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Abstract: Implicit solvent models based on the Poisson-Boltzmann (PB) equation are frequently used to describe the
interactions of a biomolecule with its dielectric continuum environment. A novel, highly accurate Poisson-Boltzmann
solver is developed based on the matched interface and boundary (MIB) method, which rigorously enforces the continuity
conditions of both the electrostatic potential and its flux at the molecular surface. The MIB based PB solver attains much
better convergence rates as a function of mesh size compared to conventional finite difference and finite element based PB
solvers. Consequently, highly accurate electrostatic potentials and solvation energies are obtained at coarse mesh sizes.
In the context of biomolecular electrostatic calculations it is demonstrated that the MIB method generates substantially
more accurate solutions of the PB equation than other established methods, thus providing a new level of reference values
for such models. Initial results also indicate that the MIB method can significantly improve the quality of electrostatic
surface potentials of biomolecules that are frequently used in the study of biomolecular interactions based on experimental
structures.

© 2007 Wiley Periodicals, Inc. J Comput Chem 29: 87–97, 2008
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Introduction

Continuum dielectric theory has wide applications in chemistry,
physics, material science and biology such as studies of colloid
solutions,1, 2 membranes,3 nanotubes,4 and photo-induced charge
transfer.5 In structural biology, continuum dielectric theory allows a
macroscopic description of the solvent in the context of implicit
solvent models in which the electrostatic interactions between
biomolecules and the solvent are represented by a dielectric contin-
uum via a mean-field average over the solvent degrees of freedom.6, 7

The main advantage of using implicit solvent models is a substantial
reduction in computational cost over explicit representations of the
solvent because of smaller system sizes for a given molecular confor-
mation. Continuum dielectric models have been widely employed
in structural biology to examine electrostatic interactions within and
between biological molecules and to facilitate binding and confor-
mational free energy estimates.8–17 They are also used increasingly
to accelerate molecular dynamics simulations of biomolecules in a
variety of contexts.18–24

The electrostatic potential induced by a set of explicit charges
within a dielectric continuum environment is described rigorously

by the Poisson equation or the Poisson-Boltzmann (PB) equa-
tion where the latter accounts for the presence of ions satisfying
the Boltzmann distribution in the continuum. Solving the PB
equation throughout space is not trivial, but a variety of methods
have been established in the past. In particular, finite difference
methods,10, 25–27 finite element methods,8, 28 and boundary element
methods13, 29, 30 have been proposed and are widely used. A recent
comparison of current PB solvers along with implementations of
the Generalized Born (GB) approximation found that estimates of
electrostatic solvation energies may vary by 0.25% to 0.5% with
respect to the total solvation energies between different methods,31

suggesting that none of the available methods is able to reach fully
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converged solutions. The possibility for significant uncertainties
raises concerns in the practical use of PB theory with existing PB
solvers.32

Attaining highly accurate solutions of the PB equation for biolog-
ical systems is hindered in part by the discontinuity of the dielectric
constant across the dielectric interface33 as well as the irregularity
of the interface. Mathematically, the electrostatic potential becomes
non-differentiable at the interface because of the dielectric dis-
continuity, and this results in low order convergence properties of
standard finite difference or finite element based PB solvers.34 The
convergence of a numerical method can be improved by enforc-
ing the continuities of both electrostatic potential φ and its flux at
the dielectric interface, i.e., φ+ = φ− and ε+φ+

ξ = ε−φ−
ξ . Here,

the superscript “−” denotes the potential inside an explicitly mod-
eled molecule and “+” represents the solvent region modeled as
a continuum. The partial derivative is defined in the normal direc-
tion at the dielectric interface and ξ is the unit outer normal vector.
Most of the established PB solvers consider only the continuity of
the electrostatic potential but neglect the continuity of the poten-
tial flux, and consequently suffer from slow convergence to an
accurate solution. Highly accurate, converged solutions are in prin-
ciple attainable with conventional PB solvers either by using a very
fine mesh, for example with hierarchical35 or parallel28 focusing
techniques, or by refining the mesh locally based on a priori or
a posterior error estimation.36 However, the large system sizes in
biological applications limit the grid resolution that can be managed
practically.

In a broader perspective, the PB equation represents a special
type of physical and mechanical problems, which are distinguished
by discontinuous coefficients across the interface and/or non-
differentiable solutions. These problems include the propagation of
electromagnetic waves in heterogeneous media, the crystal growth
from the liquid phase and two-phase flows. The failure of most tra-
ditional numerical methods motivated the development of a number
of algorithms, such as the immersed boundary method,37 immersed
interface method,38 and ghost fluid method.39 We have recently
introduced the matched interface and boundary (MIB)40, 41 method
to address such problems.

In this paper we show that conventional PB solvers indeed face
limitations in reaching convergent solutions, especially in the vicin-
ity of the charges and the dielectric interface, that affect the accuracy
in the application of continuum dielectric electrostatics to complex
problems. An MIB method introduced here is one that is able to
overcome these limitations and arrive at convergent, highly accu-
rate electrostatic potentials with moderate computational costs. In
the following, we will first describe the the theoretical underpin-
nings of this new method. The results of applying this method
in a variety of contexts from simple electrostatic problems to
biomolecular systems are then presented and compared with existing
methods.

Theory

To illustrate the concept of the MIB method, we describe a one-
dimensional (1D) interface algorithm for the PB equation. A brief
description of the 3D MIB scheme is provided. Some details of the
3D theory can be found in the Appendix.

One-Dimensional Illustration

In the MIB method, the continuity conditions of the electrostatic
potential and its flux are implicitly enforced by modifying the
discretization schemes near the dielectric interface. For simplic-
ity we consider a one-dimensional (1D) case with a uniform mesh
of grid spacing h. Let the interface be located at x = a where
xi ≤ a ≤ xi+1 for some i (see Fig. 1) and assume that the
dielectric constant is ε− and ε+ in the left and right subdomains,
respectively.

For the 1D Poisson eq. (1) with interface conditions (2)

−(εφx)x = f (x), (1)

φ+(a) = φ−(a), ε+φ+
x (a) = ε−φ−

x (a). (2)

A straightforward application of the finite difference scheme at xi

gives

− εi+1/2φi+1 − (εi+1/2 + εi−1/2)φi + εi−1/2φi−1

h2
= f (xi), (3)

where εi+1/2 and εi−1/2 are the values of dielectric constant at xi+1/2

and xi−1/2, respectively. This commonly employed discretization
delivers a second-order convergence only if both φ(x) and ε(x)
are continuous. In order to restore this high order convergence,
the MIB method modifies the standard finite difference scheme
by first smoothly extending the subdomains near the interface, and
then applying the standard finite difference scheme on the extended
subdomains.

