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Abstract: The stability of a general molecular dynamics (MD) integration scheme is examined for simulations in

generalized (internal plus external) coordinates (GCs). An analytic expression is derived for the local error in energy

during each integration time step. This shows that the explicit dependence of the mass-matrix on GCs, which makes

the system’s Lagrange equations of motion nonlinear, causes MD simulations in GCs to be less stable than those in

Cartesian coordinates (CCs). In terms of CCs, the corresponding mass-matrix depends only on atomic masses and

thus atomistic motion is subject to the linear Newton equations, which makes the system more stable. Also investi-

gated are two MD methods in GCs that utilize nonzero elements of the vibrational spectroscopic B-matrices. One

updates positions and velocities in GCs that are iteratively adjusted so as to conform to the velocity Verlet equiva-

lent in GCs. The other updates positions in GCs and velocities in CCs that are adjusted to satisfy the internal con-

straints of the new constrained WIGGLE MD scheme. The proposed methods are applied to an isolated n-octane
molecule and their performances are compared with those of several CCMD schemes. The simulation results are

found to be consistent with the analytic stability analysis. Finally, a method is presented for computing nonzero ele-

ments of B-matrices for external rotations without imposing the Casimir–Eckart conditions.
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Introduction

Information on the structures and dynamics of biomolecules

(e.g., proteins, DNA, and RNA) is basic to an understanding of

their biological properties. As a standard coordinate system, Car-

tesian coordinates (CCs) have been used to visualize detailed

atomic level structures and motions. However, molecular inter-

nal coordinates (ICs: bond lengths, bond angles, in-plane/out-of-

plane wags, or torsion angles) have also been efficiently used in

such areas as vibrational (infrared and Raman) normal mode

analyses,1–3 molecular mechanics (MM) conformation energy

analyses,4–6 Monte Carlo (MC) simulations,7–15 ab initio geome-

try optimizations,16–30 quantum MC simulations,31,32 and molec-

ular docking problems.33–37 This is because intramolecular inter-

action energy terms, as well as molecular internal vibrations, are

easily described in ICs. However, in contrast to the linearity of

the Newton equations of motion in CCs, the classical molecular

dynamics (MD) equations to be solved in ICs are not only non-

linear but also demand nontrivial computation processes at each

numerical integration step. Thus, MD simulations in ICs have

not been as popular as those in CCs.

The equations of motion for typical MD simulations are not

analytically solvable, and therefore they are solved approxi-

mately by a numerical integration method. To maintain the sys-

tem’s stability, the integration time step routinely has to be kept

small enough (less than 1 fs) to resolve such fast motions as

vibrations of bond length ICs. This imposes a serious limitation

on routine simulations in a longer time range than ns, where

interesting biomolecular conformation changes may take place.

However, the fast atomistic motions related to most bond

stretching and angle bending vibrations are localized1–3 and,

during certain simulation time ranges of a molecule, the average

changes in the internal bond lengths and bond angles are negli-

gible compared with those in torsion (viz., dihedral) angles.38

Thus, freezing (or constraining) all bond length coordinates ena-

bles one to use a time step larger than that for an unconstrained

CCMD simulation.39,40 On the other hand, in the early studies
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of conformation energies and dynamics models in ICs, molecules

were treated as chains of linked rigid bodies with/without con-

straints on bond lengths or bond angles.41–45 (Interestingly, similar

ideas can also be found in mechanical dynamics treatments of

complex spacecraft.46,47) In this approach, since changes in torsion

ICs dominate conformational changes, energy minimizations for

biomolecules are efficiently carried out first in a space of torsion

degrees of freedom and then other ICs are included in a further cal-

culation. This idea has been developed into the torsion angle (or

reduced variable) MD method,48–55 where all internal degrees of

freedom except for torsions are simply neglected. It was further

developed to include bond lengths and bond angles,56–60 to incor-

porate quaternion parameters and angular velocities for rotations

of linked rigid body subunits,61,62 or to adopt the fast recursive

algorithm for mechanical models of linked rigid bodies or

hinges.63–74 In addition to successful applications to structural cal-

culations,67,69,71,74–81 reports of using increased integration time

steps greater than 4 fs52,68,72,73 have made the ICMD method very

attractive.

In this development, and based on the spectroscopic B-matrix

(viz., the transformation matrix from quantities in CCs to those

in ICs),1,2 we have also introduced an ICMD scheme.82,83 The

efficiency of this scheme lies in the fact that inversion of the

large mass-matrix in solving the nonlinear equations of motion

is indirectly accomplished by computing the sparse B-matrix

elements, which are nonzero only for a few (at most four)

related atoms for each IC. In this article, we report a further

refinement of the B-matrix ICMD method based on WIGGLE (a

new constrained CCMD scheme),84 the velocity update in CCs

by Pulay and Paizs,85 and an improved computation of B-matrix

elements for external rotations [see Appendix]. The method is

applied to an isolated octane molecule, and its performance

(with/without constraints on internal bond lengths) is compared

with that of the CCMD method. Mazur made detailed compara-

tive studies between ICMD and CCMD simulations,60,86 and

found no essential differences between the two MD trajectories.

However, we have found that the ICMD method is inherently an

order of the integration time step less stable than the CCMD

method with/without internal constraints. This is consistent with

our detailed theoretical analysis of the two dynamic stabilities.

Our derived analytic expression for energy drift in each integra-

tion time step is also consistent with that of Gibson and Scher-

aga.52 Overall, this result indicates that, for the purpose of MD

simulation itself, CCs are to be preferred to ICs with/without in-

ternal constraints.87

In Dynamical Equations of Motion in ICs with Internal Con-

straints, equations of motion in generalized (internal plus exter-

nal) coordinates (GCs) with internal constraints are introduced.

In Local Energy Drift, to analyze the stability of a general

ICMD scheme, we investigate the extent to which the system

conserves its total energy in an integration time step. In ICMD

Algorithms, we introduce two optimal constrained ICMD

schemes: AICMD adopts an iterative treatment to conform to

the velocity Verlet88 equivalent in GCs, and BICMD incorpo-

rates the velocity update in CCs85 based on WIGGLE.84 In

Application to an n-Octane Molecule, the two schemes are

applied to an isolated octane molecule and their results are com-

pared with those from several CCMD methods with/without con-

straints on all CH bond lengths. Finally, an improved method of

computing nonzero B-matrix elements for external rotations is

presented in the Appendix.

