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Abstract

We present results of testing of the ability of eleven popular scoring functions to

predict native docked positions using a recently developed method [1] for estimation

the entropy contributions of relative motions to protein-ligand binding affinity. The

method is based on the integration of the configurational integral over clusters obtained

from multiple docked positions. We use a test set of 100 PDB protein-ligand complexes

and ensembles of 101 docked positions generated by Wang et al [2] for each ligand in

the test set. To test the suggested method we compare the averaged root-mean square

deviations (RMSD) of the top-scored ligand docked positions, accounting and not ac-

counting for entropy contributions, relative to the experimentally determined positions.

We demonstrate that the method increases docking accuracy by 10−21% when used in

conjunction with the AutoDock scoring function, by 2−25% with G-Score, by 7−41%

with D-Score, by 0− 8% with LigScore, by 1− 6% with PLP, by 0− 12% with LUDI,

by 2 − 8% with F-Score, by 7 − 29% with ChemScore, by 0 − 9% with X-Score, by

2− 19% with PMF, and by 1− 7% with DrugScore. We also compare the performance

of the suggested method with the method based on ranking by cluster occupancy only.

We analyze how the choice of a RMSD-tolerance and a low bound of dense clusters

impacts on docking accuracy of the scoring methods. We derive optimal intervals of

the RMSD-tolerance for 11 scoring functions.

Key words: protein-ligand docking, binding affinity, entropy, scoring function,

cluster occupancy.
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Introduction

The prediction of the experimentally observed positions and conformations of small or-

ganic ligands on the surface of macromolecules (e.g. proteins, DNAs) is known as the docking

problem. Methods and tools for solving the docking problem attract a great attention in

scientific community for many years [1-13]. The accurate and fast solution of the dock-

ing problem is of fundamental practical importance for understanding numerous biological

process in cells and for the discovery of new drug lead compounds [3-6,11-15]. Docking

tests and detailed comparative analysis of the performance of different docking tools [16-23]

demonstrate the dependence of docking accuracy on the conformational search methods, the

quality of the protein-ligand potentials describing binding enthalpy and scoring methods for

estimation of protein-ligand binding entropy.

Scoring functions play an important role in computational studies of protein-ligand struc-

tures and of thermodynamics of protein-ligand binding [1,2,6-13], in virtual database screen-

ing and drug design [3-7,24-34]. We have recently suggested and validated a novel method

to estimate protein-ligand binding entropy [1]. We showed that accounting for the entropy

of relative and torsional motions through a configurational integral modifies a commonly

used form of scoring functions with a term dependent on occupancy of the clusters obtained

from a number of docked positions. The docked positions were generated using AutoDock

[24] docking program and then grouped into nonoverlaping clusters in such a way that every

cluster contains ligand positions with RMSD less than a pre-set value (a RMSD-tolerance).

Ruvinsky and Kozintsev [1] showed that the method essentially improves docking accuracy

in comparison with the common method based on ranking by energy when used in conjunc-

tion with the AutoDock scoring function. So it is very intriguing and also important to

investigate the performance of the method with other scoring functions.

The present article describes results of the application of the method [1] in conjunction

with eleven popular scoring functions (AutoDock [24], G-Score [25], D-Score [26], LigScore

[27], PLP [28], LUDI [29], F-Score [30], ChemScore [31], X-Score [32], PMF [33], DrugScore

[34]) and a test set of 100 PDB protein-ligand complexes developed by Wang et al [2]

to predict ligand docked positions. The test set developed by Wang et al [2] essentially

differs from a test set of 135 PDB complexes used by Ruvinsky and Kozintsev [1]. The

overlap of the test sets consists of three protein-ligand complexes: 2pk4, 1rbp and 1rnt.

Wang et al [2] generated ensembles of 101 docked positions for each ligand in the test set

(http://sw16.im.med.umich.edu/software/xtool/) and scored them by the above mentioned

eleven scoring functions. Using these ensembles and the eleven scoring functions modified

with the entropy term [1], we reordered docked ligand positions in ensembles. Then we

compared the RMSD of top-scored ligand docked positions, accounting and not accounting
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for the entropy, relative to the experimentally determined positions.

