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Abstract
An integrated Feynman path integral-free energy perturbation and umbrella sampling (PI-FEP/UM)
method has been used to investigate the kinetic isotope effects (KIEs) in the proton transfer reaction
between nitroethane and acetate ion in water. In the present study, both nuclear and electronic
quantum effects are explicitly treated for the reacting system. The nuclear quantum effects are
represented by bisection sampling centroid path integral simulations, while the potential energy
surface is described by a combined quantum mechanical and molecular mechanical (QM/MM)
potential. The accuracy essential for computing KIEs is achieved by a FEP technique that transforms
the mass of a light isotope into a heavy one, which is equivalent to the perturbation of the coordinates
for the path integral quasiparticle in the bisection sampling scheme. The PI-FEP/UM method is
applied to the proton abstraction of nitroethane by acetate ion in water through molecular dynamics
simulations. The rule of the geometric mean and the Swain–Schaad exponents for various isotopic
substitutions at the primary and secondary sites have been examined. The computed total deuterium
KIEs are in accord with experiments. It is found that the mixed isotopic Swain–Schaad exponents
are very close to the semiclassical limits, suggesting that tunneling effects do not significantly affect
this property for the reaction between nitroethane and acetate ion in aqueous solution.
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Introduction
Of great interest is to accurately compute kinetic isotope effects (KIEs) for chemical reactions
in solution and in enzymes because the ratio of the reaction rates between light and heavy
isotopomers provides the most direct experimental probe to the nature of the transition state.
1 This is illustrated by the work of Schramm,2 who developed highly potent inhibitors to the
enzyme purine nucleoside phosphorylase (PNP) based on the transition state structure derived
from measured KIEs. In principle, Schramm’s approach can be applied to other enzymes, but
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in practice it is often limited by the lack of an adequate model to match computed and
experimental KIEs. The challenge to theory is the difficulty to accurately determine the small
difference in free energy of activation due to isotope replacements. This is further exacerbated
by the complexity and size of an enzyme system that requires statistical averaging. In this study,
we utilize an integrated path integral-free energy perturbation and umbrella sampling (PI-FEP/
UM) method to assess the statistical precision for computing KIEs of condensed phase
reactions.3,4

Quantum mechanics is essential for computing KIEs of reactions in solutions and in enzymes.
5,6 First, electronic structural theory is required to adequately describe the potential energy
surface for bond forming and breaking processes. Secondly, nuclear quantum effects including
both quantized vibration and tunneling are needed to obtain accurate rate constants. We employ
a combined quantum mechanical and molecular mechanical (QM/MM) approach to represent
the potential energy surface, including the electronic degrees of freedom for the reactants.7,8
This method has been described previously and extensively used for numerous systems in
solution and in enzymes. In this article, we focus on the method for treating the nuclear quantum
effects, with a specific aim of computing KIEs for condensed phase reactions.

A variety of methods have been developed to treat nuclear quantum effects for gas-phase
reactions.9 In principle, these techniques can be directly extended to condensed phase systems;
however, the size and complexity of these systems often make it intractable computationally.
One method that has been successfully introduced to the study of enzyme reaction rates is the
ensemble-averaged variational transition state theory with QM/MM sampling (EA-VTST-QM/
MM),5,6 which has been applied to a number of enzyme systems. This technique includes
multidimensional tunneling. In another work, a grid-based hybrid approach was used to model
nuclear quantum effects by numerically solving the vibrational wavefunction of the quantized
nucleus.10 The latter method is somewhat difficult to extend the method to quantize more than
one particle because of increased computational costs.11