Dynamical Equations of Motion in ICs with
Internal Constraints

Without a loss of generality, we consider an isolated molecule

of p atoms whose masses and Cartesian positions are given by

m� and x� (� ¼ 1, . . . , p), respectively. We define X : (x1
1

x1
2 x1

3 . . . xp
1 xp

2 xp
3)T, with superscript T representing the trans-

pose of a matrix. Let S be a nonredundant set of GCs such that,

in the neighborhood of an arbitrary molecular configuration Sec
(expansion center),

S ¼ Sec þ B�Xþ 1

2
�XTB2�Xþ � � � (1)

X ¼ Xec þ A�Sþ 1

2
�STA2�Sþ � � � ; (2)

with DS : S � Sec, DX : X � Xec, B : [@S/@X]ec : [@XS]ec,
B2 : [@X@XS]ec : [@X

2S]ec, A : [@SX]ec, A2 : [@S
2X]ec, and

AB ¼ 1 ¼ BA
X
�

A�j

� B
�
�k ¼ ����

j
k and ��� ¼

Xp
v¼1

X3
j¼1

B�
�j
A�j

�

 !
:

(3)

Differentiating eq. (3), we have

BTA2Bþ AB2 ¼ 0 ¼ ATB2Aþ BA2: (4)

In using this simplified expression, we have to keep in mind that

B2 and A2 are not regular matrices but third rank tensors. The

expressions with specific tensor components corresponding to

eq. (4) can be obtained by considering the expressions in the pa-

renthesis of eq. (3). Thus, eqs. (1) and (2) are inverse relations

to each other if eqs. (3) and (4) are satisfied. Specific methods

of computing elements of B, B2, A, and A2 can be found else-

where.1,2,48,53,56,82,83,89 We have verified the correctness of ana-

lytical formulas for nonzero elements of B and B2 by comparing

results from numerical and analytical differentiations.

The system’s classical kinetic energy T is now expressed by

2T ¼ _X
T
m _X ¼ _S

T
g _S (5)

where a dot represents differentiation with respect to time and g
: ATmA is the mass-matrix, with m being a 3p � 3p diagonal

matrix containing triads of atomic masses m�. In the presence

of Nc nonredundant internal constraints ��(X) ¼ C� (constant)

(� ¼ 1, . . . , Nc), which are represented by

rðXÞ ¼ C; (6)
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classical atomic motion is subject to the constrained potential

energy

Vc � V þ rT��� (7)

where V is the system’s potential energy without constraints and

LL is a column vector of the Lagrange undetermined parameters

related to the constraint forces. Assuming Vc is not an explicit

function of time and atomic velocities, the classical equations of

motion in CCs are found to be

m€X ¼ �@XVc ¼ FX � BT
c� (8)

with FX : �@XV and Bc : @r/@X : @Xr. Dynamic equations

of motion without constraints are simply obtained by setting L
¼ 0. Successive differentiations of eq. (6) with respect to time

provide additional equations for constraints:

_r ¼ Bc
_X ¼ 0 (9)

€r ¼ Bc
€Xþ _X

T
B2c

_X ¼ 0 (10)

with B2c : @XBc : @X
2r. By using eqs. (8) and (10), for given

_X and FX, the parameters LL can be determined by solving

GccLL ¼ Bcm
�1FX þ _X

T
B2c

_X; (11)

where Gcc : Bcm
�1Bc

T, with superscript �1 representing the

inverse of a nonsingular matrix. In terms of the GCs, the Euler–

Lagrange equations of motion are found to be

g€Sþ _S
T ½ATmA2� _Sþ @SVc ¼ 0; (12)

with the simplified second term being defined by

_S
T ½ATmA2� _S � ½ATmð _ST@SÞA� _S ¼ 1

2
½ð _ST@SÞg� _S: (13)

Dynamics trajectory information can be obtained from solving

eq. (12). For systems of polyatomic molecules, this is done by

numerical integration with a finite time step.

As a way of increasing the time step in MD simulations, it

has been common to constrain such fast moving degrees of free-

dom as bond length ICs.39,40 We consider constraining some

coordinates of S so that S can be separated into an uncon-

strained part Su and a constrained one Sc ¼ r, with ST ¼ (Su
T

Sc
T). In this case, it should be emphasized that the matrix g in

eq. (12) is still nonsingular and its inverse is well defined by G
: Bm�1BT, so long as the whole S is nonredundant, as we

have already assumed. For a given molecular geometry, it is not

difficult to find a desired nonredundant set S of GCs. Thus,

applying G to the left-hand side of eq. (12), we obtain

€S ¼ � _S
T ½BA2� _S� Bm�1@XVc

¼ _S
T
AT ½B2�A _Sþ B€X ½from eqs: ð4Þ and ð8Þ�

¼ _X
T ½B2� _Xþ B€X; ð14Þ

which is the very expression obtainable from the second deriva-

tive of eq. (1) with respect to time.85 For the constrained coordi-

nates Sc, this becomes an equation for L that is equivalent to

eq. (11).

Local Energy Drift

The reliability of long time simulations of a dynamical system

depends on the stability of the numerical integration scheme.

