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Stimulated by the recent observation of π-π interactions between C60 and corannulene subunits in a 

molecular tweezer arrangement (J. Am. Chem. Soc. 2007, 129, 3842), a density functional theory study 

was performed to analyze the electronic structure and properties of various noncovalent corannulene 

complexes. The theoretical approach is first applied to corannulene complexes with a series of 

benchmark molecules (CH4, NH3, and H2O) using several new-generation density functionals. The 

performance of nine density functionals, illustrated by computing binding energies of the corannulene 

complexes, demonstrates that Zhao and Truhlar’s MPWB1K and M05-2X functionals provide energies 

similar to that obtained at the SCS-MP2 level. In contrast, most of the other popular density functionals 

fail to describe this noncovalent interaction or yield purely repulsive interactions. Further investigations 

with the M05-2X functional show that the binding energy of C60 with corannulene subunits in the 

relaxed molecular receptor clip geometry is -20.67 kcal/mol. The results of this calculation further 
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support the experimental interpretation of pure π-π interactions between a convex fullerene and the 

concave surfaces of two corannulene subunits. 

I. Introduction 

Noncovalent interactions are ubiquitous in chemistry and are a main source of stability for many 

molecular complexes in nanoscience, materials chemistry, and biochemistry1-3. An area where 

noncovalent interactions are particularly important is the self-assembly of carbon nanostructures in 

which van der Waals effects promote the formation of multiwall carbon nanotubes and multishell 

fullerenes4. One of the most interesting applications of these supramolecular complexes is their potential 

to act as chemical receptors for molecular recognition5,6. For example, the π electron system in metallic 

carbon nanotubes demonstrates a high selectivity and affinity to specific neutral and charge-transfer 

aromatic molecules7. Moreover, the adsorbed molecules can be easily removed since the molecule-

nanotube interactions are noncovalent. These highly specific yet reversible interactions suggest a first 

step towards nanosensor devices which are potentially recyclable. 

A particularly interesting feature of interacting π systems is the favorable attraction between concave 

polycyclic aromatic hydrocarbons with convex fullerene cages. The interactions in these concave-

convex complexes are unusual because the π orbitals between the curved surfaces are highly polarized, 

unlike the nearly uniform density of π electrons in graphene sheets8. As a result, concave carbon 

surfaces have been calculated to be even better π electron donors than their planar counterparts9,10. 

Recognizing this favorable concave-convex interaction, Sygula et al. recently isolated an 

unconventional complex of C60 with C60H28, a “molecular tweezer” with two corannulene subunits11 

depicted in Figure 1. Using NMR titration and X-ray structure techniques, Sygula and co-workers 

analyzed crystal structures for the complex and provided experimental confirmation of pure concave-

convex π-π interactions. 

Despite the numerous experimental studies on noncovalently interacting systems, the progress of ab 

initio calculations has been slower in quantitatively describing their unique electronic structure. The 

difficulties stem from the intricate evaluation of dispersion forces which arise from instantaneous 
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multipole/induced multipole charge fluctuations between molecular surfaces12. Since the Hartree-Fock 

method is a mean-field theory which only describes average electronic effects, it is incapable of 

capturing the instantaneous electron interactions which give rise to dispersion forces13. The 

conventional approach for handling these systems is to use Møller-Plesset perturbative theory (MP2) in 

conjunction with highly correlated coupled-cluster methods (CCSD(T)) to estimate their binding 

energies14. However, the computational cost of CCSD(T) methods is too high for routine application to 

molecules larger than about 20 atoms. 

Density functional theory (DFT), on the other hand, scales efficiently with molecular size and is the 

method of choice for studying large molecular systems. Unfortunately, the accurate description of 

dispersion forces has been a traditional failure of most current density functionals, and the development 

of new methods for properly treating noncovalent interactions is still a topic of active research15-19. 