As seen from Figure 1, a second-order central difference scheme
at xi involves grid points xi−1, xi and xi+1, where xi+1 is located on
the other side of the interface. In the left subdomain, the finite dif-
ference approximation to eq. (1) that involves the grid point on the
other domain is the one at xi; thus it is sufficient to extend the left
subdomain up to xi+1 to accommodate the discretization at xi. Sim-
ilarly, the right subdomain would be left-extended up to xi. The
solution values on these two extended domains are referred to as
fictitious values f (x) to distinguish them from the real solution val-
ues φ(x) at the same locations. These two fictitious values fi and fi+1

are solved from the approximation of interface conditions (2), and
are expressed in terms of φi−1, φi, φi+1, and φi+2. The discretization
of eq. (1) with

− εi+1/2fi+1 − (εi+1/2 + εi−1/2)φi + εi−1/2φi−1

h2
= f (xi) (4)

is therefore conducted on a smooth domain and able to preserve the
interface conditions (2), thus enabling the numerical approach to
achieve high order convergence.

Interface Treatment in Three Dimensions

For the PB equation in a 3D space with an irregular dielectric inter-
face, we also have two interface conditions anywhere along the
interface
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Figure 1. Illustration of fictitious values for a 1D problem. [Color
figure can be viewed in the online issue, which is available at www.
interscience.wiley.com.]

[φ] = φ+ − φ− = 0 (5)

[εφξ ] = ε+φ+
ξ − ε−φ−

ξ . (6)

However, the continuity of the potential flux (6) is now defined in the
normal direction ξ , which is in general not aligned with any coor-
dinate direction. Since we solve the PB equation on the Cartesian
mesh, we are particularly interested in implementing these inter-
face conditions on each intersecting point of the interface and the
mesh. At a given intersecting point, it is convenient to introduce a
coordinate transform from (ξ , η, ζ ) to (x, y, z), where η and ζ are
the tangential and binormal directions, respectively. We therefore
locally project the flux continuity condition into the Cartesian mesh

[εφξ ] = ε+(
cos ψ cos θφ+

x + cos ψ sin θφ+
y + sin ψφ+

z

)

− ε−(
cos ψ cos θφ−

x + cos ψ sin θφ−
y + sin ψφ−

z

)
, (7)

where ψ is the angle between ξ and its projection on x − y plane
while θ is the angle between this projection and x-direction. Two
additional interface conditions can be obtained by differentiating the
continuity condition (5) of the electrostatic potential with respect to
the tangential direction η

φ+
η −φ−

η = (−sin θφ+
x +cos θφ+

y

)−(−sin θφ−
x +cos θφ−

y

)
(8)

and the binormal direction ζ

φ+
ζ − φ−

ζ = (−sin ψ cos θφ+
x − sin ψ sin θφ+

y + cos ψφ+
z

)

− (−sin ψ cos θφ−
x − sin ψ sin θφ−

y + cos ψφ−
z

)
. (9)

Obviously, one can keep creating higher-order interface conditions
by further differentiating these three first-order interface conditions.
However, further differentiation will generate higher-order partial
derivatives, which are numerically unfavorable. In our MIB method,
we limit ourselves to these four interface conditions. One of the dif-
ficulties in enforcing these interface conditions is the calculation
of the partial derivatives at each intersecting point. To simplify the
problem, we will eliminate two partial derivatives most difficult to

calculate from three first order interface conditions, eqs. (7)–(9).
Figure 2 illustrates a case where the interface intersects the x-mesh
line at point (x0, y0, z0). Obviously, it is more difficult to compute the
partial derivatives in the y- and z-directions at (x0, y0, z0). We there-
fore locally regard the x-direction as the primary coordinate direc-
tion, and eliminate two partial derivatives from two other directions.
For example, to eliminate φ−

y and φ−
z from eqs. (7)–(9), we have

[εφξ ] − ε− tan ψ[φζ ] + Cη[φη]
= C+

x φ+
x + C−

x φ−
x + C+

y φ+
y + C+

z φ+
z , (10)

where

Cη = −ε− tan θ/ cos ψ ,

C+
x = ε+ cos ψ cos θ + ε− tan ψ sin ψ cos θ

+ ε− sin θ tan θ/ cos ψ ,

C−
x = −ε−/(cos ψ cos θ),

C+
y = (ε+ − ε−) cos ψ sin θ ,

C+
z = (ε+ − ε−) sin ψ .

It turns out that there are 12 possible combinations to select two par-
tial derivatives from six of them. A complete description of these
combinations is given in the Appendix. At each intersecting point,
only one of these 12 combinations will be selected according to the
local topology. This interface flux condition is combined with the
continuity condition (5) to determine two fictitious values. In par-
ticular, one of the first four flux conditions, eqs. (A1)–(A4) in the

Figure 2. Local topology around irregular point (i, j, k). The interface
crosses the x-mesh line at the point S = (x0, y0, z0) between (i, j, k) and
(i+1, j, k), which are two irregular points, on which two fictitious values,
fi,j,k and fi+1,j,k are defined (marked with green dots). Two auxiliary lines
(dashed line) are sketched passing through S, one on the x − y plane
and the other on the x − z plane. Two auxiliary points (in empty circle)
(0, j, k + 1) and (0, j, k + 2) are placed on the auxiliary line on the x − z
plane to facilitate the discretization of φ+

z ; also, two auxiliary points
(0, j, k + 1) and (0, j, k + 2) are placed on the auxiliary line on the x − y
plane to facilitate the discretization of φ+

y . [Color figure can be viewed

in the online issue, which is available at www.interscience.wiley.com.]

Journal of Computational Chemistry DOI 10.1002/jcc



90 Zhou, Feig, and Wei • Vol. 29, No. 1 • Journal of Computational Chemistry

Appendix, will be chosen to solve for a pair of fictitious values in
x-direction. To solve for fictitious values in the y- or z-direction, one
can select one of eqs. (A5)–(A8) or eqs. (A9)–(A12), respectively.
In the rest of this section, we describe the determination of two fic-
titious values in Fig. 2 by using interface conditions (5) and (10).
The determination of fictitious values with other sets of conditions
can be accomplished similarly.