The local error in total energy in each integration time step

eventually affects the global stability, the latter depending on

whether the local errors are cumulative or not. To determine the

factors that affect the local energy drift, we consider the follow-

ing general numerical integration scheme in GCs:

Sð�tÞ ¼ Sð0Þ þ�t� _Sð0Þ þ�t2f�€Sð0Þ þ �€Sð�tÞg (15)

_Sð�tÞ ¼ _Sð0Þ þ�tf"€Sð0Þ þ !€Sð�tÞg; (16)

where �, �, �, ", and ! are appropriate constants and variables

S, _S, and €S are assumed to satisfy eqs. (9)–(12) at each time

step with suitable constraint parameters L. In view of eq. (15),

we can expand €S(Dt) as

€Sð�tÞ ¼ €Sð0Þ þ�t�½ð _ST@SÞ€S�ð0Þ þ � � � ; (17)

rewriting eqs. (15) and (16), respectively, by

Sð�tÞ ¼ Sð0Þ þ�t� _Sð0Þ þ�t2ð� þ �Þ€Sð0Þ
þ�t3��½ð _ST@SÞ€S�ð0Þ þ � � � ð18Þ

_Sð�tÞ ¼ _Sð0Þ þ�tð"þ !Þ€Sð0Þ
þ�t2�!½ð _ST@SÞ€S�ð0Þ þ � � � : ð19Þ

Then, the total potential energy of eq. (7) at S(Dt) is Taylor

expanded as

Vcð�tÞ ¼ Vcð0Þ þ�t�½ð _ST@SÞVc�ð0Þ þ�t2

2
½2ð� þ �Þð€ST@SÞVc

þ �2 _S
Tð@2

SVcÞ _S�ð0Þ þ Oð�t3Þ: ð20Þ

The matrix g(Dt) is also expanded by the same form as this with

each Vc being replaced by g. Considering eq. (19), we can

expand the kinetic energy of eq. (5) by
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Tð�tÞ ¼ Tð0Þ þ�t _S
Tð0Þ ð"þ !Þg€Sþ �

2
fð _ST@SÞgg _S

h i
ð0Þ

þ�t2

2

"
ð"þ !Þ2€STgSþ 2�! _S

T
gfð _ST@SÞ€Sg

þ ð� þ �Þ _STfð€ST@SÞgg _Sþ 2�ð"þ !Þ€STfð _ST@SÞgg _S

þ �2

2
_S
Tf _STð@2

SgÞ _Sg _S
#
ð0Þ þ Oð�t3Þ: ð21Þ

Similarly, the system’s total energy, E : T þ Vc, at S(Dt)
can be Taylor expanded by

Eð�tÞ ¼ Eð0Þ þ�tEð1Þð0Þ þ�t2

2
Eð2Þð0Þ þ�t3

6
Eð3Þð0Þ þ � � �

(22)

By using eqs. (20) and (21), the coefficient E(1) is found to be

Eð1Þ ¼ _S
T ð"þ !Þg€Sþ �@SVc þ �

2
½ð _ST@SÞg� _S

n o
: (23)

If � ¼ " þ !, this term becomes zero from eqs. (12) and (13).

Assuming this and arranging terms of Dt2 with eq. (12), we

obtain

Eð2Þ ¼ ð2� þ 2� � �2Þ€ST@SVc þ � þ � þ 1

2
�2

� �
_S
T ½ð€ST@SÞg� _S

þ �ð2!� �Þ _STg½ð _ST@SÞ€S�: ð24Þ

It is evident that there are no nonzero real values for � þ �
such that 2(� þ �) � �2 ¼ 0 and 2(� þ �) þ �2 ¼ 0. If we

choose � ¼ " þ ! ¼ 2! and 2(� þ �) ¼ �2, which is one of

the best possibilities of reducing absolute magnitudes of E(2)

including the velocity Verlet88 equivalent (� ¼ 1, � ¼ " ¼ ! ¼
1/2, and � ¼ 0) in GCs, then the E(Dt) is found to be

Eð�tÞ ¼ Eð0Þ þ�t2

2
�2f _ST ½ð€ST@SÞg� _Sgð0Þ þ Oð�t3Þ: (25)

Different from this, our recent analysis for the corresponding

CCMD scheme showed that in terms of CCs the total energy is

expanded by84

Eð�tÞ ¼ Eð0Þ þ�t3

12
f3�ð4� þ �2Þ€XTð@2

XVcÞ _X

� �3 _X
T ½ð _XT

@XÞð@2
XVcÞ� _Xgð0Þ þ Oð�t4Þ: ð26Þ

Therefore, it is clear that, when @Sg = 0, the general ICMD

scheme generates a local error in energy during each time step

that is one-order larger in Dt than that resulting from the CCMD

scheme. The Dt2-dependence of the leading local error in terms

of GCs as given by eq. (25) is consistent with the result in terms

of the Riemannian coordinates of Gibson and Scheraga.52 Note

that if S ¼ X then @Sg ¼ @Xm ¼ 0 resulting in E(2) ¼ 0. Thus,

the very term @Sg, which causes the equations of motion to be

nonlinear if it is nonzero, enforces the dynamics integration

scheme in GCs to be less stable than that in CCs. This theoreti-

cal analysis is consistent with the simulation results for a system

of an isolated octane molecule, the details being presented in

Application to an n-Octane Molecule.

ICMD Algorithms

Dynamics trajectory information in GCs requires computing €S at

each integration time step. As shown in eq. (14), this involves

computing either A2 or B2. Since calculation of A2 is nontrivial

and requires larger storage than that of B2, we have investigated

dynamics processes using B2. In the presence of the internal

constraints of eq. (6), however, we additionally need to deter-

mine LL either by solving eq. (11) or in another way. We label

any unconstrained and constrained quantities in GCs by ‘‘u’’ and

‘‘c’’, respectively. Two ICMD schemes further refined from our

early B-matrix ICMD method82,83 are presented later.

Algorithm AICMD

This integration scheme updates positions and velocities in GCs.

Since, in the presence of internal constraints, we can determine

values of _Su(Dt) only after knowing values of €S(Dt) [see

eq. (16)], we initially approximate _Su(Dt) by

_Ruð�tÞ ¼ _Suð0Þ þ�t€Suð0Þ: (27)

From this, _Su(Dt) and €Su(Dt) are iteratively adjusted to follow

the velocity Verlet equivalent with

_wuð�tÞ � _Suð0Þ þ�t

2
€Suð0Þ: (28)

The AICMD procedures are summarized as follows:

a. Compute A(k), B(k), B2(k), and FX(k) : �@X(k)V.
b. Set initial atomic velocities: _X(k) : Au(k) _Ru(k).
c. Iterate for _Su(k) and €Su(k):

1. SolveGccLLL(k)¼Bc(k)m
�1FX(k)þ _XT(k)B2c(k) _X(k) forLLL(k).

2. Obtain CC accelerations:
€X(k) ¼ m�1FX(k) � m�1Bc

T(k)LLL(k).
3. Obtain GC accelerations:

€Su(k) ¼ Bu
€X(k) þ _XT(k)B2u(k) _X(k).