The organization of this paper is as follows. We derive an expression for the entropy

contribution of relative and torsional motions in the Materials and Methods section. Also

in the Materials and Methods we describe the test set of protein-ligand PDB complexes and

ensembles of docked conformations. In the Results section we compare docking accuracies

of calculations with and without entropy contributions in terms of RMSD of the top-scored

ligand docked positions relative to the experimentally determined positions. Also in Results

we compare the suggested method with the method based on cluster occupancy only. We

summarize our conclusions in the final section.

Materials and Methods: Theory

Protein-ligand binding free energy can be written as [11, 12, 15] (see also [35-47])

∆G = Epl − Ep − El − T ln

(

σlσp
σpl

coNa

8π2

Zpl

ZpZl

)

, (1)

where Ep,l,pl are the ground energies of protein (p), ligand (l) and protein-ligand complex

(pl) in solution; Na is the Avogadro number; co = 1mol/l; σl,p,pl are the orders of symmetry

of ligand, protein and protein-ligand complex (for a nonsymmetrical molecule σ = 1; if a

molecule has 2-fold axis of symmetry σ = 2, etc.); Zpl,p,l are vibrational partition functions

of proteins, ligands and complexes.

Considering only relative protein-ligand motions we can write the protein-ligand binding

free energy in the form [1, 11, 12, 15]

∆G = Epl − Ep − El − T ln

(

σlσp
σpl

coNa

VB
8π2

)

, (2)

where

VB =
∫

Γ

exp

(

−
Upl(r, θ, ϕ, ψ)− Epl

T

)

dr sin θ dθ dϕ dψ (3)

is the configurational integral of the complex; Upl(r, θ, ϕ, ψ) is the energy of the protein-

ligand complex in solution; r is the vector of relative translational motions in the complex;

(θ, ϕ, ψ) are Euler angles of relative orientational motions; Γ is the the region of integration

in the 6-dimensional space of r and (θ, ϕ, ψ); Epl is the minimum of Upl(r, θ, ϕ, ψ) in the

region Γ.

Note that to predict the native binding mode corresponding to the minimum of the Exp.

(2), we can neglect the contribution of Ep + El to binding free energy. But the absolute

value of the binding constant, of course, depends on the energies of the unbound protein

and ligand molecules. Thus the binding mode is exactly defined by Epl(Γ) and VB(Γ).
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This property of the Exp. (3) essentially simplifies docking problem in comparison with the

problem of binding affinity prediction and allows searching docked positions using probability

distribution functions [48].

Further we follow the method suggested recently [1]. In brief, it depends on the fact

that most docking algorithms generate a number of different ligand positions corresponding

to different local minima of the protein-ligand energy landscape. To estimate VB, we first

partition all docked ligand positions (Fig. 1) from a number of runs of an algorithm into non-

overlapping clusters in such a way that every cluster contains ligand positions with RMSD

less than a definite value (0.5 − 4Å; see Methods section) relative to the ligand position

having minimal energy in the cluster. Now we can consider the clusters as the possible ligand

binding modes. Further, we designate the docked ligand position having minimal energy in

the cluster as the representative position in the cluster. All ligand positions in the cluster

numbered i can be considered as snapshots of the ligand motion near the representative

docked position (ri,Ωi). The variation intervals of (r,Ω) in the cluster give the estimate of

the configurational integral as

VB(ri,Ωi) ≈ Γi = [max(θi)−min(θi)] [max(ϕi)−min(ϕi)][max(ψi)−min(ψi)]

[max(xi)−min(xi)][max(yi)−min(yi)][max(zi)−min(zi)], (4)

where max(ri,Ωi) and min(ri,Ωi) are the maximum and minimum values of (r,Ω) in the

cluster numbered i.

