝑐) 
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It can be noted that the total sum of elements of the three quantities= {𝑝𝑖𝑗} , 

𝑟 = {𝑟𝑖}  and 𝑐 = {𝑐𝑗}  are all equal to 1. The row mass (column mass) is the total 

frequency of a given row (column).Now apply 𝑆𝑉𝐷 to P: 

 

o Step 1: Calculate the matrix 𝑆 of standardized residuals 

𝑆 =  𝐷𝑟

−
1

2(𝑃 − 𝑟𝑐𝑇)𝐷𝑐

−
1

2 

o Step 2: Calculate the 𝑆𝑉𝐷 of 𝑆 

𝑆 = 𝑈𝐷𝛼𝑉𝑇 Where 𝑈𝑇𝑈 =  𝑉𝑇𝑉 = 𝐼 

where Dα is the diagonal matrix of singular values ordered as α1 ≥ α2 ≥ . .. 

o Step 3: Standard coordinates Φ of rows, Γof columns 

Φ =  𝐷𝑟

−
1

2𝑈 

Γ =  𝐷𝑐

−
1

2𝑉 

o Step 4: Principal coordinates 𝐹 of rows, 𝐺of columns 

𝐹 =  𝐷𝑟

−
1

2𝑈𝐷𝛼 = Φ𝐷𝛼 

𝐺 =  𝐷𝑐

−
1

2𝑉𝐷𝛼 =  Γ𝐷𝛼 

o Step 5: Principal inertias 𝜆𝑘 

𝜆𝑘 =  𝛼𝑘
2,   𝑘 = 1, 2, … , 𝐾 Where 𝐾 = min{𝐼 − 1, 𝐽 − 1} 

 

We can note that the problem of finding low-dimensional best-fitting subspace 

is actually a low-rank approximation problem in mathematics. The only adaption is that 

the approximation under 𝑆𝑉𝐷 are by weighted least squares, since the weights of rows 

and columns have been incorporated by their masses. The singular values in 𝐷𝛼are the 

square roots of the eigenvalues of matrices. 

According toEckart-Young theorem, if we construct another 𝐼 × 𝐽matrix 𝑆(𝑚) 

from the first 𝑚columns of 𝑈and 𝑉 and first 𝑚 singular values in 𝐷𝛼 as: 

𝑆(𝑚) =  𝑈(𝑚)𝐷𝛼(𝑚)𝑉(𝑚)
𝑇  
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Then𝑆(𝑚) is the least-squares rank 𝑚 approximation of𝑆 , and the number of 

dimension has been reduced to 𝑚 . The percentage of data variability that the 

approximation matrix can explain is determined by the sum of the 𝑚 singular valuesor 

principal inertias(Greenacre, 2007). 
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Appendix II: Snapshot of example templates 

1. Template C14 from COREP  

Due to limited space, just part of the template was presented here. 
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2. Template SEC4 from Pillar 3 
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Tables 

 

 

COREP return 

category 

No of 

templates 

Template no. 

based on 

COREP DPM 

Reporting 

Frequency 

Submission 

timing from 

reference dates 

Capital Adequacy 6 
C 01.00 to  

C 05.02 
Quarterly 41 days 

Group Solvency 2 
C 06.01 and  

C 06.02 
Quarterly 41 days 

Credit, counterparty 

credit, settlement 

and securitization 

risk 

20 
C 07.00.a to  

C 15.00  
Quarterly 41 days 

Operational risk 5 
C 16.00.a to  

C 17.02 

Quarterly 

and Semi-

annual 

41 days 

Market risk 7 
C 18.00 to  

C 24.00 
Quarterly 41 days 

Credit value 

adjustment risk 
1 C 25.00 Quarterly 41 days 

Large exposures 6 
C 26.00 to  

C 31.00 
Quarterly 41 days 

Sovereign exposures 2 
C 33.00.a to C 

33.00.b 
Quarterly 41 days 

Leverage 8 
C 40.00 to  

C 47.00 
Quarterly 41 days 

Liquidity coverage 

ratio 
30 

C 51.00.a to  

C 54.00.w, 

C 72.00.a to 

C 76.00.w 

Monthly 30 days 

Net stable funding 

ratio 
8 

C 60.00.a to 

C61.00.x 
Quarterly 41 days 

Additional liquidity 

monitoring metrics 
16 

C 66.01.a to C 

71.00.w 
Monthly 

15 working 

days 

Table1 COREP-templates, timelines and frequencies (EBA, April 2017)1 

 

 

 

                                                             
1EBA reporting framework v2.7 

https://www.eba.europa.eu/risk-analysis-and-data/reporting-frameworks/reporting-framework-2.7 
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Pillar 3 disclosure category 
No of 

templates 

Template 

no. 