The discretized Feynman path integral method has been used in a variety of applications in
solution and biological systems.12–20 It offers an efficient and general approach for treating
nuclear quantum effects in condensed phase simulations. In particular, the centroid path
integral molecular dynamics method provides a conceptual framework for estimating the
quantum mechanical free energy of activation,21,22 but it is computationally expensive for
modeling large systems such as enzymes, especially if combined QM/MM potentials are used
to represent the potential energy surface. An alternative procedure is to carry out classical
molecular dynamics simulations first, followed by centroid path integral simulations to
determine the quantum effects. Sprik et al.15 explored this idea to estimate quantum effects for
an electron in a lattice matrix of hard spheres, whereas Warshel and coworkers23–26 employed
a quantized classical path (QCP) method in several applications to determine quantum effects
along a reaction path. In the QCP method, the classical potential of mean force (PMF) is
obtained first, followed by estimating quantum contributions to the free energy of activation.
The most significant feature of these studies is that classical and quantum simulations are fully
separated, making it particularly attractive and efficient for enzymatic reactions.

Recently, we developed a computational procedure, called BQCP,27 by extending the bisection
sampling method developed by Ceperley for free particle sampling to centroid path integral
simulations.28,29 The excellent convergence behavior of the BQCP method, coupled with a
FEP approach, has enabled us to obtain converged results in computed KIEs through a series
of validation studies.3,4,30,31 In this article, we further examine the performance of this PI-
FEP/UM method to investigate the primary and secondary KIEs in the reaction of nitroethane
and acetate ion in water.
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In the following we first summarize the theoretical background, followed by computational
details. Then, results and discussions are presented. The study is concluded with highlights of
main findings.

Theoretical Background
Path Integral Quantum Mechanical Rate Theory

The discretized Feynman path integrals provide a powerful approach to treat quantum effects
in chemical reactions in condensed phases.12–14,16–23 This arises from the isomorphism of the
discretized path integral and a classical partition function for a system of polymer
quasiparticles,13 which are connected harmonically with its neighbors, and have coordinates

 corresponding to the imaginary time slices τi = (i − 1)ħβ/P. A key concept in path integral
quantum mechanical transition state theory (QTST) is the centroid variable in path integration,
16,18,21,22,32–34 defined as the geometrical center of the quasiparticles:

(1)

where the superscript (n) specifies the nth quantized atom. The discretization parameter P is
chosen to be sufficiently large such that the numerical results converge to the quantum limit.
In this approach, the quantum mechanical equilibrium properties as well as the free energy are
obtained from the classical averages for a fictitious system governed by the effective potential
12,13

(2)

where N is the number of quantized atoms,  is the position of quasiparticle i of atom n with

, S represents all coordinates of classical particles,  is the potential
of the system, and β = 1/kBT with kB being Boltzmann’s constant and T the temperature. In eq.
(2), λn = (2πβħ2/Mn)1/2 is the de Broglie thermal wavelength of atom n of a mass Mn. The
dynamics generated by the effective potential of eq. (2) has no physical significance; it is merely
used as a procedure to obtain the correct ensemble of configurations.

The most important feature of the path integral quantum transition state theory is that it is
expressed analogously to the classical TST, including a quantum activation term and a
dynamical correction factor.16,34,35 According to this view, the central quantity in determining
the quantum transition rate is governed by the free energy of activation for the centroid reaction
coordinate z[r̄], and the QTST rate constant is given by

(3)

where w(z) is the PMF as a function of the centroid reaction coordinate z[r̄], z≠ is the value of
the centroid reaction coordinate at the maximum of the PMF, and 〈|ż|〉z≠ = (2/πβMeff)1/2is a
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dynamical frequency factor approximated by the velocity for a free particle of effective mass
Meff along the reaction coordinate z[r̄] direction. The exact quantum mechanical rate constant
is obtained by multiplying the QTST rate constant by a correction factor or transmission
coefficient κ35:

(4)

Although the expressions of eqs. (3) and (4) have identical forms to that of the classical rate
constant, unlike classical variational transition state theory, there is no variational upper bound
in the QTST rate constant because the quantum transmission coefficient κ may be either greater
than or less than one. Equation (3) was initially derived with the assumption of a planar dividing
surface along a rectilinear reaction coordinate. Messina et al.34 described a generalization of
the dividing surface, which may depend both on the centroid coordinates and on its momenta.
Unfortunately, there is no simple Jacobian-like correction that can be used for the
transformation from a locally rectilinear reaction coordinate to the curvilinear reaction
coordinate. A variational approach has been developed to optimize the generalized dividing
surface to yield the minimum value of the QTST rate constant,34 though the optimal rate is not
an upper bound.