Responding to this need for better-performing functionals, Zhao and Truhlar recently proposed a hybrid 

meta-GGA functional, M05-2X, for computing π-π stacking and alkane isomerization energies20. The 

M05-2X functional remedies the deficiencies of other hybrid functionals by incorporating an improved 

treatment of spin kinetic energy density in both the exchange and correlation functionals. This 

simultaneous optimization of exchange and correlation functionals accounts for medium-range 

correlation energy which is a source of error in van der Waals systems. Based on extensive tests 

consisting of several small van der Waals dimers21-23, the authors further concluded that M05-2X is the 

best functional for predicting geometries and energies of noncovalently bound systems. Wodrich et al. 

have independently compared M05-2X bond separation energies against experimental data for 72 

hydrocarbons and found that M05-2X has excellent across-the-board performance for optimized 

energies and geometries24. Recently, in a time dependent density functional study, Santoro and co-

workers further demonstrated that the M05-2X functional also provides an accurate description of 

excited states in π-stacked nucleobases25. 

Since noncovalent interactions between curved aromatic hydrocarbons and fullerenes can serve as 

models for self-assembling nanostructures, there is a need for reliable methods to estimate the binding 
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energies of noncovalently bound systems. Furthermore, since it is difficult to extract the binding energy 

of stacked complexes from experiment, it is useful to compare recently developed DFT methods with 

results obtained from post-Hartree-Fock wavefunction-based methods. In this work, the structures and 

electronic properties of various benchmark corannulene complexes (corannulene attached to methane, 

ammonia, and water) are computed using nine density functionals. Mean signed deviations (MSDs) of 

binding energies from other wavefunction-based methods are used to further evaluate the performance 

of these functionals. These calculations supplement existing benchmark calculations of noncovalent 

interactions and provide guidance on computing the binding energy of the C60···C60H28 buckycatcher 

complex. In addition, other electronic properties such as natural bond orbital charges are also examined 

to assess the stability of π-π interactions in the buckycatcher complex. 

 

II. Computational Details 

All binding energies of corannulene with CH4, NH3, and H2O, were computed using the 6-311+G(d,p) 

basis set which has previously shown sufficient accuracy for other corannulene complexes26. 

Calculations on the C60···C60H28 buckycatcher complex were performed with an augmented 6-311G(d,p) 

basis set which has an extra diffuse function only on the corannulene subunits (five diffuse exponents 

were symmetrically placed in the interior of each corannulene subunit). Geometry optimizations for all 

molecules were unconstrained, allowing for deformation and optimal intermolecular distances in the 

fully relaxed complex. The convergence criteria for maximum and root-mean-square forces were set to 

4.5 × 10-4 Hartree/Bohr and 3.0 × 10-4 Hartree/Bohr respectively. In order to correct for the basis set 

incompleteness which arises from using finite atom-centered basis sets on each monomer, the 

counterpoise correction27 was applied to all reported binding energies. 

The nine functionals utilized in the present analysis include the most widely used hybrid functional, 

B3LYP28, the parameter-free PBE29 and PW9129 functionals, B3PW9128,30, B1B9531, MPW1PW9132, 

and Truhlar’s recent meta-GGA MPW1B9533, MPWB1K33, and M05-2X20 functionals. All ab initio 
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calculations were performed at the National Center for Supercomputing Applications with the 

NWChem 5.0 software package developed by Pacific Northwest National Laboratories34. 

 

III. Results and Discussion 

3.1. Corannulene complexes with CH4, NH3, and H2O. Since the interpretation of DFT results on 

large molecular systems is never straightforward, it is important to compare current functionals against 

results obtained from using sophisticated post-Hartree Fock calculations. It should be mentioned that 

Zhao and Truhlar have already shown that the M05-2X functional accurately describes van der Waals 

complexes and π-stacking interactions in a large set of benchmark calculations20-23. To supplement their 

extensive study, addition calculations are presented on medium-sized complexes involving noncovalent 

interactions in corannulene complexes. Fortunately, the very recent publication of a detailed spin-

component-scaled MP2 (SCS-MP2) study on corannulene complexes provides a good benchmark 

comparison with DFT results35. Grimme and co-workers have successfully applied the SCS-MP2 

method to several intermolecular interactions involving π-stacking36-39, and their data on corannulene 

complexes is used here as reference values. 