Omitting the contribution of Ep + El and σlσpcoNa/(8σplπ
2) we obtain

∆G̃i = Epl(Γi)− T ln Γi, (5)

where Epl(Γi) is the energy minimum of the protein-ligand complex in the i-mode. To

determine the binding mode we have to determine the set {Γ}, calculate the Exp. (5) for all

Γi and select a representative position having a minimal value of G̃i. Exp. (5) can also be

derived by a Monte-Carlo approximation of the configurational integral (3)[1].

The use of Γi ≈ Nivp (vp is volume per point in the configurational space, Ni is the

number of conformations in the cluster numbered i) converts Exp. (5) into

∆G̃i = Epl(Γi)− T ln (Nivp) (6)

Thus the binding mode is exactly defined by Epl(Γi) and Ni. Further, we use the Exp. (6)

to rank the representative positions.

To derive a scoring expression for the method of ranking by cluster occupancy [22, 48, 49]

(see also [50-54] and [55, 56] for the using of the method in the studies of the protein folding
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and protein-protein docking) we rewrite the Exp. (6) in the following form

P (i) = Nivp exp

(

−
Epl(Γi)

T

)

(7)

P (i) is proportional to the probability of finding the ligand in the cluster i. Assuming that

Epl(Γ) is a slowly varying function over {Γ}, we obtain P (i) ∼ Ni, and the cluster occupancy

becomes a single factor identifying the native binding position. Thus the methods of ranking

by cluster occupancy or by energy Epl are the special cases of the more general method based

on the Exp. (6).

In the Results section we shall compare results of three scoring methods identifying the

binding position as the representative position with the minimal value ∆G̃ (Method 1), as

the docked position with the minimal energy Epl (Method 2), and as the representative

position in the most occupied cluster (Method 3).

Materials and Methods: The Test Set

We used the test set of 100 PDB protein-ligand complexes [2]: 1bbz, 4xia, 8xia, 2xim,

1fkf, 1fkb, 1hvr, 1tet, 2cgr, 1abf, 1apb, 7abp, 5abp, 8abp, 9abp, 1abe, 1bap, 6abp, 1e96,

1add, 2ak3, 1adb, 9aat, 1bzm, 1cbx, 2ctc, 3cpa, 1cla, 3cla, 4cla, 2csc, 5cna, 1af2, 1dr1, 1dhf,

1drf, 1ela, 7est, 3fx2, 2gbp, 1hsl, 2qwd, 2qwe, 2qwf, 2qwg, 2qwc, 2qwb, 1mnc, 1exw, 1apw,

1apt, 1bxo, 1fmo, 2pk4, 1inc, 4sga, 5sga, 5p21, 1rbp, 1rgk, 6rnt, 1rgl, 1rnt, 1zzz, 1yyy, 1b5g,

1ba8, 1bb0, 2sns, 1sre, 7tln, 4tln, 1tmn, 2tmn, 3tmn, 5tln, 1tlp, 1etr, 1ets, 1d3d, 1d3p,

1a46, 1a5g, 1bcu, 1tha, 4tim, 6tim, 7tim, 1bra, 1tnj, 1pph, 1tnk, 1tnh, 1tni, 1ppc, 1tng,

3ptb, 1tnl, 1bhf, 2xis. All these entries have resolution better than 2.5Å. Wang et al [2]

generated an ensemble of 101 docked conformations for each ligand in the test set. One of

the conformations corresponds to the experimentally observed native conformation of the

ligand. RMSD distributions in the conformational ensembles spread from 0Å to 15Å. For

RMSD-tolerance of 2Å ensembles consist of 30− 70 distinctive conformational clusters.

To analyze an ability of the scoring functions to predict the experimentally observed

conformations eleven scoring functions were applied to score the conformational ensembles

[2]. We used the scored ensembles of each ligand and applied the Exp. (6) to test the ability

of the suggested method to predict the native conformation. We varied the RMSD-tolerance

from 0.5 to 4Å.

Results

For correct use of the Exp. (6) it is necessary to keep in mind that it is based on the

estimate of the configurational integral. Thus only clusters with high occupancy should be
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scored with Exp. (6). To differentiate between dense and sparse clusters, we introduce a

low bound Nlb of dense clusters. Only clusters with Ni ≥ Nlb are scored with Exp. (6).