There is no practical procedure to compute the quantum transmission coefficient κ in eq. (4).
For a model reaction with a parabolic barrier along the reaction coordinate coupled to a bath
of harmonic oscillators, the quantum transmission coefficient is the Grote–Hynes (GH)
classical transmission coefficient, κGH.16,36 Often, the classical κ is used to approximate the
quantum transmission coefficient; however, there is no correspondence between classical and
quantum dynamic trajectories and the effects of tunneling may greatly affect reaction dynamics
near the barrier top.

As in classical TST, the PMF, w(z), can be computed from the equilibrium average without
any dynamical information, and it is defined by

(5)

where zR is the minimum point at the reactant state in the PMF and the ensemble average < ···
> is obtained by the effective potential of eq. (2). Equation (5) also serves as a definition of
the path integral centroid free energy, ΔF(z), at z relative to that at the reactant state minimum.
Note that the inherent nature of quantum mechanics is at odds with a PMF as a function of a
finite reaction coordinate. Nevertheless, the reaction coordinate function z[r̄] can be evaluated
from the path centroids r̄,18,24,34,35 first recognized by Feynman and Hibbs12 as the most
classical-like variable in quantum statistical mechanics and later used by Gilan and many others
in practice.18 Studies have shown that the activation free energy in the centroid path integral
QTST “captures most of the tunneling and quantization effects”; which give rise to deviations
from classical TST.37–40

It is also useful to rewrite eq. (3) as follows

(6)

GAO et al. Page 4

J Comput Chem. Author manuscript; available in PMC 2010 February 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



where the path integral centroid free energy of activation  is defined by

(7)

and

(8)

 corresponds to the free energy of the system in the reactant (R) state region relative to the
lowest point, which may be interpreted as the entropic contributions or motions correlating
with the progress coordinate z. λeff is the de Broglie thermal wavelength of the centroid reaction
coordinate with an effective mass Meff at the dividing surface, which is determined in the
centroid path transition state ensemble.

Centroid Path Integral Simulations
For simplicity, we consider a system of a single quantized particle in a classical environment;
thus, the superscript specifying quantum atoms coordinates [eq. (1)] has been dropped. The
quantized nucleus is represented by a ring of P quasiparticles, whose coordinates are denoted
as r ≡ {ri, i = 1, ···, P}, with a definition of rP+1 = r1. The canonical QM partition function of
the hybrid system can be written as follows:

(9)

where Ω is the volume element of classical particles, Veff ({r}, S) is the effective quantum
mechanical potential specified in eq. (2), and ∫dR = ∫dr1 ··· ∫drPδ(r̄). The key result in the hybrid
classical and path integral approach15 or QCP24,25 is that the quantum partition function can
be rewritten as the double averages3,4,15,24–27:

(10)

where Qcm is the classical partition function defined in ref. 12, the average 〈 ··· 〉U is a purely
classical ensemble average obtained according the potential U(r̄, S), and the inner average
〈 ··· 〉FP,r̄ represents a path-integral free-particle sampling, carried out without the external
potential U(r̄, S)4,24,25:

(11)

where Δri = ri − ri+1. In eq. (10), the average potential energy is given as follows
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(12)