4. Set _Su(k) ¼ _wu(k) þ Dt€Su(k)/2 [velocity Verlet equivalent

in GCs].

5. Set _X(k) ¼ Au(k) _Su(k) and go to (1).

d. Set _wu(k þ 1) : _Su(k) þ Dt€Su(k)/2 and _Ru(k þ 1) : _Su(k)
þ Dt€Su(k).

e. Set new GC values: Su(k þ 1) ¼ Su(k) þ Dt _wu(k þ 1).

f. Compute X(k þ 1) from S(k þ 1).

g. Go to (a) with k ¼ k þ 1.
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For given atomic velocities in GCs, the constrained atomic

velocities in CCs are obtained by step (b). The computation cost

involved in the iteration of step (c) is negligible compared to

that of calculating FX. With zero iteration meaning no return from

(c5) to step (c1), in most cases two iterations are enough to reach

a convergence in _Su that maintains stable energies (Fig. 1).

When there is no constraint, we skip the linear equation solv-

ing of (c1) and atomic accelerations are simply given by €X ¼
m�1FX.

Algorithm BICMD

When GC accelerations are determined by the last expression of

eq. (14), computing _X and €X are required at each time step.

Thus, in this scheme, atomic velocities are updated in CCs and

positions are updated in GCs at each integration time step.85

With internal constraints of eq. (6), the desired atomic velocities

and accelerations in CCs can be efficiently determined in the

same way as in WIGGLE.84 By defining

_qð�tÞ � 1

�t
fXð�tÞ � Xð0Þg; (29)

the BICMD scheme is specifically outlined as follows:

a. Compute B(k), B2(k), and FX(k) : �@X(k)V.
b. Set initial atomic velocities: _Z(k) ¼ _q(k) þ Dtm�1FX (k)/2.
c. Adjust _X(k) from the _Z(k) so that Bc(k) _X(k) ¼ 0:

1. Solve GccG(k ¼ Bc(k)G(k) for G(k).
2. Compute desired velocities: _X(k)¼ _Z(k)�m�1Bc

T(k)G(k).
d. Set CC accelerations: €X(k) ¼ 2{ _X(k) � _q(k)}/Dt [velocity Ver-

let].

e. Obtain _Su(k) ¼ Bu
_X(k) and €Su(k) ¼ Bu

€X(k) þ _XT (k)B2u
_X(k).

f. Set new GC values: Su(k þ 1) ¼ Su(k) þ Dt{ _Su(k) þ Dt€Su(k)/
2}.

g. Compute X(k þ 1) from S(k þ 1).

h. Set _q(k þ 1) ¼ 1
�t fXðk þ 1Þ � XðkÞg.

i. Go to (a) with k ¼ k þ 1.

At each time step, the above process requires adjusting _X so

as to satisfy the hidden constraints [eq. (9)], which can be expe-

dited by the WIGGLE method.84 For more accurate €X(k) with

an additional linear equation solving, step (d) can be replaced by

d. Obtain atomic accelerations:

1. Solve GccLLL(k) ¼ Bc(k)m
�1FX(k) þ _XT(k)B2c(k) _X(k) for

LLL(k).
2. Compute CC accelerations:

€X(k) ¼ m�1FX(k) � m�1Bc
T (k)LLL(k).

For the corresponding unconstrained dynamics scheme, steps

(c), (d), and (h) are replaced by

_XðkÞ ¼ _qðkÞ þ�t

2
€XðkÞ (30)

_qðk þ 1Þ ¼ _XðkÞ þ�t

2
€XðkÞ; (31)

with €X(k) ¼ m�1FX(k).
Our test of an isolated octane molecule shows that the con-

strained BICMD scheme slowly dissipates the system’s total

energy even with a small time step (Fig. 2). Such a decrease in

energy disappears for unconstrained BICMD simulations.

Application to an n-Octane Molecule

For comparisons of dynamic characteristics between CCMD and

ICMD simulations, we consider a system of an isolated n-octane

Figure 1. Energy (T þ V) versus integration steps for constrained

AICMD simulations with Dt ¼ 2 fs, and 0, 1, and 2 iterations of

GC velocities [see AICMD scheme]. The 1-iteration curve ends

with the spike.

Figure 2. Energy (T þ V) versus integration steps for constrained

BICMD simulations with different Dt.
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molecule. Since some C��C stretching frequencies are within the

range of some angle bending frequencies, we fix only the CH

bond lengths (to 1.08 Å) for constrained simulations. All the lin-

ear equations involved in these constrained dynamics simulations

were solved by the conjugate gradient method. Specifically, the

method was preconditioned by diagonal elements of Gcc with a

tolerance of 10�8 for the weighted square of the residual.90 The

constrained CCMD algorithms used for the simulation results la-

beled SHAKE and RATTLE differ from their original versions.

Details of these modifications of the original SHAKE39 and RAT-

TLE40 algorithms were reported in our previous paper.84

Computations were done on a single node (512 Mbytes of

memory and 1.2 GHz processing speed) of a LINUX cluster,

using the SDFF force field for hydrocarbon chains optimized to

reproduce ab initio structures, energies, and vibrational frequen-

cies.91 The system was equilibrated to provide average values of

temperature and energy (T þ V) (for 1000 steps with Dt ¼ 0.5 fs)

of 300.2 K and 45.86 kcal/mol, respectively, for constrained simu-

lations (300 K and 42.20 kcal/mol for unconstrained simulations).