If all clusters have occupancy lower than Nlb, we select the most occupied cluster as the

cluster of the binding position, but if several clusters have the same occupancy lower than

Nlb, we compare them using Exp. (6). Further we consider the percentage of the top-ranked

solutions within a RMSD of 2Å of the experimental result and designate this value as the

success rate (SR). Success rates of three scoring methods used in conjunction with 11 scoring

functions are given in Fig. 2-12 for the low bound of dense clusters equal to 3, 4, 5 and 10.

Force field based scoring functions

AutoDock

As the RMSD-tolerance increases from 1Å to 4Å, Method 1 based on Exp. (6) applied

with the AutoDock scoring function improves the success rate by 3 − 13% relative to the

results of ranking by energy (Method 2) not accounting for the entropy effect (Fig. 2-a).

SR of the Method 1 reaches maximum of 75% for the RMSD-tolerance of 2.5Å and the low

bound of 4. SR of ranking by cluster occupancy (Method 3) reaches maximum of 73% for the

RMSD-tolerance of 2.5Å. For the RMSD-tolerance of 0.5, 1, 3.5 and 4Å ranking by cluster

occupancy is less successful than ranking by energy.

G-Score

Fig. 2-b shows that Method 1 applied together with the G-Score scoring function im-

proves the success rate by 2 − 25% relative to the results of ”bare” G-Score (Method 2).

SR of the Method 1 reaches maximum of 67% for the RMSD-tolerance of 2.5Å and the low

bound of 5 and 10. SR of ranking by cluster occupancy reaches maximum of 70% for the

RMSD-tolerance of 2.5Å also. For all values of the RMSD-tolerance energy ranking is a

worse predictor than ranking based on Exp. (6) and by cluster occupancy.

D-Score

Applying Exp. (6) in conjunction with the D-Score scoring function improves essentially

the success rate by 7 − 41% relative to the results of the Method 2 (Fig. 2-c) . SR of the

Method 1 reaches maximum of 67% for the RMSD-tolerance of 2.5Å and the low bound of 5

and 10. SR of the Method 3 has a maximum of 69% for the RMSD-tolerance of 2.5Å. The

worst results of scoring (SR = 26%) for all values of the RMSD-tolerance are obtained for

Method 2.

Empirical scoring functions

LigScore
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We found that as the RMSD-tolerance increases from 2Å to 4Å, Method 1 applied with

the LigScore scoring function improves the success rate by 0 − 8% relative to the results of

Method 2 (Fig. 2-d). For the RMSD-tolerance < 2Å, the difference between Method 2 using

”bare” LigScore and Methods 1 and 2 is 1−8% and 6−13%. SR of Method 1 using Exp. (6)

reaches maximum of 82% for the RMSD-tolerance of 2.5Å and the low bound of 3 and 4. SR

of Method 3 using cluster occupancy reaches maximum of 74% for the RMSD-tolerance of

2Å and 2.5Å. For the RMSD-tolerance > 2.5Å, Method 2 with energy ranking outperforms

Method 3 by 1− 8%, but worse than Method 1 by 0− 8%.

PLP

Docking accuracy of Method 1 applied with PLP scoring function (Fig. 2-e) is comparable

with the accuracy of Method 2 using energy ranking for the case of the RMSD-tolerance lower

than 2Å, but becomes better by 1− 6% for the case of the RMSD-tolerance higher than 2Å.

SR of the Method 1 reaches maximum of 82% for the RMSD-tolerance of 3.0Å and the low

bound of 4. SR of Method 3 using ranking by cluster occupancy reaches maximum of 79%

for the RMSD-tolerance of 3.0Å. For two values of the RMSD-tolerance of 3Å and 3.5Å

ranking by cluster occupancy slightly outperforms energy ranking by 3% and 1%, but loses

0 − 3% to the results of ranking by Method 1. For other values of the RMSD-tolerance

Methods 1, 2 show better docking results than Method 3.