This double-averaging procedure was used by Sprik et al.15 for a system consisting of one
electron embedded in random hard spheres. Hwang and Warshel24,25 extensively exploited
this idea for studying quantum effects in condensed phase reactions. Hwang and Warshel24,
25 used an approach called QCP, in which the classical simulations and quantum corrections
are fully separated.26,41 The expression of eq. (10) is particularly useful because the quantum
free energy of the system can be obtained first by carrying out classical trajectories according
to the classical distribution, exp[−βU(r̄, S)], and then, by determining the quantum
contributions through free particle sampling based on the distribution

. This double averaging yields the exact path integral centroid
density.4,15,24,25

On the basis of eq. (10), the path integral PMF, defined as a function of the centroid reaction
coordinate, z ̄, can be readily expressed by:

(13)

where w(z ̄) wcm(z) are the centroid quantum mechanical and the classical mechanical PMF,
respectively, and the average potential energy ΔŪ(z ̄[r], S) is given in eq. (12).

A bisection sampling scheme has been developed for centroid path integral simulations,3,27

based on the original procedure of Ceperley,29 and this method (BQCP) has been implemented
in the context of the QCP simulation.24 Through a series of investigations,30,31 it has been
demonstrated that the BQCP sampling procedure yields rapidly converging results,3,27 which
has been a major problem for application to enzymes. In BQCP sampling, any particle position
of the cyclic quasiparticles can be expressed as4

(14)

where the vector θi is a generalized position vector, properly scaled, generated randomly
according to the free particle distribution, and associated with earlier levels of bisection
sampling. The specific details have been given in refs. 3, 4, and 27. Note that the beads positions
are dependent on the particle mass via λM.

Kinetic Isotope Effects
Sequential Centroid Path Integral and Umbrella Sampling (PI/UM) Method—
Using eq. (6), the KIEs between a light isotope L and a heavy isotope H can be computed by

(15)
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where , and  are, respectively, the values of the centroid reaction coordinate at the
transition state and reactant state minimum for the light and heavy isotopes in the centroid path-

integral PMF, w(z ̄) = −kBT ln Qqm(z ̄) [see also eq. (13)], and  and  are the
free energies defined by eq. (8) for the two isotopes, respectively. The latter quantities are the
free energies of the system in the reactant well relative to its minimum and the transition
frequency at the centroid transition state. Here, we use the reactant minimum free energies for
the two isotopes to approximate the reactant state free energies. Thus, eq. (15) shows that the
two potentials of mean force can be determined separately for the L and H isotopes using
umbrella sampling simulations along the centroid reaction coordinate (PI/UM),3,4 and this is,
in deed, what is typically done. However, the statistical fluctuations in the actual simulation
for computing the PMF is as large as the isotope effect itself, resulting in poor convergence.

Integrated Centroid Path Integral-Free Energy Perturbation and Umbrella
Sampling (PI-FEP/UM) Method—An alternative approach is to obtain the ratio of the
quantum partition functions for two different isotopes directly through FEP theory over the
mass from light to heavy isotopes in one simulation.4 Specifically, we have developed an
integrated path integral-free energy perturbation and umbrella sampling (PI-FEP/UM) method
for computing KIEs, in which molecular dynamics simulations are first carried out to obtain
the classical mechanical PMF using umbrella sampling.47,48 Then, the nuclear coordinates of
atoms associated with the chemical reaction are quantized by a path integral with the constraint
that the centroid positions coincide with their corresponding classical coordinates. KIEs are
evaluated by FEP between heavy and light atom masses, which is related to the quantized
quasiparticle positions. In this approach, the KIE is expressed as follows:

(16)

Considering an atom transfer reaction where the light atom of mass ML is replaced by a heavier
isotope of mass MH, we use exactly the same sequence of random numbers, i.e., displacement
vectors, to generate the bisection path integral distribution for both isotopes in order to obtain
the free particle distribution. Thus, the resulting coordinates of these two bead-distributions
are related by the ratio of the corresponding masses:

(17)

where ri,L and ri,H are the coordinates for bead i of the corresponding light and heavy isotopes.