In Fig. 2, the dielectric interface intersects the x-mesh line at
point S between (i, j, k) and (i+1, j, k). These two grid points are the
irregular points. The solution of interior domain will be extended
to point (i + 1, j, k) as f (i + 1, j, k), whereas the exterior domain
will be continued to point (i, j, k) to define f (i, j, k). With these two
fictitious values the interface condition (5) can be approximated as

(
w+

0,i fi, j,k + w+
0,i+1φi+1, j,k + w+

0,i+2φi+2, j,k
)

− (
w−

0,i−1φi−1, j,k + w−
0,iφi, j,k + w−

0,i+1 fi+1, j,k
) = [φ], (11)

where w are the finite difference weights. Their first subscript can
be either 0 or 1, labeling the interpolation and first order deriva-
tive, respectively. The second subscript labels the position. The
superscript can be either + or −, labeling the + side or the −
side of the interface. In a similar way we can also obtain the
finite difference approximation of partial derivatives φ−

x and φ+
x

in eq. (10). The approximation of other two derivatives φ+
y and φ+

z
at point (x0, y0, z0), however, remains a problem because (x0, y0, z0)

is located neither on a y-mesh line nor on a z-mesh line. To overcome
this difficulty, we add two auxiliary lines passing (x0, y0, z0), one in
x − y plane and the other in x − z plane, and choose two auxiliary
points on each auxiliary line to support one-sided finite difference
schemes for φ+

y and φ+
z . This makes it possible to approximate

eq. (10) as

[εφξ ] − ε− tan ψ[φζ ] + Cη[φη]
= C+

x

(
w+

1,ifi,j,k + w+
1,i+1φi+1,j,k + w+

1,i+2φi+2,j,k
)

+ C−
x

(
w−

1,i−1φi−1,j,k + w−
1,iφi,j,k + w−

1,i+1fi+1,j,k
)

+ C+
y

(
p0,jφ

+
0,j,k + p0,j−1φ

+
0,j−1,k + p0,j−2φ

+
0,j−2,k

)

+ C+
z

(
q0,kφ

+
0,j,k + q0,k+1φ

+
0,j,k+1 + q0,k+2φ

+
0,j,k+2

)
, (12)

where p0,: is the finite difference weights for φ+
y at auxiliary nodes

(0, j, k), (0, j − 1, k), (0, j − 2, k), and q0,: is the finite difference
weights for φ+

z at auxiliary nodes (0, j, k), (0, j, k + 1), (0, j, k + 2).
The superscript + over the auxiliary values φ0,:,: indicates these val-
ues are on the + side of the interface. Fictitious values fi,j,k and fi+1,j,k

can be solved from eqs. (11) and (12) in terms of solution values at
four normal grid nodes, φi−1,j,k , φi,j,k , φi+1,j,k , φi+2,j,k , five auxiliary
points, φ+

0,j,k , φ+
0,j−1,k , φ+

0,j−2,k , φ+
0,j,k+1, φ+

0,j,k+2, and four given jumps
[φ], [εφξ ], [φη], [φζ ]:

fi,j,k = Ci
1φi−1,j,k + Ci

2φi,j,k + Ci
3φi+1,j,k + Ci

4φi+2,j,k + Ci
5φ

+
0,j,k

+ Ci
6φ

+
0,j−1,k + Ci

7φ
+
0,j−2,k + Ci

8φ
+
0,j,k + Ci

9φ
+
0,j,k+1

+ Ci
10φ

+
0,j,k+2 + Ci

11[φ] + Ci
12[εφξ ] + Ci

13[φη] + Ci
14[φζ ], (13)

fi+1,j,k = Ci+1
1 φi−1,j,k + Ci+1

2 φi,j,k + Ci+1
3 φi+1,j,k

+ Ci+1
4 φi+2,j,k + Ci+1

5 φ+
0,j,k + Ci+1

6 φ+
0,j−1,k + Ci+1

7 φ+
0,j−2,k

+ Ci+1
8 φ+

0,j,k + Ci+1
9 φ+

0,j,k+1 + Ci+1
10 φ+

0,j,k+2

+ Ci+1
11 [φ] + Ci+1

12 [εφξ ] + Ci+1
13 [φη] + Ci+1

14 [φζ ], (14)

where coefficients C can be easily determined from eqs. (11) and
(12). However, in these two expressions of fictitious values, the
solution values at auxiliary points have not been defined yet. In
the MIB, these values are obtained via the interpolation of the
available normal grid values from the same side of the interface.
For example, φ+

0,j−1,k can be interpolated from potential values on

(i−1, j−1, k), (i, j−1, k), (i+1, j−1, k), and φ+
0,j−2,k is interpolated

from potential values on (i −1, j −2, k), (i, j −2, k), (i +1, j −2, k).
Similarly, auxiliary values φ+

0,j,k−1 and φ+
0,j,k−2 are interpolated from

(i − 2, j, k + 1), (i − 1, j, k + 1), (i, j, k + 1) and (i − 1, j, k +
2), (i, j, k + 2), (i + 1, j, k + 2), respectively. It is also noted that
the first interface condition, eq. (11), should be used to compute
the auxiliary value φ+

0,j,k as (w+
0,ifi,j,k +w+

0,i+1φi+1,j,k +w+
0,i+2φi+2,j,k)

or (w−
0,i−1φi−1,j,k + w−

0,iφi,j,k + w−
0,i+1fi+1,j,k) + [φ]. By distributing

the expansion coefficients of the fictitious values on these auxiliary
points to their respective interpolation node values, we can obtain the
final expressions of the fictitious values fi,j,k and fi+1,j,k . Specifically,
we have

φ+
0,j,k = (

w−
0,i−1φi−1,j,k + w−

0,iφi,j,k + w−
0,i+1fi+1,j,k

) + [φ],
φ+

0,j−1,k = Ij−1 · (φi−1,j−1,k , φi,j−1,k , φi+1,j−1,k)
T ,

φ+
0,j−2,k = Ij−2 · (φi−1,j−2,k , φi,j−2,k , φi+1,j−2,k)

T ,

φ+
0,j,k+1 = Ik+1 · (φi−2,j,k+1, φi−1,j,k+1, φi,j,k+1)

T ,

φ+
0,j,k+2 = Ik+2 · (φi−1,j,k+2, φi,j,k+2, φi+1,j,k+2)

T ,

where I is the vector consisting of corresponding interpolation
weights. Then we obtain the following expressions for

fi,j,k = Ci
1φi−1,j,k + Ci

2φi,j,k + Ci
3φi+1,j,k + Ci

4φi+2,j,k + (
Ci

5 + Ci
8

)