Figures 2 (a)-(c) show the optimized geometries of the benchmark corannulene complexes with CH4, 

NH3, and H2O considered in the present work.  As can be seen in Figure 2 (d), the electrostatic potential 

is more negative in the center of corannulene than on the outside rim. Consequently, geometry 

optimizations for all the molecules place their hydrogen atoms, rather than the hetero atoms, pointing 

towards the corannulene. The counterpoise-corrected binding energies obtained from the various density 

functionals are reported with the corresponding SCS-MP2 energies in Table 1. 

The expected trend for all DFT methods is that the polar NH3 and H2O molecules bind more strongly 

to corannulene than the nonpolar CH4. Despite this common prediction, the performances of each of the 

nine DFT methods relative to each other are quite different. Both B3LYP and B3PW91, which are 

based on Becke’s three parameter exchange functional, yield repulsive interactions for the 

CH4···corannulene complex. In general, B3LYP, B3PW91, and MPW1PW91 predict very weak 
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complexation energies for all three molecules. The mean signed deviations (MSD) from SCS-MP2 

values indicate that PW91, PBE, B1B95, and MPW1B95 give slightly better performance but still yield 

fairly large errors. The M05-2X functional, closely followed by MPWB1K, has the lowest MSD and 

gives an average error of about 16%. All other DFT methods, including the most widely used B3LYP 

functional, produce much larger deviations. In addition, the B3LYP functional is known to produce 

large errors with increased system size24, but the results in this part of the study demonstrate that the 

M05-2X functional still provides reliable results for fairly large systems. 

3.2. C60···C60H28 buckycatcher complex. For the initial studies on the buckycatcher complex, a C60 

molecule was placed between the two corannulene subunits, and an unconstrained geometry 

optimization was performed. Since analytical and numerical frequencies are not currently implemented 

in NWChem for many of the newer density functionals, the buckycatcher complex was first optimized 

at the PBE/6-31G level of theory. Harmonic frequency calculations were performed at the same level of 

theory on the equilibrium structure, characterizing it as a minimum on the potential energy surface. The 

PBE/6-31G equilibrium structure was then used as the starting initial geometry for unconstrained 6-

311G(d,p) (augmented with ten corannulene-centered diffuse functions) optimizations using the other 

nine DFT methods. The counterpoise-corrected binding energies, ΔE, and geometries obtained from the 

various density functionals are reported in Table 2. 

Using the initial PBE/6-31G relaxed structure, all DFT optimizations converged to a C2v structure 

where the five- and six-membered rings in the corannulene subunits and C60 are nearly eclipsed (Figures 

1 and 3). The equilibrium C60···corannulene subunit distance (defined as the shortest atom-to-atom 

distance) for each of the nine DFT methods is listed in Table 2. These optimized geometric parameters 

can be directly compared with the shortest atom-to-atom distance of 3.128 Å obtained from the 

experimental X-ray crystal structure. The M05-2X calculated distance of 3.20 Å is in excellent 

agreement with experiment and gives the least error (around 2.3%) compared to all the other 

functionals. MPWB1K, MPW1B95, and B1B95 also perform satisfactorily with geometric errors of less 
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than 7%. However, the B3LYP and B3PW91 functionals give poor results and compute the largest 

deviations for the buckycatcher complex (errors of 104% and 129% respectively). 

A comparison of binding energies parallels the trend reported for the optimized geometries. As 

expected from the previous analysis of corannulene complexes with CH4, both B3LYP and B3PW91 

yield positive binding energies and also fail to describe the π-π stacking in the buckycatcher complex. 