The desired initial configuration had atomic velocities correspond-

ing to an instantaneous temperature of 312.9 K for constrained

simulations (350.2 K for unconstrained simulations), with all

backbone �(C��C��C��C) torsions having trans conformations

except for the center torsion angle of 528 for both constrained and

unconstrained MD simulations. The initial atomic velocities were

adjusted so as to remove linear and angular momenta about the

center of mass by using our previous method.84

Although the system’s total energy contains potential energy

rTLLL due to constraint forces for internal constraints, this is

ignored in our figures. Stability of constrained MD simulations

can also be tested by monitoring values of T þ V. Figure 3 shows

instantaneous energy (T þ V in kcal/mol) versus time step Dt (in
fs) at the 50,000th integration step for different methods of con-

strained ICMD and CCMD simulations with internal constraints

on all CH bond lengths. Results from unconstrained MD simula-

tions are shown in Figure 4. It is seen that MD simulations in

CCs are more stable than those in ICs, consistent with the theo-

retical analysis presented in Local Energy Drift. In ICMD simu-

lations, stable regions in Dt can be extended toward an increased

time step by imposing rigid constraints on all CH bond lengths,

but ripples in energy, which are a direct indication of the sys-

tem’s instability, still exist even below 0.5 fs. The ripples in the

region of a fairly small Dt, where the corresponding constrained

CCMD simulations are stable, seem to arise from the nonlinearity

of the equations of motion in ICs in contrast to the linearity in

CCs. Constrained MD simulation results at the 100,000th integra-

tion step are shown in Figure 5. This also shows that CCMD sim-

Figure 3. Energy [kcal/mol] versus time step Dt [fs] for various

constrained MD simulations of an isolated n-octane molecule: (a)

AICMD, (b) BICMD, (c) WIGGLE, and (d) SHAKE. Instantaneous

energies (T þ V) at the 50,000th integration step are shown. The

time step was scanned in increments of 0.01 fs.

Figure 4. Total energy [kcal/mol] versus time step Dt [fs] for

unconstrained MD simulations: (a) AICMD, (b) BICMD, and (c) ve-

locity Verlet CCMD. Instantaneous energies at the 50,000th integra-

tion step are shown. The time step was scanned in increments of

0.005 fs.
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ulations are more stable than ICMD simulations, with the WIG-

GLE scheme being slightly better in stability than the revised

SHAKE and RATTLE for constrained CCMD simulations. We

have used two iteration cycles for the iteration step (c) for

AICMD simulation results shown in Figures 4 and 5.

Concluding Remarks

Early MD methodology in ICs was developed for efficient anal-

yses of conformation energy of polypeptides and proteins, and

was based on torsion angles. Torsion angle MD simulations

have been especially efficient in structure determinations of bio-

molecules by NMR spectroscopy and X-ray crystallography.

Extending this work, some reports52,68,72,73 of stable MD simula-

tions in torsion angles with integration time steps greater than

4 fs encouraged further improvements in ICMD methodology.

This was supported by detailed studies by Mazur,60,86 which

included all (bond length, bond angle, and torsion) ICs and con-

cluded that there were no essential differences between ICMD

and CCMD simulations. However, the situation has remained

controversial, with Stocker et al, stating that ‘‘. . . , for equilib-

rium simulations, Newton’s equations of motion in Cartesian

coordinates are to be preferred to Lagrange’s equations of

motion using generalized, non-Cartesian, coordinates.’’87

We have made an intensive comparative study of ICMD and

CCMD simulations, and obtained several results. First, for a gen-

eral numerical integration scheme for ICMD simulations, we have

investigated an analytic relation that provides local error in energy

during an integration time step Dt. The leading local error term is

found to be proportional to Dt2 and to contain @Sg, viz., the first

derivative of the mass-matrix g with respect to GCs [see eq. (25)].

This is an order in integration step larger than that proportional to

Dt3 for the corresponding CCMD scheme.84 Therefore, the term

@Sg = 0 itself, which causes the related equations of motion to be

nonlinear in GCs, is found to make ICMD simulations less stable

than CCMD simulations. Second, we have introduced two ICMD

schemes, AICMD and BICMD, that incorporate the second order

B-matrix elements instead of the second order A-matrix elements.

In the AICMD scheme, GC velocities and accelerations are itera-

tively adjusted so as to conform to the velocity Verlet equivalent

in GCs. In the BICMD scheme, atomic velocities with internal

constraints are updated and adjusted in CCs based on the WIG-

GLE constrained CCMD scheme.84 Finally, the proposed ICMD

schemes have been applied to an isolated octane molecule and

their performances compared with several CCMD schemes. The

resulting analyses clearly show that ICMD simulations are less

stable than CCMD simulations, with/without rigid constraints on

all CH bond lengths. By constraining all CH bond lengths, some

increased integration time steps can be found for stable ICMD

simulations, but there are also some regions in Dt even smaller

than 0.5 fs that generate unstable trajectories.

As far as stability is concerned, for pure MD simulations

CCs are preferred to ICs, although ICs are efficient in ab initio
geometry optimizations, MC simulations, and structural refine-

ments for biomolecules. Any needed trajectory information in

ICs can easily be obtained from that of CCMD simulations with

calculated nonzero elements of B-matrices [see eqs. (1) and

(14)]. As a final note, we would like to mention that dynamic

trajectories are believed to be more stable for symplectic inte-

grators than those for nonsymplectic ones in long time simula-

tions. RATTLE has proved to be symplectic while SHAKE is

not.92 We think it is nontrivial and beyond the scope of the pres-

ent article to determine whether our presented AICMD and

BICMD algorithms are symplectic or not. However, we have

shown that dynamical instability in ICMD simulations will arise

in any case from the nonlinearity in the equations of motion.
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Appendix

In deriving eq. (14) from eq. (12), we have used eqs. (3) and

(4), viz., the nonsingularity relations between CCs X and GCs S.
Desired nonsingular transformation matrices B, B2, A, and A2

can always be determined for a set S of nonredundant GCs that

is suitably chosen by combining nonredundant ICs with external

rotations and translations. The calculation of nonzero elements

of B and B2 for external rotations has conventionally been

accomplished1,2,93 by assuming the Casimir–Eckart condi-

tions.94–96 Previously, we developed an efficient method of com-

puting these without imposing the Casimir–Eckart conditions.83

We present here a further improvement in this method.