× (
w−

0,i−1φi−1,j,k + w−
0,iφi,j,k + w−

0,i+1fi+1,j,k + [φ])

+ Ci
6 · Ij−1 · (φi−1,j−1,k , φi,j−1,k , φi+1,j−1,k)

T

+ Ci
7 · Ij−2 · (φi−1,j−2,k , φi,j−2,k , φi+1,j−2,k)

T

+ Ci
9 · Ik+1 · (φi−2,j,k+1, φi−1,j,k+1, φi,j,k+1)

T

+ Ci
10 · Ik+2 · (φi−1,j,k+2, φi,j,k+2, φi+1,j,k+2)

T

+ Ci
11[φ] + Ci

12[εφξ ] + Ci
13[φη] + Ci

14[φζ ], (15)

and

fi+1,j,k = Ci+1
1 φi−1,j,k + Ci+1

2 φi,j,k + Ci+1
3 φi+1,j,k + Ci+1

4 φi+2,j,k

+ (
Ci+1

5 + Ci+1
8

)(
w−

0,i−1φi−1,j,k + w−
0,iφi,j,k + w−

0,i+1fi+1,j,k + [φ])
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+ Ci+1
6 · Ij−1 · (φi−1,j−1,k , φi,j−1,k , φi+1,j−1,k)

T

+ Ci+1
7 · Ij−2 · (φi−1,j−2,k , φi,j−2,k , φi+1,j−2,k)

T

+ Ci+1
9 · Ik+1 · (φi−2,j,k+1, φi−1,j,k+1, φi,j,k+1)

T

+ Ci+1
10 · Ik+2 · (φi−1,j,k+2, φi,j,k+2, φi+1,j,k+2)

T

+ Ci+1
11 [φ] + Ci+1

12 [εφξ ] + Ci+1
13 [φη] + Ci+1

14 [φζ ]. (16)

This completes the determination of fictitious values fi,j,k and fi+1,j,k

in the x-direction. By means of fictitious values, we can discretize
the PB equation by using the standard finite difference scheme.
For example, ∂2φ

∂x2 at the points (i, j, k) and (i + 1, j, k) are modified
accordingly by incorporating these fictitious values

∂2φ

∂x2

∣∣∣∣
i,j,k

= fi+1,j,k − 2φi,j,k + φi−1,j,k

h2
at (i, j, k), (17)

∂2φ

∂x2

∣∣∣∣
i+1,j,k

= φi+2,j,k − 2φi+1,j,k + fi−1,j,k

h2
at (i + 1, j, k), (18)

and replacing fi,j,k and fi+1,j,k with their respective representations
in Eq. (15) or Eq. (16).

Although these fictitious values fi,j,k or fi+1,j,k are solved in
x-direction, they represent the smooth continuation of the solution
on the respective subdomain to the point they are located. Therefore
they can be used for the formulation of difference schemes for any
other partial derivatives involving these grid points. This approach
is particularly valuable when the geometry is very complex at some
grid locations where the determination of fictitious values along
some directions becomes a problem. It is seen from this procedure
that the MIB method reduces the solution of fictitious values in a 3D
problem into a 1D-like one. The reader is also referred to Refs. 40–43
for more detailed mathematical considerations and applications of
the MIB method.

Results

In all test cases, the dielectric constant is taken as ε− = 1 and
ε+ = 80. The probe radius is set to 1.4 Å when it is applica-
ble. Electrostatic potential is solved with the MIB method and for
comparison also with PBEQ,44 a representative finite difference PB
solver from CHARMM,45 and APBS,46–49 a multigrid PB solver
recently developed primarily for massively parallel computing. The
APBS has both finite difference and finite element formulations,
while its finite difference function is used the present work. From
the electrostatic potentials in vacuum, φvac and in the presence of
the dielectric environment, φdielec, the electrostatic free energy of
solvation, 	Gsolv,elec is calculated from the explicit charges qi at
positions ri as:

	Gsolv,elec = 1

2

∑

i

qi[φdielec(ri) − φvac(ri)]. (19)

Analytical Test Cases

The PB equation admits analytical solutions only for a limited num-
ber of simple cases. In order to establish the validity and performance
of the MIB method we first consider centered and off-centered
unit charges within a spherical dielectric boundary, for which exact
solutions are available due to Kirkwood.50

Centered Unit Charge

Table 1 lists the results for the case of a centered unit charge within a
sphere. It is found that a convergent solvation energy can be obtained
with all PB solvers. However, the MIB method achieves near-exact
results already with a grid spacing of 0.5 Å while a grid spacing
of 0.05 Å is necessary for the standard finite difference and finite
element solvers to reach values close to the analytical solutions. The
most significant difference occurs in the accuracy of the electrostatic
potential near the surface at the mesh size of 0.5 Å; at this resolution,
the surface potentials from the PBEQ and the APBS solvers deviate
from the exact value on average by 23% with a maximum of 84%.
Although these errors are reduced with decreasing grid spacing their
orders of magnitude are larger than those of the MIB method, with
more accurate surface potentials are already obtained at a grid spac-
ing of 0.5 Å. Furthermore, the solution becomes essentially exact
when a grid spacing of 0.05 Å is employed.

Table 1. Electrostatic Solvation Energy 	G in kcal/mol and the Error in the
Surface Potential for a Spherical Dielectric System (Radius: 2 Å, ε− = 1,
ε+ = 80) with a Centered Unit Charge as a Function of Grid Spacing h.a

h (Å) 	G E1 E2 E3

MIB
0.50 −81.97 2.63 8.54 1.65
0.20 −81.98 0.30 1.55 0.36
0.10 −81.98 0.04 0.37 0.09
0.05 −81.98 0.01 0.13 0.01

PBEQ
0.50 −85.78 17.05 84.26 23.31
0.20 −82.84 7.51 74.44 14.08
0.10 −82.49 3.84 62.30 12.52
0.05 −82.20 1.94 46.95 8.49

APBS
0.50 −85.85 17.06 84.26 23.31
0.20 −82.58 7.50 74.43 12.54
0.10 −82.27 3.83 62.30 10.55
0.05 −82.03 1.89 46.18 6.38

aThe exact solvation energy from the analytical solution is −81.98 kcal/mol.