By substituting the integration variable for the heavy isotope quasiparticle coordinates in eq.
(13) by the relationship of eq. (17), we can obtain the ratio of the two isotopic partial quantum
partition functions at a given reaction coordinate value z ̄ (centroid coordinates) exactly by the
following FEP4:

(18)
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where the superscripts or subscripts L and H specify computations done using light and heavy
isotopes, ΔŪL is defined by eq. (12),  is the free energy of the free particle reference state
for the quantized particles,12 and  represents the difference in
“classical” potential energy at the heavy and light bead positions ri,H and ri,L. In eq. (18), we
obtain the free energy (inner average) difference between the heavy and light isotopes by
carrying out the bisection path integral sampling with the light atom and then perturbing the
heavy isotope positions according to eq. (17). Then, the free energy difference between the
light and heavy isotope ensembles is weighted by a Boltzmann factor for each quantized
configuration (outer average). The statistical errors, computed by dividing the entire
simulations into 10 blocks and their 10 separate averages, for the computed KIEs using the PI-
FEP/UM approach are significantly smaller than that from PI/UM calculations.

Computational Details
Potential Energy Function

In the present study, we use a combined QM/MM potential in molecular dynamics simulations,
7,42 in which the solute is represented explicitly by an electronic structure method and the
solvent is approximated by the three-point charge TIP3P model for water.43 The details have
been described in a number of articles. In the deprotonation of nitroethane by acetate ion, the
standard semiempirical AM1 model44 failed to yield adequate energetic results. Consequently,
a set of specific reaction parameters (SRP) has been developed within the AM1 formalism to
fit results from high-level ab initio theory as well as from experiments.4,30 The performance
of the SRP-AM1 model has been reported previously, and we focus here on the study of the
KIEs using the PI-FEP/UM method.

Simulation Details
All simulations are performed using periodic boundary conditions in the isothermal-isobaric
(NPT) ensemble at 25°C and 1 atm. A total of 898 water molecules were included in a cubic
box of about 30 × 30 × 30 Å3. The solute molecules are treated quantum-mechanically.
Nonbonded electrostatic interactions are described by the particle-mesh Ewald summation
method for QM/MM simulations,45 whereas van der Waals interactions are smoothed to zero
at 9.5 Å based on group–group separations. The bond lengths and angles of solvent water
molecules are constrained by the SHAKE algorithm, and an integration step of 1 fs was used
for all calculations.46

The PMF profile is obtained using the umbrella sampling technique.47 In this approach, the
reaction is divided into a series of segments called simulation “windows,” in which a biasing
potential is applied to allow sufficient sampling of high-energy regions along the reaction
pathway. The effect of the biasing potential is subsequently removed when the separate
simulation windows are combined to produce the overall PMF by using the weighted histogram
analysis method.48 For the proton transfer reaction, the classical reaction coordinate is defined
as the difference in distance for the proton between the donor (α carbon of nitroethane) and
the acceptor (an oxygen of the acetate ion) atom: ZPT = r(Cα − H) − r(H − O). In the current
simulations, 32 windows have been employed. To start the simulations, the system is slowly
heated to the target temperature over the course of 25 ps, and thereafter equilibrated for 100–
200 ps. Subsequently, each window is further equilibrated for 25–50 ps before data collection
commenced. Each window is sampled for ca. 100–150 ps, totaling ca. 4 ns for the deprotonation
reaction.

The BQCP simulations employed 29,168 classical configurations for each isotope (1H, 2H,
and 3H; or H, D, and T), combined with 10 path-integral steps per classical step. For the
deprotonation reaction the nitroethane Cα-atom, the abstracting acetate oxygen, the
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transferring proton, as well as the secondary hydrogen atom, are quantized. Each quantized
atom has spawned into 32 beads.