Reporting 

Frequency 

Overview of risk management, 

key prudential metrics and RWA 
4 

KM1 to 

OV1 
quarterly or annual 

Linkages between financial 

statements and regulatory 

exposures 

4 LI1 to PV1 annual 

Composition of capitaland TLAC 6 
CC1 to 

TLAC3 
semiannual 

Macro prudential supervisory 

measures 
2 

GSIB1 and 

CCyB1 

semiannual or 

annual 

Leverage ratio 2 
LR1 and 

LR2 
quarterly 

Liquidity 3 
LIQA to 

LIQ2 

quarterly, 

semiannual or 

annual 

Credit risk, counterparty credit 

risk and securitization 
29 

CRA to 

SEC4 

quarterly, 

semiannual or 

annual 

Market risk 7 
MRA to 

MR4 

quarterly, 

semiannual or 

annual 

Interest risk 2 

IRRBBA 

and 

IRRBB1 

annual 

Remuneration 4 
REMA to 

REM3 
annual 

Table 2.Pillar 3 -templates and frequencies (BCBS, March 2017)2
 

 

 

 

 

 

 

                                                             
2Standards Pillar 3 disclosure requirements – consolidated and enhanced framework. 

http://www.bis.org/bcbs/publ/d400.pdf 



 
 

36 

 

 

 

 

 

 

 

 

 

  C7 C8 C9 C10 C11 C12 C13 C14 OV CR1 CR2 CCR SEC Sum 

FI 28 40 120 0 12 48 134 40 22 5 11 0 72 532 

FR 255 267 100 48 26 165 229 420 0 192 538 162 468 2870 

R 199 696 203 194 0 585 1449 30 132 67 688 257 72 4572 

Sum 482 1003 423 242 38 798 1812 490 154 264 1237 419 612 7974 

Table 3. Contingency table with 3 categories/rows (FI, FR, R refer to three business functions. The 13 

columns named C7, C8, etc., are templates or groups of templates from COREP and Pillar 3. The 

values are the number of the data points in each template sourced from FR, R and FI.) 

 

 

 

Variables Data Themes 

CA1 Capital 

VAP1 Value adjustment and provisions 

EXP2 Risk exposures, including CR and CCR 

SME2 Small and medium enterprise information 

OB2 Obligor information, including number and grade 

DET2 Business transaction details 

CRM3 Credit risk mitigation 

RWA3 Risk weighted assets or exposures 

PD3 Probability of default 

LGD3 Loss given default 

EAD3 Exposure at default 

EL3 Expected loss 

Table 4. List of category variables and corresponding data themes 

 

 

 

  C7 C8 C9 C10 C11 C12 C13 C14 OV CR1 CR2 CCR SEC Sum 
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FI 
CA1 0 0 1 0 12 0 52 30 22 0 0 0 72 189 

VAP1 28 40 119 0 0 48 82 10 0 5 11 0 0 343 

FR 

EXP2 211 173 55 27 2 165 229 220 0 192 326 106 468 2174 

SME2 44 13 45 0 0 0 0 0 0 0 0 0 0 102 

OB2 0 51 0 21 0 0 0 0 0 0 121 28 0 221 

DET2 0 30 0 0 24 0 0 200 0 0 91 28 0 373 

R 

CRM3 81 395 0 69 0 147 247 0 0 50 17 54 0 1060 

RWA3 85 91 71 29 0 96 190 20 132 16 231 93 72 1126 

PD3 0 30 40 22 0 0 0 0 0 1 151 28 0 272 

LGD3 0 52 22 22 0 0 0 10 0 0 91 28 0 225 

EAD3 33 90 59 26 0 342 1012 0 0 0 91 54 0 1707 

EL3 0 38 11 26 0 0 0 0 0 0 107 0 0 182 

Sum 482 1003 423 242 38 798 1812 490 154 264 1237 419 612 7974 

Table 5.Contingency table with 12  categories/rows 

(The 12 row variables refer to data themes, and the 13 column variables refer to templates or group of 

templates. The values are the number of the data points in each template belonging to corresponding data 

themes). 

 

 

Variables  Corresponding Templates Source 

C7 C 07.00 COREP 

C8 C 08.01, C08.02 COREP 

C9 C 09.01,C 09.02, C 09.03 COREP 

C10 C 10.01, C 10.02 COREP 

C11 C 11.00 COREP 

C12 C 12.00 COREP 

C13 C 13.00 COREP 

C14 C 14.00 COREP 

OV OV1, HYP1, HYP2 Pillar 3 

CR1 CR1,CR2,CR3,CR4,CR5 Pillar 3 

CR2 CR6,CR7,CR8,CR9,CR10 Pillar 3 

CCR CCR1,CCR2,CCR3,CCR4,CCR5,CCR6,CCR7,CCR8 Pillar 3 

SEC SEC1,SEC2,SEC3,SEC4 Pillar 3 

Table 6. List of column variables and corresponding templates and source 
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Eigenvalues 

 Dim.1 Dim.2 

Variance 0.25 0.07 

% of var. 78.97 21.03 

 

Column variables (the 10 first) 

 Inertia*1000 Coordinates on Dim.1 Contribution cos2 Coordinate on Dim.2 Contribution cos2 