E1 = max |φ(x, y, z) − φ̃(x, y, z)| is the maximum absolute error in the

electrostatic potential. E2 = 100 × max| φ(x,y,z)−φ̃(x,y,z)
φ(x,y,z) | is the maximum

percentage (relative) error in the electrostatic potential. E3 = 100 ×
∑

Nirr
| φ(x,y,z)−φ̃(x,y,z)

φ(x,y,z) |/Nirr is the average percentage (relative) error in

the electrostatic potential near the molecular surface. Here, φ̃(x, y, z) and
φ(x, y, z) are the computed and exact electrostatic potential, respectively.
Nirr is the total number of irregular grid points where the modified difference
scheme is used.
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The dramatic improvements of the MIB solver over conventional
finite difference and finite element solvers reflect different conver-
gence properties as a function of grid spacing. The MIB solver has
a convergence rate of 2, which is indicated by a fourfold decrease
in all three errors as the grid spacing is halved. Such a uniform con-
vergence is attributed to the implicit enforcement of the flux jump
condition at the dielectric interface. In contrast, the PBEQ and the
APBS have similarly low convergence rates of around 0.3.

Off-Center Charges Inside Sphere

A slightly more complicated test case where analytical solutions
are still available involves two off-center charges within a spherical
dielectric region. This case tests the accuracy of the MIB method
as interacting charges approach the dielectric interface. Results are
given in Table 2 for the MIB solver and the finite difference PBEQ
solver. APBS results are not shown as they are generally similar to
those from PBEQ. For off-center distances of the charges between
0.2 Å and about 1.0 Å the MIB method also approximates the exact
solution much more closely and at coarser grid spacings than the
PBEQ solver. However, as the charges approach the dielectric inter-
face closer (a ≥ 1.2) the error in the surface potential increases
noticeably with the MIB method and consequently estimates of the
solvation energy become less accurate. Indeed, for charges at an off-
center distance of 1.5 Å (or 0.5 Å from the surface) the solvation
energies obtained with the MIB method are similar to the standard
finite difference results. This degradation of performance with the

interface method as charges approach the dielectric surface closer
than 1–2 grid points is a result of the mixing between grid points
carrying the interface information and the grid points carrying the
singular charges. As Table 2 shows, the performance of the standard
finite difference solver is largely uniform irrespective of where the
charges are located with respect to the dielectric boundary. However,
in practical biomolecular applications partial charges at atomic sites
of a given biomolecule are typically at least 1Å from the dielectric
surface depending on the parameters of a given biomolecular force
field.

Molecular Surface Test Case

The dielectric boundary of biomolecules is typically defined
as the molecular surface33 that takes into account the solvent-
inaccessibility of crevices that are smaller than the size of a solvent
molecule. The explicit enforcement of the interface conditions at
the molecular surface with the MIB method necessitates an explic-
itly defined molecular surface such that its intersecting points with
the mesh lines can be calculated to a sufficient accuracy which is
consistent with the accuracy of the approximation to the Poisson-
Boltzmann equation. Although the analytical representation of
the molecular surface is generally unavailable for a polyatomic
molecule, a triangulated surface generated with the MSMS pro-
gram51 is used as an approximation of the surface and its normal
directions. This information is interpolated to required MIB mesh
locations. We note that molecular surface information generated

Table 2. Electrostatic Solvation Energy 	G and Errors in the Surface Potential as Described in Table 1 for a
Sphere with Two Positive Unit Charges at (0, a, 0) and (0, 0, a) within a 2-Å Sphere.

Errors in surface potential

	G in kcal/mol MIB PBEQ
a h
(Å) (Å) Exact MIB PBEQ E1 E2 E3 E1 E2 E3

0.2 0.5 −329.56 −329.55 −345.07 10.20 12.05 1.83 41.46 84.81 24.67
0.2 −329.51 −333.06 0.78 1.73 0.36 18.05 75.79 15.25
0.1 −329.54 −331.60 0.10 0.42 0.11 9.14 64.16 13.02

0.4 0.5 −334.58 −334.64 −350.85 11.62 13.60 1.75 49.43 85.34 24.56
0.2 −334.53 −338.25 1.01 1.87 0.36 21.59 76.98 15.14
0.1 −334.57 −336.72 0.11 0.64 0.21 10.94 65.85 12.90

0.6 0.5 −343.38 −343.94 −360.82 12.67 21.72 2.02 57.34 85.61 24.43
0.2 −343.37 −347.35 1.38 2.08 0.36 25.95 78.11 14.94
0.1 −343.38 −345.68 0.18 0.51 0.09 13.34 67.75 12.71

0.8 0.5 −356.90 −358.87 −376.24 10.35 32.56 2.47 64.08 85.52 24.13
0.2 −356.93 −361.35 2.12 2.48 0.38 31.63 79.24 14.63
0.1 −356.95 −359.47 0.30 0.66 0.09 16.87 69.91 12.38

1.0 0.5 −377.35 −379.09 −397.36 19.06 34.59 3.01 67.92 85.22 23.62
0.2 −377.49 −382.47 3.58 3.02 0.44 39.19 80.33 14.15
0.1 −377.38 −380.30 0.58 0.94 0.10 22.32 72.44 11.89

1.2 0.5 −409.90 −426.16 −437.68 31.71 79.56 6.14 66.99 84.68 23.07
0.2 −410.30 −415.66 5.80 4.83 0.53 48.68 81.33 13.42
0.1 −409.98 −413.34 1.34 1.40 0.13 31.00 75.12 11.15

1.5 0.5 −516.18 −540.35 −541.39 42.76 84.43 8.07 50.03 80.21 21.20
0.2 −525.41 −526.10 24.78 20.90 2.02 59.49 81.02 11.26
0.1 −516.80 −519.27 6.37 3.81 0.39 51.51 77.78 9.20
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Figure 3. Two-sphere model with molecular surface. The radii of both
spheres are 2 Å. A unit positive charge is placed at each center. The
distance between two centers varies from 2 to 5 Å.

from other methods can also be used in the present MIB tech-
nique. Before the MIB method is applied to actual biomolecules
it is instructive to examine how the MIB method with such an
approximate molecular surface description compares to traditional
PB solvers for the simple diatomic test case shown in Figure 3.