To estimate statistical uncertainties in the computed KIEs, the entire path integral simulations
have been divided into 10 segments, each of which is treated as independent simulations.
Standard uncertainties (±1σ) were determined from the total average and those from the 10
separate blocks. All simulations employed the CHARMM program49 and all path-integral
simulations used a parallel version that efficiently distributes integral calculations for the
quantized beads.

Results and Discussion
Deprotonation of Nitroethane by Acetate Ion in Water

The proton abstraction reaction of nitroalkane by acetate ion has been extensively studied in
physical organic chemistry, which shows an unusual Brønsted relationship in water, known as
the nitroalkane anomaly.50–52 Furthermore, there is significant solvent effects on the proton
transfer reaction, raising the barrier by 16 kcal/mol in water relative to that for the gas phase
reaction from the ion-dipole complex.50 This process is also catalyzed by nitroalkane oxidase
in the initial step of the oxidation of nitroalkanes.53 For the enzymatic process, the
deprotonation step by Asp402 is rate-limiting with nitroethane as the substrate. Recently,
Valley and Fitzpatrick determined the KIEs for the dideuterated substrate [1,1-2H2]nitroethane
in nitroalkane oxidase, and the proton/deuteron abstraction reaction by an acetate ion in water
in the absence of a catalyst. In the enzyme-catalyzed reaction the KIE was found to be 9.2 ±
0.4, whereas in aqueous solution the KIE was measured to be 7.8 ± 0.1.54 We have previously
studied the solvent effects on the proton transfer reaction of nitroethane and acetate ion and
reported the preliminary results of H/D KIEs.30 Here, we report the KIEs for all D and T primary
and secondary isotope effects and provide a detailed analysis of their relationships.

In the present study, we employ a reparameterized semiempirical model using the AM1
formalisms, and this SRP model (specific reaction parameters) was fitted to the Gaussian3
results, and the details of the SRP parameterization procedure have been described previously.
30 The aim here is to examine our PI-FEP/UM method for KIE calculations, but we emphasize
that the SRP model is a good one, and the computed energy of reaction for the proton abstraction
of nitroethane by acetate is 8.7 kcal/mol, in adequate accord with the G3 result of 10.3 kcal/
mol. The classical PMF for the deprotonation of nitroethane by acetate is presented in Figure
1. The computed barrier is 27.4 kcal/mol, while the computed free energy of reaction is 7.1
kcal/mol, slightly higher than the corresponding experimental values of 24.8 and 5.2 kcal/mol,
respectively.4,30,54

Since light atoms are involved in the proton abstraction reaction, quantization of the “primary”
and “secondary” hydrogen atoms as well as the donor carbon atom and acceptor oxygen atom
has a major impact on the computed free energy of activation, by lowering the barrier height
by 3.0 kcal/mol for the proton transfer reaction relative to the classical barrier in Figure 1.
Thus, the estimated free energy of activation is 24.4 kcal/mol, in accord with the experimental
value of 24.8 kcal/mol.4,54 This result illustrates the importance of including nuclear quantum
effects to accurately determine the free energy of activation for proton transfer reactions.55

H/D and H/T Kinetic Isotope Effects
The computed primary and secondary KIEs for D and T substitutions are listed in Table 1.
Figures 2–6 depict the computed ratios of the partial quantum partition functions as a function
of the centroid path integral reaction coordinate. The KIEs have been computed without
including the free energy difference given in eq. (8), which may introduce some errors in the
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present calculations. Their effects will be analyzed in the future by devising a practical
computational approach to examine this quantity. To directly compare the computed KIE with
experiment, which employed the dideuterated compound, 1,1-2H2 [nitroethane], we also made
the same substitutions in our computation at the Cα-position.54 Throughout this paper, we use
the convention that the subscript of a rate constant specifies the primary isotope and the
superscript defines the secondary isotope. When two isotopes are given sequentially in figures
and captions (e.g., XX), the first denotes the primary and the second letter specifies the
secondary isotope.