External Rotations with Three Parameters

To compute the B-matrix elements for external rotations, we need

to define a suitable molecule-fixed (MF) coordinate frame and its

transformation (viz., rotation matrix) to an arbitrary laboratory-

fixed (LF) coordinate frame in terms of the relative rotation angles
~	 ¼ ð	1 	2 	3ÞT between the two frames. Let {1̂MF; 2̂MF; 3̂MF} be

an arbitrary orthonormal basis for the MF frame with

3̂MF ¼ 1̂MF � 2̂MF and any quantity in this frame being labeled

by ‘‘MF.’’ Let {1̂; 2̂; 3̂} be the standard basis for the LF (CC) frame

with 1̂ � ð1 0 0ÞT , 2̂ � ð0 1 0ÞT , and 3̂ � ð0 0 1ÞT . The

Figure 5. Energy [kcal/mol] versus time step Dt [fs] for various

constrained MD simulations of an isolated n-octane molecule:

AICMD (black), SHAKE (blue), RATTLE (red), and WIGGLE

(green). Instantaneous energies (T þ V) at the 100,000th integration

step are shown. The time step was scanned in increments of 0.01 fs.
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position of a molecule’s center-of-mass is determined only after

all atomic positions are known. To expedite ICMD simulations for

flexible molecules, instead of the conventional center-of-mass

frame, we adopt an MF frame whose origin is located at a particu-

lar atom center x
. A basis for the MF frame can easily be found

from any three nonlinear atomic positions including the origin

atom 
. Without a loss of generality, we define the transformation

matrix between the two frames by.93

�ð~	Þ � expð	3D3Þ expð	2D2Þ expð	1D1Þ

¼
c3c2 c3s2s1 � s3c1 c3s2c1 þ s3s1

s3c2 s3s2s1 þ c3c1 s3s2c1 � c3s1

�s2 c2s1 c2c1

8>>>>>>>:
9>>>>>>>; (A1)

with cj : cos 	j, sj : sin 	j, and

D1 �
0 0 0

0 0 �1

0 1 0

8>>>>>>>:
9>>>>>>>;;D2 �

0 0 1

0 0 0

�1 0 0

8>>>>>>>:
9>>>>>>>;;

D3 �
0 �1 0

1 0 0

0 0 0

8>>>>>>>:
9>>>>>>>;: (A2)

Then, atomic coordinates in the LF frame are related to that in

MF frame by

x� ¼ �ð~	Þx�MF þ x
 : (A3)

To be more specific in defining a basis for the MF frame, let

atom i1, atom i2, and atom i3 be such nonlinear atoms as shown

in Figure 6, with one of these being the origin of the MF frame.

Defining x21 : xi1 � xi2, x23 : xi3 � xi2, r21 : |x21|, r23 :
|x23|, e21 : x21/r21, e23 : x23/r23, and cos ’13 : e21 � e23, we
obtain an orthonormal vector set {e21, u : e21�e23/sin ’13,

v : u � e21} in the LF frame. In view of eq. (A3), the corre-

sponding vectors in the MF frame should satisfy

fe21; v; ug ¼ �ð~	Þfe21MF; vMF; uMFg: (A4)

Then a desired orthonormal basis for the MF frame can be cho-

sen so as to satisfy

e21MF � n11̂MF ¼ ðn1 0 0ÞTMF (A5)

vMF � n22̂MF ¼ ð0 n2 0ÞTMF (A6)

uMF � n33̂MF ¼ ð0 0 n3ÞTMF (A7)

with

n1n1 ¼ 1 ¼ n2n2 ¼ n3n3 (A8)

n1n2n3 ¼ 1: (A9)

Relations (A8) and (A9) are simply conditions for normaliza-

tion and a proper orientation, respectively. When a suitable MF

frame is specifically chosen, the values of (n1, n2, n3) are also

fixed. For example, these can be taken as (�1, 1, �1) and (1, 1,

1) for the cases of Figure 6a and 6b, respectively. For our simula-

tion results in Application to an n-Octane Molecule, we have used

an MF frame as Figure 6a. Physical properties derived from MD

trajectories are independent on the choice of an MF frame. By sub-

stituting eqs. (A5)–(A7) into (A4), equations for ~	 are found to be

s2 ¼ �n1e
3
21 (A10)

c1 ¼ n3u
3=c2; s1 ¼ n2�

3=c2 (A11)

c3 ¼ n1e
1
21=c2; s3 ¼ n1e

2
21=c2: (A12)

Thus, from eq. (A10) 	2 can be first determined within the range

of ��/2 < 	2 < �/2, and next 	1 and 	3 are determined from

eqs. (A11) and (A12), respectively. The corresponding B-matrix

elements, viz., 	�k
l : @	l/@xk� or 	l

�j�k : @2	l/@x�
j@x�

k , can be

computed by directly differentiating eqs. (A10)–(A12) with

respect to atomic coordinates x� or x�, which are nonzero at

most for �, � ¼ i1, i2, and i3.
Another direct way of computing B-matrix elements for

external rotation can be found from the first derivative of

eq. (A4) with respect to atomic coordinates83:

@e12
@xk�

;
@v

@xk�
;
@u

@xk�

� �
¼ ~��k � fe12; v; ug (A13)

with ~��k � @~�=@xk� being related to 	�k
l by the transformation of

�1�k

�2�k

�3�k

8>>>>>>>>>:
9>>>>>>>>>; �

c3c2 �s3 0

s3c2 c3 0

�s2 0 1

8>>>>>:
9>>>>>;

	1
�k

	2
�k

	3
�k

8>>>>>>>>>:
9>>>>>>>>>; � Wð~	Þ

	1
�k

	2
�k

	3
�k

8>>>>>>>>>:
9>>>>>>>>>;: (A14)

This defines the molecule’s intrinsic angular velocity by
~� � _~� � Wð~	Þ _~	. In our previous report,83 from the total of nine

Figure 6. Definition of molecule fixed (MF) coordinate frames with

three nonlinear atoms containing the origin atom 
: (a) for (n1, n2,
n3) ¼ (�1, 1, �1) and (b) for (n1, n2, n3) ¼ (1, 1, 1).