The use of the MPW1PW91 and PBE functionals also results in large repulsive interactions. Consistent 

with the previous results on corannulene, the B1B95 and PW91 functionals give stronger binding 

energies, but the interactions are still weakly bound. Finally, M05-2X and MPWB1K produce the 

strongest binding energies (most negative) with the M05-2X value almost twice that obtained with the 

MPWB1K functional. The large binding energy of -20.67 kcal mol-1 compares very well with a current 

study on π-stacking interactions involving fullerenes. For example, Zhao and Truhlar recently 

demonstrated that the binding energy of C60 inside a hydrocarbon nanoring is -28.0 kcal mol-1,40. The 

binding energy of the C60···C60H28 buckycatcher complex is 74% of this value. This is reasonable since 

the nanoring completely encapsulates C60 whereas only about half of the C60 surface is noncovalently 

bound in the buckycatcher complex. 

In order to further explain these trends, a natural bond orbital (NBO) analysis41 was performed for all 

nine DFT methods. The NBO procedure uses only the information from the density matrix of the 

wavefunction and yields a set of localized orbitals which give the most accurate Lewis-like description 

of the total electron density. Moreover, the NBO method is not prone to basis set errors such as those 

produced by Mulliken population analyses which often behave erratically with large basis sets42. For all 

the DFT methods exhibiting large negative binding energies, the NBO analysis points strongly to π → 

π* interactions from C60H28 to C60. This π → π* interaction involves weak delocalizations from π bonds 

on the corannulene subunits into near unfilled π* antibonding orbitals of the C60 molecule. These 

occupancy shifts from filled orbitals of one molecule to the unfilled orbitals of the other are a hallmark 

of charge transfer interactions (Figure 3). Indeed, a natural population analysis of the charge transferred 

between C60 and C60H28 reported in Table 2 indicates that large values of transferred charge are 
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associated with significant energy stability. A rough rule of thumb often used is that the natural bond 

orbital charge is directly proportional to the energy stabilization associated with the charge transfer41. 

Consequently, ΔE is considerably greater in magnitude for M05-2X and MPWB1K, while in the non-

binding B3LYP and B3PW91 complexes, both ΔE and q are significantly reduced. In general, the trends 

predicted by Truhlar’s M05-2X functional are consistent with experimental structures and high-level 

calculations. These trends also give quantitative evidence of convex surfaces preferring to act as π-

electron acceptors and concave surfaces acting as π-electron donors. 

 

IV. Conclusion 

Systematic ab initio investigations were performed for several corannulene complexes starting with 

CH4, NH3, and H2O up to a complex with C60 in a molecular tweezer geometry. The molecular 

structures, binding energies, and electrostatic properties were obtained using a set of DFT methods 

which include new-generation functionals with improved performance for noncovalent interactions. In 

agreement with previous benchmark calculations, the current study indicates that Truhlar’s MPWB1K 

and M05-2X functionals are the only viable DFT methods for accurately describing noncovalent 

binding energies in corannulene systems. All other functionals exhibit a tendency to underestimate 

binding energies due to their poor description of dispersion interactions. 

Among the noncovalent interactions studied, the buckycatcher supramolecular complex presents an 

interesting yet difficult test for density functional theory. Using the same set of DFT methods, the fully 

optimized structure and electrostatic properties of the buckycatcher complex were obtained using 

quantum chemical methods for the first time. A comparison with an X-ray crystal structure 

demonstrates that the M05-2X functional reproduces the experimental geometry very well and predicts 

a binding energy of -20.67 kcal/mol with an augmented 6-311G(d,p) basis. In addition, a natural bond 

orbital analysis was performed to understand the stability of the buckycatcher complex based on the 

strength of charge transfer interactions. The NBO charge transfer analysis and electrostatic potential 

plots are consistent with previous experimental observations on C60 and corannulene. That is, concave π 
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surfaces are electron-rich while the convex surfaces of C60 are naturally electron-deficient, an 

experimental observation demonstrated by the ease with which C60 forms complexes with various 

electron-rich metals. The results of this ab initio characterization further support the experimental 

interpretation of pure π-π interactions between a convex fullerene and the concave surfaces of two 

corannulene subunits. 