The computed H/D primary and secondary intrinsic KIEs are  and
, respectively, whereas the total effect where both primary and secondary

hydrogen atoms are placed by a deuterium isotope is  (Table 1), which may
be compared with the experimental value of 7.8.54 There are no experimental data for
comparison with the results of single site substitutions. The computational results allow us to
examine the rule of the geometric mean (RGM),56 which is expressed as follows:

(19)

The RGM states that there is no isotope effect from a second site on the KIE of the first site.
57 The rule was originally derived at high temperature limit with small quantum tunneling
corrections,56 and it has been shown to have negligible deviations on model systems using
semiclassical transition state theory.58 However, deviations or the observations of RGM
breakdown are often used as a measure of the extent of tunneling in the system.57 Using the
RGM of eq. (19), we obtain an estimated value of 8.88 (6.63 × 1.34) for the total deuterium
KIE if the free energies of the primary and secondary KIE were additive. This gives a ratio of
1.07 over the actual computed value (8.31). Another way of interpreting the results is that there
is a secondary KIE of 1.07 on the primary KIEs:

(20)

This result indicates that there is some correlation in the motions between the secondary
hydrogen and the primary hydrogen in the proton transfer reaction between nitroethane and
acetate ion in water.

Primary and secondary tritium KIEs are also given in Table 1, which have values of
 and . These effects are greater than the deuterium KIEs

because of its larger mass. Employing the rule of the geometric mean, an estimated total tritium
KIE of  is obtained.

Swain–Schaad Exponents
Following the notation used by Huskey,57 the single site Swain–Schaad exponents,59 which
relate the H/T isotope effect with that of the H/D or the D/T ratio, are given by
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(21a)

(21b)

Here, it is assumed that the isotope effects are determined solely by the use of one-frequency
model with contributions only from the zero-point energy without tunneling. Studies have
shown that the value of nHD for primary KIEs is typically in the range of 1.43–1.45.57 Although
the nHD value for secondary KIEs is not as well established, a similar value seems also to be
valid. Deviations from these values are thought to be indications of contributions from
tunneling.60 Using the data in Table 1, we obtained a single-site Swain–Schaad exponent of

 for the primary KIE, and of  for the secondary KIE. The exponents,  and
, for D/T ratios are 3.82 and 12.3, respectively. These values show significant deviations

from the semiclassical limits, particularly on secondary KIEs, which can have greater
computational errors because of the small free energy difference. It appears that the deviations
may be attributed to a too large secondary H/D effect.

In general, it is more sensitive use mixed isotopic Swain–Schaad exponent to assess tunneling
contributions59:

(22a)

(21b)

The first equation is the primary Swain–Schaad exponent, which describes the relationship
between H/T primary KIE when the secondary position is occupied by a hydrogen atom with
the D/T primary KIE when the secondary position is occupied by a deuterium isotope. The
second equation describes a similar relationship for the secondary KIEs. Values of the mixed
Swain–Schaad exponents significantly greater than 3.3 are typically attributed to contributions
from tunneling,60 and experimental studies showed that the secondary exponent is more
sensitive than the primary exponent in this type of analysis.

For the proton transfer reaction between nitroethane and acetate ion in water, we obtain a
primary KIE Swain–Schaad exponent of  and a secondary exponent of .
These results are close to the semiclassical limit, suggesting that tunneling contributions are
not significant for this reaction in aqueous solution. To assess the tunneling contributions, we
have used the multidimensional tunneling (MT) algorithm developed by Truhlar and
coworkers,9 extended to enzyme applications in the EA-VTST method,5,6 to determine the
average tunneling transmission factor, yielding a value of 〈κ〉 = 1.3 using the present potential.
30 This suggests that tunneling only makes minor contributions in the present case for the
aqueous reaction. Thus, the EA-VTST/MT results are consistent with the present PI-FEP/UM
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simulations, which do not separate zero-point energy and tunneling contributions. It will be
interesting to examine the effects of the enzyme active site on tunneling and the Swain–Schaad
exponents.53,54