The resulting electrostatic solvation energies for atomic dis-
tances D = 2, 3, 4, 5 Å are plotted in Figure 4. The electrostatic
potential computed with the MIB method at a mesh size of h =
0.05 Å is chosen as the reference value in each case as the grid
spacing h is varied from 0.5 to 0.05 Å. The results illustrate that
the solvation energy computed with the MIB methods is practi-
cally converged already at a grid spacing of 0.5 Å. The solvation
energies from the standard finite difference solver deviate by about
4–6 kcal/mol at a mesh size of 0.5 Å but slowly converge to values
close to the reference when a grid spacing of 0.05 Å is reached.
The convergence to the same answer can also be appreciated from
the errors of surface potential with respect to the potential obtained
with the MIB method at a 0.05 Å grid spacing, shown in Figure 5.
At 0.5 Å resolution, the maximum and averaged relative errors of
the surface potential with PBEQ are above 80% and 20%, respec-
tively. The errors decrease to about 60% and 10% respectively when
a mesh of 0.1Å is used. All errors shown in Figure 5 are of the same
magnitude as in the analytical test cases, suggesting that the approx-
imate MSMS surface implemented with the MIB method does not
introduce significant additional errors in electrostatic calculations
of biomolecules.

Figure 4. Convergence of computed electrostatic solvation energies
	G in kcal/mol vs. mesh size h in Å. The results of the MIB and the
PBEQ methods are marked with squares and circles, respectively. The
results for D = 2, 3, 4, 5 are plotted as solid lines, dashed line, dotted
lines, and dash-dotted lines, respectively. [Color figure can be viewed
in the online issue, which is available at www.interscience.wiley.com.]

Figure 5. Maximum relative error E2 (left) and average relative error
E3 (right) in the surface potential of two positively charged spheres.
The errors with MIB and PBEQ methods are plotted in black and blue,
respectively, vs. the distance between the centers of the two spheres
in Å. Circles: h = 0.5; diamonds: h = 0.2; squares: h = 0.1. [Color
figure can be viewed in the online issue, which is available at www.
interscience.wiley.com.]

Biomolecular Electrostatic Solvation Free Energies

After the preliminary tests, the MIB method was applied to the cal-
culation of biomolecular solvation energies. Twenty-four proteins
were selected from a large test set used in a previous study31 based
on size and structural diversity (see Fig. 6). For all structures hydro-
gen atoms were added to obtain full all-atom models. Partial charges
at atomic sites and atomic van der Waals radii defining the dielectric
boundary were taken from the CHARMM22 force field.52 Electro-
static solvation energies were calculated with the MIB method as
well as PBEQ and APBS. Based on the results from the previous
sections, it is expected that even a mesh size h of 0.5 Å is suffi-
cient to obtain converged or nearly converged electrostatic solvation
energies. Finer grid spacings were used with the PBEQ and APBS
solvers. The results are shown in Figure 6. It is apparent that the sol-
vation energies obtained with PBEQ and APBS differ significantly
from the MIB results, but the difference is reduced for both PBEQ
and APBS as finer mesh sizes are applied. Furthermore, the differ-
ences between the PBEQ/APBS and MIB results appear to increase
as a function of the size of the protein. Note that the proteins are
ordered with respect to their radius of gyration in all of the plots
in Figure 6. These results suggest that the MIB method indeed pro-
vides converged, or at least more converged, estimates of the true
electrostatic solvation energies. However, it is also found that at a
very small grid spacing of 0.15 Å, solutions with PBEQ solutions
slightly overshoot those found with MIB for three small proteins
(PDB IDs: 1ajj, 1uxc and 1r69) suggesting that either convergence
is also reached with PBEQ or the MIB results at a grid spacing of
0.5 Å are not fully converged yet. However, for proteins with larger
radii of gyration, the solvation energies computed with PBEQ at
a grid spacing of 0.15 Å are still much lower than those computed
with the MIB solver. For protein 1svr with 94 residues, for example,
the deviation in the solvation energy is −23 kcal/mol. The results
with APBS are similar albeit slightly larger than with PBEQ at the
chosen grid resolutions.

Figure 6 also shows a comparison of the computational time
needed to solve the PB equation with different methods which is
of great practical importance. It can be seen that the computational
cost of the MIB is very similar to the PBEQ solver at a grid spacing
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of 0.25 Å and much less than the cost with APBS or PBEQ at
the finer mesh sizes. At present, the MIB method is computation-
ally more expensive than standard finite difference methods if the
same grid spacing is compared, but the ability to obtain accurate
solutions of the PB equation with the interface method at relatively
coarse mesh sizes provides significant savings of computation time
in calculating accurate electrostatic potentials and solvation ener-
gies for biomolecules. A drawback of the current implementation
of the MIB method is a relatively large memory consumption due
to the matrix structure and the algebraic solver that prohibits the
application of finer mesh sizes for large molecules or the applica-
tion of a 0.5 Å grid to very large biomolecular complexes. Further
algorithmic optimizations are undertaken to address these problems.

Electrostatic Surface Potential

Finally, surface electrostatic potentials were calculated with PBEQ
and MIB for the RNA binding domain of E. coli ρ factor (PBD
ID: 1a63), which has 130 residues and 2069 atoms. Similar cal-
culations are frequently carried out to understand the potential
for protein–protein and protein–ligand interactions based on the
dominant electrostatic contributions to intermolecular energetics.

Figure 6. Computational results for 24 proteins. These proteins are
ordered with increasing radii of gyration in each chart: 1ajj, 2pde, 1vii,
2erl, 1cbn, 1bor, 1bbl, 1fca, 1uxc, 1sh1, 1mbg, 1ptq, 1vjw, 1fxd, 1r69,
1hpt, 1bpi, 451c, 1a2s, 1frd, 1svr, 1neq, 1a63 and 1a7m. A: Radius of
gyration in Å. B: Computational time in seconds for different solvers
at different grid spacing. Square: PBEQ at 0.15 Å grid spacing; circle:
PBEQ at 0.25 Å grid spacing; solid line: APBS at about 0.2 Å grid
spacing; dashed line: MIB at 0.5 Å grid spacing. C: Difference between
computed electrostatic solvation energies. Square: between PBEQ solu-
tion at 0.15 Å and MIB solution at 0.5 Å; circle: between PBEQ solution
at 0.25 Å and MIB solution at 0.5 Å. D: Difference between com-
puted electrostatic solvation energies. Square: between APBS solution
at about 0.2 Å and MIB solution at 0.5 Å; circle: between APBS solu-
tion at about 0.4 Å and MIB solution at 0.5 Å. [Color figure can be
viewed in the online issue, which is available at www.interscience.
wiley.com.]

Figure 7. Electrostatic potentials of the RNA binding domain of E.
coli ρ factor (PBD ID: 1a63) projected onto its molecular surface. Left:
Results from PBEQ (0.5 Å grid spacing); center: results from MIB
(0.5 Å grid spacing); right: difference between PBEQ and MIB surface
potentials. Colors are chosen according to the magnitude of the potential
as indicated with the color bar in units of kcal/mol/e.