1114 Lee, Palmo, and Krimm • Vol. 28, No. 6 • Journal of Computational Chemistry

Journal of Computational Chemistry DOI 10.1002/jcc



algebraic equations of (A13) a suitable set of three independent

relations was selected and solved for ~��k . However, we have

recently investigated a more efficient way to accomplish this.

Applying inner products with e21, v, and u to both sides of

eq. (A13), we obtain

~��k � e21 ¼ u � @v
@xk�

; ~��k � v ¼ e21 � @u
@xk�

; ~��k � u ¼ v � @e21
@xk�

: (A15)

This means ~��k is expressible by

~��k ¼ u � @v
@xk�

8>>: 9>>;e21 þ e21 � @u
@xk�

8>>: 9>>;vþ v � @e21
@xk�

8>>: 9>>;u (A16)

as far as {e21, v, u} is complete and orthonormal, which is true

for nonlinear xi1, xi2, and xi3. Differentiating this with respect to

x�
j and using eq. (A13), we obtain

~��j�k ¼ u � @2v

@xj�@xk�
þ e21 � @v

@xj�

8>>: 9>>; e21 � @u
@xk�

8>>: 9>>;
" #

e21

þ e21 � @2u

@xj�@xk�
þ v � @u

@xj�

8>>: 9>>; v � @e21
@xk�

8>>: 9>>;
" #

v

þ v � @2e21

@xj�@xk�
þ u � @e21

@xj�

8>>: 9>>; u � @v
@xk�

8>>: 9>>;
" #

u (A17)

with ~��j�k � @2~�=@xj�@x
k
�. From eq. (A14), B-matrix elements for

external rotations are now obtained by

~	�k ¼ W�1~��k (A18)

~	�j�k ¼ W�1 ~��j�k �
@W

@xj�

� �
~	�k

8>>: 9>>;: (A19)

In general, it is true that ~	�j�k ¼ ~	�k�j , while we may have
~��j�k 6¼ ~��k�j .

For computational efficiency, instead of directly applying

eqs. (A16) to (A18), we consider the values of ~��k in the MF

frame, which from eqs. (A5) to (A7) are given by

~��kMF � ��1~��k ¼ n1u � @v
@xk�

n2e21 � @u
@xk�

n3v � @e21
@xk�

8>>: 9>>;T

MF

:

(A20)

Then, the expression for ~	�k is simplified as

~	�k ¼ W�1ZZ�1~��k ¼ W�1Z~��kMF

¼ ð�1�kMF þ s2��k=c2 c1�
2
�kMF � s1�

3
�kMF ��k=c2ÞT (A21)

with

��k � s1�
2
�kMF þ c1�

3
�kMF: (A22)

Next, we consider the fact that the involved derivatives with

respect to the three atomic positions xi1, xi2, and xi3, can be com-

puted from derivatives with respect to the two bond vectors a :
x21 and b : x23 such as

@~	=@xki1 ¼ ~	ak ; @~	=@x
k
i2
¼ �~	ak � ~	bk ; @~	=@xki3 ¼ ~	bk : (A23)

Thus, eq. (A21) for the first order B-matrix elements splits

into

~	ak ¼ �1akMF þ
s2
c2

�ak c1�
2
akMF � s1�

3
akMF

1

c2
�ak

8>: 9>;T

(A24)

~	bk ¼
�
�1bkMF 0 0

�T
: (A25)

Elements in the right-hand side of these can be efficiently com-

puted by

~�akMF ¼ 1

r21
�n1

cos ’13

sin ’13

uk � n2u
k n3v

k

8>>: 9>>;T

MF

(A26)

~�bkMF ¼ 1

r23

n1
sin ’13

uk 0 0

8>>: 9>>;T

MF

(A27)

�a ¼ �a1 �a2 �a3ð ÞTMF ¼ 1

r21
ð�n1s3 n1c3 0ÞTMF (A28)

�b ¼ �b1 �b2 �b3ð ÞTMF¼ 0MF; (A29)

with

uak �
@u

@ak
¼ 1

r21 sin ’13

fk̂� e23 þ ðu� e23Þkug (A30)

ubk �
@u

@bk
¼ 1

r23 sin ’13

fe21 � k̂� �kug: (A31)

Thus, the expression for 	2
ak in eq. (A24) is further simplified as

	2
a ¼ �s2�a2 s2�a1 � n1c2=r21ð ÞT : (A32)

Expressions for higher order derivatives of u with respect to the

bond vectors can be found elsewhere,89 which is useful to com-

pute nonzero elements of B2 for the external rotations.

Similarly, all nonzero expressions for the second order deriva-

tives of ~	 with respect to the two bond vectors are listed by

	1
ajak ¼ �1ajakMF þ

s2
c2

�ajak þ
1

s2
	2
aj	

3
ak

8>: 9>; (A33)
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	2
aja1 ¼ �c2	

2
aj�a2 � s2�aja2 (A34)

	2
aja2 ¼ c2	

2
aj�a1 þ s2�aja1 (A35)

	2
aja3 ¼ � 1

r21
e321	

2
aj þ ej21	

2
a3

� �
(A36)

	3
ajak ¼

1

c2
�ajak þ s2	

2
aj	

3
ak

	 

(A37)

	1
bjbk ¼ �1bjbkMF (A38)

	1
bjak ¼ 	1

akbj ¼ �1akbjMF ¼ �1bjakMF: (A39)

Here, the necessary expressions for ~�ajakMF, ~�bjbkMF, ~�bjakMF, and

�ajak : @�ak/@a
j are found to be

�aja ¼ �aja1 �aja2 �aja3ð ÞTMF

¼ ��a2	
3
aj �

ej21
r21

�a1 �a1	
3
aj �

ej21
r21

�a2 0

 !T

MF

(A40)

�1ajakMF ¼
�n1

r221 sin
2 ’13

fvjuk þ vkuj � sin ’13½cos ’13e
j
21u

k þ ek23u
j�g

¼ 1

r21

�
n3v

j�2akMF � ej21 �
cos ’13

sin ’13

vj
8>>: 9>>;�1akMF

� ek21 �
cos ’13

sin ’13

vk
8>>: 9>>;�1ajMF

�
(A41)

