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Abstract: The Green’s function ADC(3) scheme has been for many years a successful method to predict theoreti-

cally the ionization (and electron affinity) spectrum of molecules. However, a dramatic enhancement of the method’s

power has come only recently, with the development of an approximation method to the one-particle Green’s func-

tion which does not make direct use of the Dyson equation. In the present work, we present an efficient computer

implementation of this novel approach, with first comparative tests demonstrating its enormous computational

advantage over the conventional approach.
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Introduction

The Green’s function formalism1–4 constitutes a powerful and el-

egant theoretical tool for investigating properties and excitation

processes in many-particle systems. Green’s functions provide

direct access to important physical quantities such as, for exam-

ple, ionization energies and spectral intensities,5 without the

need to resort to separate approximate solutions of the Schrö-

dinger equation for the ground state and the ionic states. The

method thus provides one-step access to vast portions of the ion-

ization/excitation spectra of molecules and incorporates implic-

itly from the outset a balanced account of both the ground and

ionic correlation, which is difficult to achieve with conventional

wavefunction approaches. Another inherent advantage of the

Green’s function approach, essential for the treatment of large

systems, is the natural provision of size-consistent approximation

schemes, displaying the correct scaling behavior with respect to

the number of electrons.

In the case of the one-particle Green’s function, one may

resort to the well-known Dyson equation relating the Green’s

function to the so-called self-energy, which is an effective

energy-dependent one-particle potential. The solution of the

Dyson equation can be cast as an Hermitian matrix eigenvalue

problem.6 In practical applications one, of course, uses an

approximation of the self-energy and hence of this Hermitian

matrix. Various approximation schemes have been proposed

over many years to evaluate the self-energy and Green’s func-

tions in general (see for example refs. 7–10). Important class of

approximation schemes are the diagrammatic methods. Here,

one makes use of the Feynman diagrams to represent the pertur-

bation series of the Green’s function or propagator under consid-

eration. Among the diagrammatic methods the Algebraic Dia-

grammatic Construction (ADC)6,11–14 has proven to be of partic-

ular success for the treatment of finite electronic systems. This

scheme, which provides access to the entire energy range of the

valence-shell ionization, reformulates the diagrammatic perturba-

tion expansion for the Green’s function in a simple algebraic

form, representing infinite partial summations of certain types of

Feynman diagrams. The nth-order scheme, ADC(n), is complete

through order n perturbation theory, i.e., it includes all Feynman

diagrams up to nth order as well as higher order contributions in

an appropriate manner. The method is quite general and applies

to any Green’s function or single component of it.

The essential numerical tasks associated with the computa-

tion of the Green’s function in the ADC scheme involve the

evaluation of matrix elements and the diagonalization of Hermi-

tian matrices defined in the space of a special class of ionic con-

figurations. In realistic applications, the source of problems is

that one has to cope with the size of the configuration space.

Depending on the size of the molecule, the orbital basis set, and

the approximation scheme used, the configuration space can
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become extremely large preventing the determination of the rele-

vant eigenvalues and eigenvectors from the corresponding secu-

lar matrix with reasonable expense. It is the purpose of the pres-

ent article to describe how, building on some recent significant

advances in the formal development of the theory, the so-called

non-Dyson scheme,15,16 it is possible to efficiently minimize the

computational burden of Green’s function investigations. To this

end, we have implemented and illustrate here a new computer

program for the calculation of ionization spectra that (a) makes use

of the non-Dyson scheme and (b) adopts a partially integral-driven

approach for the handling of the two-electron integrals. Preliminar-

ily, in the next two sections, we recall the principal aspects of the

third-order ADC scheme and its non-Dyson version.

The ADC(3) Scheme

In the ADC scheme, the ionic configurations over which the

Dyson equation is represented are classified in particle-hole

notation with reference to the Hartree-Fock neutral ground state.

We shall particularly concentrate hereafter on the third order,

ADC(3), approximation,6,17,18 but most considerations apply

equally well to higher order schemes. In ADC(3) four classes of

ionic configurations appear: one-hole (1h) and two-hole-one-par-

ticle (2h1p) for the N 2 1-electron configurations, one-particle

(1p) and two-particle-one-hole (2p1h) for the N 1 1-electron

configurations. The secular matrix is conveniently partitioned as

shown in Figure 1 and its matrix elements are reported and dis-

cussed at length in, for example, ref. 17. The upper-left block

(main block) represents the interaction over the 1p and 1h con-

figurations and includes the energy-independent part of the self-

energy, S(1). This block is further coupled to the 2p1h space

(through the UI block) and to the 2h1p space (through the UII

block). The central diagonal block of the matrix, KI 1 CI, is

over the 2p1h space and the lower right block, KII 1 CII, over

the 2h1p space. The remaining blocks of the matrix vanish.

One peculiar and important feature of this representation of

the Dyson equation, is the coupling between the N 2 1-particle

(ionization) and N 1 1-particle (electron affinity) configurations.