LUDI

Fig. 2-f shows that as the RMSD-tolerance increases from 0.5Å to 4Å, Method 1 applied

with the LUDI scoring function improves the success rate by 0− 12% relative to the results

of Method 2. SR of Method 1 using Exp. (6) reaches maximum of 79% for the RMSD-

tolerance of 3.0Å and the low bound of 10. SR of Method 3 reaches maximum of 77% for

the RMSD-tolerance of 3.0Å. Method 2 outperforms by 2− 7% Method 3 only in two cases

of the RMSD-tolerance of 0.5, 1.0Å.

F-Score

The results of ranking docked positions on the basis of Methods 1, 2 and 3 in conjunction

with F-Score scoring function are shown in Fig. 2-g. We can see that as the RMSD-tolerance

increases from 1.5Å to 4Å, Method 1 improves the success rate by 2 − 8% relative to the

results of Method 2. SR of Method 1 reaches maximum of 82% for the RMSD-tolerance

of 3.0Å and the low bound of 3, 5, 10. SR of Method 3 using ranking by cluster occupancy

reaches maximum of 77% for the RMSD-tolerance of 3.0Å and 3.5Å. For the RMSD-tolerance

lower than 2Å Method 2 (SR = 74%) outperforms Method 3 by 3− 9%.
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ChemScore

Fig. 2-h shows that there is a significant improvement of docking accuracy for Methods 1

and 3 applied with ChemScore scoring function, in comparison with the results of the Method

2, choosing the energy top-ranked position to identify the binding position. Methods 1 and

3 outperform the Method 2 by 6 − 29% and 8 − 32% accordingly. SR of Method 1 using

Exp. (6) reaches maximum of 64% for the RMSD-tolerance of 1.5, 2.0Å and the low bound

of 4, 5. SR of Method 3 reaches maximum of 67% for the RMSD-tolerance of 2.0Å.

X-Score

Fig. 2-i shows that Methods 1 and 3 applied with the X-Score scoring function improve

the success rate by 0 − 9% for the RMSD-tolerance from 1.0Å to 4Å, and 0 − 8% for the

RMSD-tolerance from 1.5Å to 4Å relative to the results of Method 2 not accounting for the

entropy effect. SR of Method 1 reaches maximum of 75% for the RMSD-tolerance of 2.5Å

and the low bound of 4, 5, 10. SR of Method 3 using ranking by cluster occupancy reaches

maximum of 74% for the RMSD-tolerance of 2.5Å. For the RMSD-tolerance of 0.5, 1 and

4Å energy ranking (SR = 66%) slightly outperforms by 1− 3% results of Method 3.

Knowledge-based scoring functions

PMF

Fig. 2-j illustrates results of applying ranking Methods 1,2 and 3 in conjunction with

the PMF scoring function. We observe that Methods 1 and 3 outperform by 2 − 19% and

2 − 20% the results of the common Method 2 using energy ranking (SR = 52%). SR of

Method 1 using Exp. (6) reaches maximum of 71% for the RMSD-tolerance of 2.5Å and the

low bound of 5. SR of Method 3 using ranking by cluster occupancy reaches maximum of

72% for the RMSD-tolerance of 2.5Å.

DrugScore

As the RMSD-tolerance increases from 1.0Å to 4Å, Method 1 applied with the DrugScore

scoring function improves the success rate by 1 − 7% (Fig. 2-k) relative to the results of

Method 2 (SR = 72%). SR of using Method 1 reaches maximum of 79% for the RMSD-

tolerance of 3.0Å and the low bound of 4, and the RMSD-tolerance of 4.0Å and the low

bound of 10. SR of Method 3 reach maximum of 75% for the RMSD-tolerance of 2Å and

3Å. For the RMSD-tolerance lower than 1.5Å and equal to 4Å energy ranking (Method 2)

outperforms by 2− 7% results of Method 3 using ranking by cluster occupancy.
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Discussions

The success rate of ranking using Exp. (6) (Method 1) shows a bell-shape curve behavior

(Fig. 2) for all scoring functions except LigScore (Fig. 2-d). It means that 10 of 11 scoring

functions closely describe protein-ligand energy landscapes in the test set. Tails of the bell-

shape functions approach a value of the success rate of energy ranking neglecting the entropy

effect. This is the result of reduction of the suggested method to the method of ranking by

energy for a very small or large RMSD-tolerance of cluster size. Indeed, for a very low

RMSD-tolerance all clusters contain a single docked position and ranking using the Method

1 and ranking by energy (Method 2) are became identical. In the limit of a very large RMSD-

tolerance, only one cluster exists and thus ranking by Method 1 and Method 2 give the same

results for the success rate. The bell-shape curve behavior for PMF is not so evident (Fig.