Figure 7 shows the electrostatic potential projected at the molecular
surface from the PBEQ and MIB methods as well as a differ-
ence map. It can be seen that the overall potential distribution is
qualitatively very similar, but significant differences can be dis-
cerned. For example, part of the positively charged, RNA interacting
region shown in the top part of the surface exhibits a signifi-
cantly more positive surface potential with the MIB method than
in the PBEQ solution. Such discrepancies of about 5 kcal/mol/e
would have consequences in a quantitative analysis of protein-RNA
interactions.

Discussion and Conclusions

This work reports first applications of a novel Poisson-Boltzmann
solver for calculating electrostatic potentials of biomolecules. The
new method improves conventional finite difference methods by
matched interface and boundary (MIB) method so that flux continu-
ity of the electrostatic potential at dielectric interfaces is rigorously
enforced. From a mathematical standpoint this greatly improves
convergence properties as a function of mesh size. As a consequence,
the practically achievable accuracy in solutions of the PB equation
for typical biomolecular systems is dramatically improved.

Results for simple test cases where analytical answers are avail-
able for reference indicate that the MIB method is able to obtain
essentially fully converged results with a relatively coarse mesh
size of 0.5 Å. Conventional PB solvers can only come close to a
similar level of accuracy and only when extremely fine and compu-
tationally costly meshes are employed. The application of the MIB
method to small and medium-size biomolecules is more difficult
to evaluate because an analytical exact answer is lacking for com-
parison. However, convergence of solvation energies from standard
PB solvers toward the MIB results upon decreasing mesh sizes sug-
gests that the MIB results are converged or nearly converged. In
that case, the MIB results can serve as a reference for evaluating
other PB solvers and more approximate methods such as the Gen-
eralized Born formalism.7 To our knowledge reference electrostatic
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potentials and solvation energies for biomolecules that are close to
the theoretically exact solution are otherwise not available. If the
MIB results are used as reference values, the established methods
such as PBEQ and APBS would in fact exhibit significant devia-
tions from fully converged solutions even at the finest grid spacings
that can be computationally afforded with current hardware. Total
electrostatic solvation energies may differ on the order of up to tens
of kilocalories per mole depending on the size of the molecule;
however, more concerning are the relatively large errors in the elec-
trostatic potentials. While these errors may cancel in part when
solvation energies are calculated according to eq. (19), detailed anal-
ysis of electrostatic potentials on protein surfaces may suffer to a
larger extent both in quantitative and qualitative ways as illustrated
for the example shown in Figure 7.

The MIB method is computationally more expensive than a stan-
dard finite difference solver if the same grid spacing is used with both
methods. However, the extra computational cost is offset easily by
only requiring relatively coarse grid spacings to obtain highly accu-
rate solutions. It might be expected that even coarser grid spacings
may still lead to acceptable accuracy on the order of what standard
finite difference solvers can achieve with intermediate mesh sizes but
at much reduced cost. However, the coarseness of the mesh is related
to how close charges can approach the dielectric surface before sig-
nificant errors are introduced in the MIB method. In the case of
a 0.5 Å grid spacing deviations become noticeable when charges
come closer than about 1 Å or two grid points. For biomolecular
models based on classical force fields a 0.5 Å grid spacing is there-
fore at the limit of what is acceptable for obtaining highly accurate
solutions because atomic point charges are typically between 1 and
2 Å away from the dielectric interface.

The main focus in this study has been the application of PB the-
ory to biomolecules with a discontinuous dielectric boundary at the
molecular surface. Although a sharp molecular surface is generally
believed to be a good approximation of biomolecule-solvent inter-
actions in the context of continuum models.12 Softer boundaries
have also been used, usually to address numerical issues when cal-
culating gradients for molecular dynamics simulations.44 However,
it remains unclear whether such surfaces provide a more or less real-
istic description of biomolecule-environment interactions.31 While
the MIB method is particularly well suited for obtaining electrostatic
potentials in systems with sharp dielectric interfaces, its advantage
over conventional finite difference solvers is expected to diminish
with increasing smoothness of the interface.

The main achievement of the MIB method in the application to
electrostatic calculations of biomolecular systems is the possibility
to establish, for the first time, accurate reference points for the com-
parison and evaluation of other widely used dielectric continuum
implicit solvent methods. Further studies based on the results from
the MIB method are expected to distinguish more clearly physical
limitations of continuum dielectric models from numerical inaccu-
racies in PB solvers and approximate formalisms in the continued
development and application of such models to biomolecules.
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Appendix

Here we present the detailed expressions for twelve possible ways
of eliminating two elements from a set of six partial derivatives.

1. Eliminating φ−
y and φ−

z from eqs. (7)–(9) to get

[εφξ ] − ε− tan ψ[φζ ] + Cη[φη]
= C+

x φ+
x + C−

x φ−
x + C+

y φ+
y + C+

z φ+
z (A1)

where

Cη = −ε− tan θ/ cos ψ

C+
x = ε+ cos ψ cos θ + ε− tan ψ sin ψ cos θ

+ ε− sin θ tan θ/ cos ψ

C−
x = −ε−/(cos ψ cos θ)

C+
y = (ε+ − ε−) cos ψ sin θ

C+
z = (ε+ − ε−) sin ψ .

2. Eliminating φ+
y and φ−

z from eqs. (7)–(9) to get

[εφξ ] + Cη[φη] − ε− tan ψ[φζ ]
= C+

x φ+
x + C−

x φ−
x + C+

y φ+
y + C−

z φ−
z (A2)

where

Cη = −ε+ cos ψ tan θ − ε− tan ψ sin ψ tan θ

C+
x = ε+ cos ψ/ cos θ + ε− tan ψ sin ψ/ cos θ

C−
x = −ε+ cos ψ tan θ sin θ

− ε−(cos ψ cos θ tan ψ sin ψ/ cos θ)

C−
y = (ε+ − ε−) cos ψ sin θ

C+
z = (ε+ − ε−) sin ψ .

3. Eliminating φ−
y and φ+

z from eqs. (7)–(9) to get

[εφξ ] + Cη[φη] − ε− tan ψ[φζ ]
= C+

x φ+
x + C−

x φ−
x + C+

y φ+
y + C−

z φ−
z (A3)

where

Cη = −ε− cos ψ tan θ − ε+ tan ψ sin ψ tan θ

C+
x = ε− tan θ cos ψ sin θ

+ ε+(cos ψ cos θ + tan ψ sin ψ/ cos θ)

C−
x = −ε− cos ψ/ cos θ − ε+ sin ψ tan ψ/ cos θ

C+
y = (ε+ − ε−) cos ψ sin θ

C−
z = (ε+ − ε−) sin ψ .