C7 7.59 0.35 2.96 0.98 -0.05 0.24 0.02 

C8 7.62 -0.23 2.56 0.84 -0.1 1.77 0.16 

C9 40.49 -0.04 0.04 0 0.87 60.35 1 

C10 6.98 -0.41 2.03 0.73 -0.25 2.8 0.27 

C11 8.56 0.94 1.67 0.49 0.96 6.5 0.51 

C12 11.04 -0.33 4.39 1 -0.01 0.02 0 

C13 54.91 -0.49 21.6 0.99 0.05 0.92 0.01 

C14 70.53 1.07 28.06 1 0.01 0.01 0 

OV 11.34 -0.69 3.64 0.81 0.34 3.29 0.19 

CR1 19.44 0.73 7.06 0.91 -0.23 2.53 0.09 

 

Row variables 

 Inertia*100

0 

Coordinates on Dim.1 Contribution cos2 Coordinate on Dim.2 Contribution cos2 

FI 62.84 0.09 0.21 0.01 0.97 93.12 0.99 

FR 153.72 0.65 60.13 0.98 -0.08 3.88 0.02 

R 101.7 -0.42 39.67 0.88 -0.06 3 0.12 

Table 7. Summary of CA result to 3-dimensional data. The squared cosine (cos2) indicates the 

contribution of a component to the squared distance of the observation to the origin. 

 

 

 

 

 

Rule length distribution (lhs + rhs) 
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Size 2 3 4 

Number 53 108 40 

 

Min. 1st Qu. Median Men 3rd Qu. Max. 

2.000  2.000  3.000  2.935  3.000  4.000  

 

Summary of quality measures: 

  support confidence lhs.support lift 

Min. 0.05000  0.5000  0.05000  2.000  

1st Qu. 0.05000  0.7000  0.05000  3.500  

Median 0.05000  0.8889  0.64290  4.000  

Mean 0.06354  0.8377  0.08060  5.277  

3rd Qu. 0.64290  1.0000  0.07857  5.833  

Max. 0.24286  1.0000  0.28571  20.000  
 

Table 8.Summary of rules mining results. 

 

 

 

rules LHS RHS support confidence lift order 

1 {SEC1}  {SEC2} 0.05 1 20 2 

2 {SEC2} {SEC1} 0.05 1 20 2 

5 {C 14-00,SEC1} {SEC2} 0.05 1 20 3 

6 {C 14-00,SEC2} {SEC1} 0.05 1 20 3 

15 {C 09-02,HYP2,CR6} {CR7} 0.05 1 14 4 

3 {SEC4} {SEC3} 0.08 1 12.73 2 

4 {SEC3} {SEC4} 0.08 1 12.73 2 

7 {C 14-00,SEC4} {SEC3} 0.05 1 12.73 3 

8 {C 14-00,SEC3}  {SEC4} 0.05 1 12.73 3 

9 {C 13-00,SEC4} {SEC3} 0.06 1 12.73 3 

10 {C 13-00,SEC3}  {SEC4} 0.06 1 12.73 3 

11 {C 12-00,SEC4} {SEC3} 0.06 1 12.73 3 

12 {C 12-00,SEC3} {SEC4} 0.06 1 12.73 3 

13 {C 12-00,C 13-00,SEC4} {SEC3} 0.06 1 12.73 4 

14 {C 12-00,C 13-00,SEC3}   {SEC4} 0.06 1 12.73 4 

16 {C 08-02,C 10-01} {C 10-02} 0.06 0.89 11.31 3 

17 {C 08-01,C 10-01}   {C 10-02} 0.06 0.89 11.31 3 

18 {C 08-01,C 08-02,C 10-01} {C 10-02} 0.06 0.89 11.31 4 

19 {HYP2,CR6}  {CR7}  0.06 0.8 11.2 3 

 

Table 9.Rules with the higher lift scores. 
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rules LHS RHS support confidence lift order 

1 {C 13-00} {C 12-00} 0.24 0.97 3.89 2 

2 {C 12-00} {C 13-00} 0.24 0.97 3.89 2 

3 {C 08-02} {C 08-01} 0.19 0.96 3.37 2 

4 {C 08-01} {C 08-02} 0.19 0.65 3.37 2 

5 {C 07-00} {C 08-01} 0.16 0.65 2.26 2 

6 {C 08-01} {C 07-00} 0.16 0.55 2.26 2 

7 {C 09-01} {C 09-02} 0.15 0.7 3.5 2 

8 {C 09-02} {C 09-01} 0.15 0.75 3.5 2 

9 {C 13-00,C 14-00} {C 12-00} 0.12 1 4 3 

10 {C 12-00,C 14-00} {C 13-00} 0.12 1 4 3 

11 {C 12-00,C 13-00} {C 14-00} 0.12 0.5 2.92 3 

12 {C 14-00} {C 13-00} 0.12 0.71 2.83 2 

13 {C 14-00} {C 12-00} 0.12 0.71 2.83 2 

 

Table 10.Rules with the higher support scores. 

 