2-j) as for AutoDock (Fig. 2-a), D-Score (Fig. 2-c), LUDI (Fig. 2-f) or ChemScore (Fig.

2-h). However, it can be detected averaging SR over different values of the low bound of

the cluster size for every value of the RMSD-tolerance or by following rhombus and stars on

Fig. 2-j. The SR behavior for Method 1 applied in conjunction with LigScore as a function

of the RMSD-tolerance and the low bound of the cluster size has the same character for a

very low and large values of the RMSD-tolerance, but differs in the most interesting range

of intermediate values of the RMSD-tolerance. It has two clear extrema - a minimum for

the RMSD-tolerance of 1Å and a maximum for the RMSD-tolerance of 2.5Å.

It is interesting to note that all scoring functions demonstrate even behavior of a max-

imum as a function of the RMSD-tolerance. Thus applying Method 1 we can vary the

RMSD-tolerance in pre-set intervals keeping a level of docking accuracy averaged over the

low bound of the cluster size. So AutoDock allows one to vary the RMSD-tolerance from

1.5Å to 3Å (Fig. 2-a), G-Score - from 1.5Å to 2.5Å (Fig. 2-b), D-Score - from 1.5Å to 2.5Å

(Fig. 2-c), LigScore - from 2.5Å to 4Å (Fig. 2-d), PLP - from 2.5Å to 4Å (Fig. 2-e), LUDI

- from 2Å to 3Å (Fig. 2-f), F-Score - from 2.5Å to 4Å (Fig. 2-g), ChemScore - from 1.5Å

to 2.5Å (Fig. 2-h), X-Score - from 2Å to 3Å (Fig. 2-i), PMF - from 1.5Å to 3.5Å (Fig. 2-j),

DrugScore - from 2.5Å to 4Å (Fig. 2-k). Considering optimal values of the RMSD-tolerance

and the low bound of the cluster size, we found that Method 1 outperforms Method 2 in

docking accuracy by 10−21% when used in conjunction with the AutoDock scoring function,

by 2 − 25% with G-Score, by 7 − 41% with D-Score, by 0 − 8% with LigScore, by 1 − 6%

with PLP, by 0− 12% with LUDI, by 2− 8% with F-Score, by 7− 29% with ChemScore, by

0− 9% with X-Score, by 2− 19% with PMF, and by 1− 7% with DrugScore. These results

are the unambiguous evidence of improving docking accuracy by accounting for the entropy

of relative and torsional motions.

The success rate of scoring over cluster occupancy (Method 3) also shows the bell-shape
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curve behavior for AutoDock (Fig. 2-a), G-Score (Fig. 2-b), D-Score (Fig. 2-c), ChemScore

(Fig. 2-h), X-Score (Fig. 2-i) and PMF (Fig. 2-j). For PLP (Fig. 2-e), LigScore (Fig.

2-d), LUDI (Fig. 2-f), F-Score (Fig. 2-g), DrugScore (Fig. 2-k) curves of SR as a function

of the RMSD-tolerance differ from the bulb function behavior and show several extrema.

Considering optimal values of the RMSD-tolerance, we found that Method 3 outperforms

Method 2 in docking accuracy by 11% when used in conjunction with the AutoDock scoring

function, by 28% with G-Score, by 43% with D-Score, by 3% with PLP, by 10% with LUDI,

by 3% with F-Score, by 32% with ChemScore, by 8% with X-Score, by 20% with PMF, and

by 3% with DrugScore. Best results of Method 3 applied with LigScore coincide with the

results of ranking by LigScore energy (Method 2).