4. Eliminating φ+
y and φ+

z from eqs. (7)–(9) to get

[εφξ ] + Cη[φη] − ε+ tan ψ[φζ ]
= C+

x φ+
x + C−

x φ−
x + C−

y φ−
y + C−

z φ−
z (A4)
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where

Cη = −ε+ tan θ/ cos ψ

C+
x = ε+/(cos ψ cos θ)

C−
x = −ε− cos ψ cos θ

− ε+(tan ψ sin ψ cos θ + tan θ sin θ/ cos ψ)

C−
y = (ε+ − ε−) cos ψ sin θ

C−
z = (ε+ − ε−) sin ψ .

5. Eliminating φ−
x and φ−

z from eqs. (7)–(9) to get

[εφξ ] + Cη[φη] − ε− tan ψ[φζ ]
= C+

y φ+
y + C−

y φ−
y + C+

x φ+
x + C+

z φ+
z (A5)

where

Cη = ε− cot θ/ cos ψ

C+
y = ε+ cos ψ sin θ

+ ε−(cot θ cos θ/ cos ψ + tan ψ sin ψ sin θ)

C−
y = −ε−/(cos ψ sin θ)

C+
x = (ε+ − ε−) cos ψ cos θ

C+
z = (ε+ − ε−) sin ψ .

6. Eliminating φ−
x and φ+

z from eqs. (7)–(9) to get

[εφξ ] + Cη[φη] − ε+ tan ψ[φζ ]
= C+

y φ+
y + C−

y φ−
y + C+

x φ+
x + C−

z φ−
z (A6)

where

Cη = ε− cos ψ cot θ + ε+ tan ψ sin ψ cot θ

C+
y = ε+ cos ψ sin θ + ε− cos ψ cos θ cot θ

+ ε+ tan ψ sin ψ/ sin θ

C−
y = −(ε− cos ψ + ε+ tan ψ sin ψ)/ sin θ

C+
x = (ε+ − ε−) cos ψ cos θ

C−
z = (ε+ − ε−) sin ψ .

7. Eliminating φ+
x and φ−

z from eqs. (7)–(9) to get

[εφξ ] + Cη[φη] − ε− tan ψ[φζ ]
= C+

y φ+
y + C−

y φ−
y + C−

x φ−
x + C+

z φ+
z (A7)

where

Cη = ε+ cos ψ cot θ + ε− tan ψ sin ψ cot θ

C+
y = (ε+ cos ψ + ε− tan ψ sin ψ)/ sin θ

C−
y = −ε− cos ψ sin θ − ε+ cos ψ cos θ cot θ

− ε− tan ψ sin ψ/ sin θ

C−
x = (ε+ − ε−) cos ψ cos θ

C+
z = (ε+ − ε−) sin ψ .

8. Eliminating φ+
x and φ+

z from eqs. (7)–(9) to get

[εφξ ] + Cη[φη] − ε+ tan ψ[φζ ]
= C+

y φ+
y + C−

y φ−
y + C−

x φ−
x + C−

z φ−
z (A8)

where

Cη = ε+ cot θ/ cos ψ

C+
y = ε+/(cos ψ sin θ)

C−
y = −ε− cos ψ sin θ − ε+ cos ψ cos θ cot θ

− ε+ tan ψ sin ψ/ sin θ

C−
x = (ε+ − ε−) cos ψ cos θ

C−
z = (ε+ − ε−) sin ψ .

9. Eliminating φ−
x and φ−

y from eqs. (7)–(9) to get

[εφξ ] + Cη[φη] + Cζ [φζ ]
= C+

z φ+
z + C−

z φ−
z + C+

x φ+
x + C+

y φ+
y (A9)

where

Cη = 0

Cζ = ε− cot ψ

C+
z = ε+ sin ψ + ε− cos ψ cot ψ

C−
z = −ε−/ sin ψ

C+
x = (ε+ − ε−) cos ψ cos θ

C+
y = (ε+ − ε−) cos ψ sin θ .

10. Eliminating φ−
x and φ+

y from eqs. (7)–(9) to get

[εφξ ] + Cη[φη] + Cζ [φζ ]
= C+

z φ+
z + C−

z φ−
z + C+

x φ+
x + C−

y φ−
y (A10)

where

Cη = −(ε+ − ε−) cos ψ sin θ cos θ

Cζ = ε+ cot ψ sin2 θ + ε− cot ψ cos2 θ

C+
z = ε+ sin ψ + ε+ cos ψ cot ψ sin2 θ

+ ε− cos ψ cot ψ cos2 θ

C−
z = −ε− sin ψ − ε+ cos ψ cot ψ sin2 θ

− ε− cos ψ cot ψ cos2 θ

C+
x = (ε+ − ε−) cos ψ cos θ

C−
y = (ε+ − ε−) cos ψ sin θ

11. Eliminating φ+
x and φ−

y from eqs. (7)–(9) to get

[εφξ ] + Cη[φη] + Cζ [φζ ]
= C+

z φ+
z + C−

z φ−
z + C−

x φ−
x + C+

y φ+
y (A11)
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where

Cη = (ε+ − ε−) cos ψ sin θ cos θ

Cζ = ε+ cot ψ cos2 θ + ε− cot ψ sin2 θ

C+
z = ε+ sin ψ + ε+ cos ψ cot ψ cos2 θ

+ ε− cos ψ cot ψ sin2 θ

C−
z = −ε− sin ψ − ε+ cos ψ cot ψ cos2 θ

− ε− cos ψ cot ψ sin2 θ

C−
x = (ε+ − ε−) cos ψ cos θ

C+
y = (ε+ − ε−) cos ψ sin θ .

12. Eliminating φ+
x and φ+

y from eqs. (7)–(9) to get

[εφξ ] + Cη[φη] + Cζ [φζ ]
= C+

z φ+
z + C−

z φ−
z + C−

x φ−
x + C−

y φ−
y (A12)

where

Cη = 0

Cζ = ε+ cot ψ

C+
z = ε+/ sin ψ

C−
z = −ε− sin ψ − ε+ cos ψ cot ψ

C−
x = (ε+ − ε−) cos ψ cos θ

C−
y = (ε+ − ε−) cos ψ sin θ .
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