In summary, the results provide indications that supramolecular behavior in molecular nanostructures 

can be described with good accuracy when using a suitable DFT method. The new-generation density 

functionals used in this work show great promise for studying large systems since they give reasonable 

results at a much lower computational cost than other wavefunction-based methods. However, widely 

used density functionals like B3LYP can not describe the long-range electron correlations which are 

responsible for dispersion forces. In view of the huge popularity of B3LYP (which has over 20,000 

citations to date), existing calculations of weakly-bound systems using this particular functional may 

need to be re-examined. As concerns the choice of the DFT method, Truhlar’s M05-2X functional is 

recommended for describing noncovalent interactions in molecular nanostructures. 
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Figure 1. Optimized geometry of the C60···C60H28 buckycatcher complex at the M05-2X level of theory 

with an augmented 6-311G(d,p) basis set. The corannulene subunits are in van der Waals contact with 

the fullerene molecule at a distance of 3.20 Å (shortest atom-to-atom distance).  
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(a)  (b)  

(c)  (d)  

Figure 2. Optimized geometries of corannulene complexes with (a) methane (CH4), (b) ammonia (NH3), and (c) water (H2O) at the M05-2X/6-

311G+(d,p) level of theory. In Figure 2 (d), the electrostatic potential of an isolated corannulene molecule is shown. The center of the corannulene 

bowl has a lower electrostatic potential than the outside rim. 
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Figure 3. Electrostatic potential of the C60···C60H28 buckycatcher complex at the M05-2X/6-311G(d,p) 

level of theory with an augmented 6-311G(d,p) basis set. Since the concave π surfaces of corannulene 

are electron-rich while the convex surfaces of C60 are naturally electron-deficient, regions of the 

fullerene cage near the corannulene subunits are more negatively charged than the other free surfaces. 
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TABLE 1: Binding Energies (in kcal mol-1) for Corranulene Complexes with CH4, NH3, and H2O Obtained with Various Density 

Functionalsa  

 B1B95 B3LYP B3PW91 M05-2X MPW1B95 MPW1PW91 MPWB1K PBE PW91 SCS-MP2b 

CH4 -1.18 0.04 0.06 -4.20 -2.64 -0.12 -2.95 -0.48 -0.91 -4.3 

NH3 -2.51 -0.44 -0.14 -5.89 -3.86 -0.91 -4.26 -1.72 -2.10 -4.8 

H2O -2.32 -0.93 -0.71 -5.88 -3.59 -1.43 -3.96 -2.15 -2.50 -4.6 

           

MSD 2.56 4.12 4.30 -0.75 1.20 3.75 0.84 3.12 2.73 — 
a All DFT energies are counterpoise-corrected using 6-311G+(d,p) optimized geometries. b Best estimate from Ref. 34. c Abbreviation: Mean 

signed deviation. 
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TABLE 2: Binding Energy (ΔE), Equilibrium C60···C60H28 Distance (d), and Natural Bond Orbital Charge of C60 (q) for the Buckycatcher 

Complex Obtained with Various Density Functionals 

 B1B95 B3LYP B3PW91 M05-2X MPW1B95 MPW1PW91 MPWB1K PBE PW91 

ΔE (kcal mol-1)a -1.88 0.34 0.09 -20.67 -7.74 0.75 -10.22 0.91 -0.45 

          

d (Å)b 3.34 6.38 7.16 3.20 3.32 4.50 3.31 3.72 3.69 

% deviationc 6.8 104.0 128.9 2.3 6.1 43.9 5.8 18.9 18.0 

          

q (electrons) -0.0259 0.0009 0.0004 -0.0389 -0.0260 -0.0021 -0.0238 -0.0078 -0.0083 
a All energies are counterpoise-corrected using 6-311G(d,p) optimized geometries. b Defined as the shortest atom-to-atom distance between C60 

and C60H28. c Percent deviation from X-ray data taken from Ref. 11. 
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