�2ajakMF ¼ n2
r221 sin ’13

fsin ’13e
j
21u

k � ðu� e23Þkujg

¼ 1

r21
fn3vk�1ajMF � ej21�

2
akMF � ek21�

2
ajMFg (A42)

�3ajakMF ¼ n3
r221 sin ’13

�
ej21e

k
23 � cos ’13�

jk

þ ðu� e23Þjvk � sin ’13½ej21vk þ ek21v
j��

¼ 1

r21

�
n2u

k�1ajMF � ej21�
3
akMF � ek21�

3
ajMF

�
(A43)

�1bjbkMF ¼
�n1

r223 sin
2 ’13

�
vjuk þ vkuj

� ½since vbj � ubk ¼ e21�ðubk � ubjÞ

¼ 0� ¼ �1

r23 sin ’13

�
vj�1bkMF þ vk�1bjMF

�
(A44)

�1bjakMF ¼ n1

r21r23 sin
2 ’13

�
cos’13½vjuk þ vkuj� � sin ’13e

j
21u

k
�

¼ 1

r23 sin ’13

�
n3e

j
21�

2
akMF � vj�1akMF � vk�1ajMF

�
: (A45)

We have used ubj � (uak � e21) ¼ 0 and v � (j � k) ¼ ujek21 �
ukej21 in deriving the above equations.

These two direct methods of computing B-matrix elements

for external rotations, viz., one from using eqs. (A10)–(A12)

and the other given by eqs. (A24), (A25), and (A33)–(A39), are

consistent with each other. We have verified the correctness of

these analytical formulas up to second order by computational

results of numerical differentiations of eqs. (A10)–(A12). The

corresponding expressions for elements of A and A2 can be

found elsewhere.82

External Rotations with Four Parameters

The above treatment of external rotations has a singularity prob-

lem for 	2 ¼ 6�/2 [see eqs. (A10)–(A12) or (A24)], and an artifi-

cial remedy is needed whenever this situation happens during sim-

ulation processes. As a way to avoid this problem, external rota-

tions are also commonly represented by the Euler quaternion

parameters (e0 e1 e2 e3) ¼ (e0 e), with a normalization condition of

e0e0 þ e � e ¼ 1: (A46)

In terms of these parameters, the rotation matrix in real three

dimensions is given by97

�ðe0; eÞ

¼
e0e0 � e � eþ 2e1e1 2e1e2 � 2e0e3 2e1e3 þ 2e0e2

2e1e2 þ 2e0e3 e0e0 � e � eþ 2e2e2 2e2e3 � 2e0e1

2e1e3 � 2e0e2 2e2e3 þ 2e0e1 e0e0 � e � eþ 2e3e3

8>>>>>>>:
9>>>>>>>;:

(A47)

During our simulations for an isolated octane molecule in

Application to an n-Octane Molecule, we have used the former

method and encountered no singular cases probably due to

short simulation time range. We suggest using the conventional

representation with three parameters for large molecules and

the Euler representation with quaternion parameters for small

molecules.

Considering the diagonal sum of this matrix tr(�) with eqs.

(A4)–(A7), an expression to determine e0 is found to be

4e0e0 � 1 ¼ e121e
1
21MF þ v2v2MF þ v3v3MF ¼ n1e

1
21 þ n2v

2 þ n3u
3

(A48)
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and the three parameters for e can be determined from

4e0e1 ¼ �32 � �23 ¼ n2v
3 � n3u

2 (A49)

4e0e2 ¼ �13 � �31 ¼ n3u
1 � n1e

3
21 (A50)

4e0e3 ¼ �21 � �12 ¼ n1e
2
21 � n2v

1: (A51)

The corresponding B-matrix elements (e.g., e0�k : @e0/@xk�,
e�k : @e/@x�

k, e0�j�k : @2e0/@xj�@x
k
�, or e�j�k : @2e/@x j�@x

k
�) can

be computed by either analytical or numerical differentiations of

eqs. (A48)–(A51) with respect to atomic coordinates.

However, we have also investigated an alternative method

similar to that presented in the previous section. Considering

eq. (A47) and differentiating eq. (A4) with respect to atomic

coordinates, we can obtain the same expression as (A13). But,

in this case, the intrinsic angular momentum
_~� is defined so

that82

0
~��k

8>: 9>; ¼ W
e0�k
e�k

8>>: 9>>; � 2

e0 e1 e2 e3

�e1 e0 �e3 e2

�e2 e3 e0 �e1

�e3 �e2 e1 e0

8>>>>>>>>>:
9>>>>>>>>>;

e0
�k

e1�k

e2�k

e3
�k

8>>>>>>>>>>>:

9>>>>>>>>>>>;:

(A52)

The desired first order B-matrix elements can be efficiently com-

puted by

e0
�k

e�k

8>>: 9>>; ¼ W�1 1 0

0 �

8>>: 9>>; 1 0

0 ��1

8>>: 9>>; 0

~��k

8>>: 9>>;

¼ 1

2

e0 �e1 �e2 �e3

e1 e0 �e3 e2

e2 e3 e0 �e1

e3 �e2 e1 e0

8>>>>>>>>>>>>:

9>>>>>>>>>>>>;

0

�1�kMF

�2�kMF

�3�kMF

8>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>;
¼ 1

2

�e ~��kMF

e0~��kMF þ e� ~��kMF

8>>>:
9>>>;:

(A53)

By differentiating this with respect to atomic coordinates xj�,
expressions for the second order B-matrix elements are found

to be

4e0�j�k ¼ � ~��jMF � ~��kMF

� �
e0 � e � 2~��j�kMF þ ~��jMF � ~��kMF

� �
(A54)

4e�j�k ¼ � ~��jMF � ~��kMF

� �
eþ e0 2~��j�kMF þ ~��jMF � ~��kMF

� �
þ e� 2~��j�kMF þ ~��jMF � ~��kMF

� �
: (A55)

With eqs. (A26), (A27), and (A41)–(A45), the whole computa-

tion processes can also be facilitated by the derivatives with

respect to the two bond vectors a ¼ x21 and b ¼ x23. Finally,
the corresponding expressions for elements of A and A2 can be

found elsewhere.82
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