It is interesting to note that SRs of ranking using Method 3 and Method 1 show good

correlation for AutoDock, D-Score, G-Score, LUDI, ChemScore and X-Score. It means that

using these scoring functions and applying Methods 1 or 3 we choose the same top-scored

representative position satisfying simultaneously to the following inequalities

N1 > Ni and N1 exp

(

−
Epl(Γ1)

T

)

> Ni exp

(

−
Epl(Γi)

T

)

, (8)

where 1 is the cluster number of the top-scored representative position. Other representative

positions are numbered i 6= 1. Using Ineq. (8) we obtain

Epl(Γ1)−Epl(Γi) < T ln
N1

Ni

(9)

On condition Epl(Γ1) > Epl(Γi), top-scored representative positions reside not in deepest

energy wells. Using Ineq. (9) we can estimate the maximal difference between depths of

energy wells in protein-ligand energy landscape as T ln (N1/min(Ni)) = 2.8kcal/mol for

T = 300K, N1 = 99 and min(Ni) = 1. If Epl(Γ1) < Epl(Γi), then top-scored representative

positions reside in the deepest and mostly occupied energy wells.

Conclusions

We presented results of testing 11 popular scoring functions on 100 protein-ligand com-

plexes using the recently suggested method [1], accounting for binding entropy of relative

motions in a protein-ligand complex, and two other commonly used methods of ranking by

energy or cluster occupancy. We rigorously showed that both methods of ranking by cluster

occupancy and by energy are the special cases of the more general method accounting for

binding entropy. We applied the three ranking methods to the conformational ensembles

generated by Wang et al [2] and compared efficiencies of the methods in terms of the per-

centage of the top-ranked solutions within a RMSD of 2Å of the experimental result (the

success rate).
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We demonstrated that the method based on Exp. (6) predicts native position significantly

better than the top energy ranking, when used in conjunction with D-Score, ChemScore,

AutoDock, G-Score, or PMF, and moderately or slightly better when used with LigScore,

PLP, LUDI, F-Score, X-Score, or DrugScore. The presented results prove that the method

can be applied together with all types of current force fields, empirical scoring functions or

knowledge-based potentials.

For the most of tested scoring functions we observed strong correlations between docking

accuracies of two methods of ranking using Exp. (6) and ranking by cluster occupancy. These

correlations suggest that for these potentials the near-native conformations, in comparison

with far-native ones, have the greatest number of neighboring conformations within a RMSD-

tolerance. Similar trends were observed recently in studies of protein-ligand docking [22, 48,

49], predictions of protein-protein complexes [55, 56] and studies of protein folding landscape

[50, 51, 52, 53]. Also this concept was used by Xiang et al [54] for loop prediction. The

authors suggested to rank conformations by a standard energy term together with a RMSD-

dependent term that favors conformations that have many neighbors in configurational space.

We believe that the method to treat the entropy effect using Exp. (6) should give statistical-

thermodynamic explanations of these results and prove useful for future studies of protein

folding and protein-protein docking.
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Legend to figures.

1. The clustering scheme. Small circles are local minima of the protein-ligand energy

landscape found in docking.

2. Percentage of the top-ranked representative solutions within a RMSD of 2Å from the

experimentally determined position, scored using Exp. (6) and a) AutoDock, b) G-Score, c)

D-Score, d) LigScore, e) PLP, f) LUDI, g) F-Score, h) ChemScore, i) X-Score, j) PMF, k)

DrugScore, for the low bound of dense clusters equal to 3 (circles), 4 (triangles), 5 (rhombus)

and 10 (stars) as a function of the RMSD-tolerance. Solid line corresponds to the success

rate of the scoring function neglecting the entropy effect. Rectangles connected with by dash

line correspond to the success rate of ranking by cluster occupancy.
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Fig. 2 a
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Fig. 2 b
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Fig. 2 c
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Fig. 2 d
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Fig. 2 e
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Fig. 2 f
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Fig. 2 g
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Fig. 2 h
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Fig. 2 i
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Fig. 2 j
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Fig. 2 k
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