Concluding Remarks
We presented a method for computing KIEs of chemical reactions in condensed phases. This
method, which is abbreviated as PI-FEP/UM, integrates nuclear quantum effects obtained from
Feynman path integral and FEP between different masses of two isotopes with classical PMF
along the reaction coordinate determined by molecular dynamics umbrella sampling
simulations. In the present study, both nuclear and electronic quantum effects are explicitly
treated for the reacting system. The nuclear quantum effects are represented by bisection
sampling centroid path integral simulations, while the potential energy surface is described by
a combined QM/MM potential. The accuracy essential for computing KIEs is achieved by a
FEP technique that transforms the mass of a light isotope into a heavy one. The PI-FEP/UM
method is applied to the proton abstraction of nitroethane by acetate ion in water through
molecular dynamics simulations. The rule of the geometric mean and the Swain–Schaad
exponents for various isotopic substitutions at the primary and secondary sites have been
examined. For the deuterium KIEs, the RGM is close to one with a computed value of 1.07.
Using the RGM, we estimate that the total tritium KIE is 17.8 employing the respective pure
primary and secondary KIE values. It was found that the single-site Swain–Schaad exponents
are more sensitive for the secondary effects because of their small values that demand high
accuracy. We found that the mixed isotopic Swain–Schaad exponents are very close to the
semiclassical limits, suggesting that tunneling effects do not significantly disturb this property
for the reaction in aqueous solution.
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Figure 1.
Computed classical and centroid path integral potentials of mean force for the proton transfer
reaction between nitroethane and acetate ion in water at 25°C. The centroid path integral PMF
for deuterium substitutions both at the primary and secondary sites is also shown. The reaction
coordinate is defined as ZPT = r(Cα − H) − r(H − O) in angstroms, where r(Cα − H) and r(H −
O) are distances of the transferring proton from the donor and acceptor atoms, respectively.
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Figure 2.
The ratio of the total quantum mechanical partition functions between HH and DD isotopes as
a function of the reaction coordinate. In this notation, the first letter specifies the primary site
and the second letter denotes the secondary site.
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Figure 3.
The ratio of the quantum mechanical partition functions as a function of the reaction coordinate
for the primary H/D isotope effects in which the secondary site is occupied by a hydrogen.
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Figure 4.
The ratio of the quantum mechanical partition functions as a function of the reaction coordinate
for the secondary H/D isotope effects in which the primary site is occupied by a hydrogen.
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Figure 5.
The ratio of the quantum mechanical partition functions as a function of the reaction coordinate
for the primary D/T isotope effects in which the secondary site is occupied by a deuterium
isotope.
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Figure 6.
The ratio of the quantum mechanical partition functions as a function of the reaction coordinate
for the secondary D/T isotope effects in which the primary site is occupied by a deuterium.
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Table 1

Computed and Experimental Primary and Secondary Kinetic Isotope Effects for the Proton Transfer Reaction
Between Nitroethane and Acetate Ion in Water at 25°C.a

KIE PI-FEP/UM Expt.b

Primary KIE

kH
H / kD

H
6.63 ± 0.31

kH
H / kT

H
12.96 ± 0.98

kD
D / kT

D
2.17 ± 0.04

Secondary KIE

kH
H / kH

D
1.34 ± 0.13

kH
H / kH

T
1.38 ± 0.18

kD
D / kD

T
1.10 ± 0.04

Total KIE

kH
H / kD

D
8.31 ± 1.13 7.8 ± 0.1

a
Kinetic isotope effects are determined by using the average value of the top two bins in the potential of mean force for the ratio of the partial quantum

partition function for the transition state, and the average value of the middle fifteen bins for the reactant state. The bin size used for data collection
is 0.05 Å in the reaction coordinate, half which may be considered as the error in the reaction coordinate value.

b
Ref. 54.
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