This coupling may not be weak for the low-lying poles of the

Green’s function and cannot be neglected, even when one is

only interested, as is most usually the case, to the sole ionization

spectrum. As a result, especially when using large basis sets

necessary to obtain accurate results, the secular problem is

largely dominated by the presence of the KI 1 CI block of the

matrix. In general, and even more when higher excited configu-

rations are required for higher-order approximation schemes, it

is the explicit presence of the excited electron affinity space that

induces the greatest computational burden, both in the matrix

construction and, especially, in its iterative diagonalization. This

is the sole aspect of ADC(3), otherwise presenting a matrix size

growing linearly with the basis set and only quadratically with

the number of electrons, which inhibits its applicability to large

molecular systems. Years ago, a particularly simple and effec-

tive approach was presented18 to approximately decouple the

large N 1 1-particle block from the rest of the matrix, by trans-

forming it through a small number of block-Lanczos iterations.

This ‘‘trick,’’ however, still requires the explicit construction and

multiplication of the affinity block. This block, furthermore, is

in the Dyson approach needed to compute the static self-

energy.13 It would be highly desirable, therefore, if, starting

from the standard ADC, one could devise a formalism in which

the ionization and affinity block are analytically decoupled from

the start, so that the evaluation of the affinity block can be

altogether skipped for ionization calculations. The recently

developed non-Dyson ADC(3) approach15,16,19 (nD-ADC(3)) suc-

cessfully addresses exactly this question.

By applying the algebraic diagrammatic construction scheme

directly and separately to the advanced and retarded parts of the

Green’s function, rather than to the self-energy part, the novel

approach sidesteps the Dyson equation and exploits a priori the
natural decoupling of the N 2 1- and N 1 1-particle spaces.

Very conveniently, moreover, the resulting ADC(3) secular

problem turns out to be extremely similar to the standard one,

deprived of the N 1 1- electron configurations, at the price of

course of additional terms in the matrix elements. But as we

shall recall shortly, these additional terms only affect the small

main block of the ADC matrix.

The non-Dyson scheme thus achieves the uniquely effective

goal of providing access to theoretical ionization spectra of third

order accuracy in a configuration space essentially comprising

just the single excitations of the hole configurations. This makes

computationally much easier, in terms of both speed and number

of required iterations, the calculation of the desired ionization

poles by iterative diagonalization procedures such as the block-

Lanczos.18 But is it very important to realize that this happens

not just because the size of the ADC matrix is so drastically

reduced, but also because of the consequent alteration in the

structure of the eigenvalue spectrum, as we now briefly clarify.

The Lanczos method, as well as its block-Lanczos variant or

preconditioned methods such as the (block-) Davidson one, are

Figure 1. Structure of the hermitian ADC matrix in the Dyson

ADC(3) scheme.
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well known iterative diagonalization methods.20–23 As general

subspace iteration approaches, they can in principle be used to

obtain the full spectrum of a given large matrix, but in fact they

have been designed and are tuned to obtain a subset of the

whole eigenvalue spectrum. In the case of inner-valence ioniza-

tion calculations, this useful subset rapidly becomes quite large,

easily reaching hundreds if not thousands of solutions for mod-

erately sized molecules. As the number of iterations performed

increases and the size of the vector subspace grows, the approxi-

mate eigenvectors22,23 converge to exact ones at different

speeds: they typically converge faster the closer they lie to the

outer edges of the spectrum, so that extreme eigenvalues tend to

converge first (i.e., after fewer iterations) and inner ones con-

verge last. This general trend can only to a limited extent be

altered by a suitable choice of initial vectors. This represents an

additional problem in the Dyson ADC approach to the ionization

spectrum: the lowest ionization poles, which are typically the

ones we are most interested in, because of the presence of the

electron-affinity poles, lie more or less exactly in the middle of

the spectrum and thus tend to converge poorly and to require a

large number of iterations. Even when the affinity spectrum is

reduced in size by the block-Lanczos prediagonalization,18 there

is a substantial number of eigenvalues which represent (inaccu-

rate) affinity poles and thus are algebraically smaller than the

onset of the ionization spectrum. By contrast, in the nD-ADC

problem, the complete elimination of the affinity space brings

the lowest ionization poles at the edge of the spectrum and thus

significantly accelerates their convergence, well apart from and

beyond the reduction of the secular problem size.

nD-ADC(3) Working Equations

Because in the normal ADC(3) matrix the 2h1p and 2p1h spaces

are coupled only indirectly to each other through the main (1h
2 1p) block (see Fig. 1), it turns out that the only differences

between the Dyson and non-Dyson schemes lie in the expression

of the main block of matrix elements between 1h configurations.

In particular, in the nD-ADC(3) matrix elements, additional sec-

ond and third order terms appear. In fact, as discussed by

Schirmer et al.,15 the ADC equations are not unique, and they

have been reported in two different formulations.15,16 The two

versions lead to the same results to within sixth-order terms and

extensive numerical comparison shows that the resulting ioniza-

tion energies never differ by more than 0.01 eV.16 We have

implemented in our code both sets of formulas (which are com-

putationally essentially equivalent) but, for simplicity, we report

and discuss here only the set of equations of ref. 15. As for the

general ADC(3) case, the nD-ADC formulas refer to a system

having a nondegenerate neutral ground state, which we assume

to have as usual a closed-shell Hartree-Fock representation. The

ADC problem is, of course, based on a spin-free Hamiltonian

and thus factorizes when expressed over spin-adapted configura-

tions. Since the matrix elements involve just 1h configurations,

we need only consider that some integrals vanish because of

spin. Taking this into account, it is immediate to cast the spin-

orbital equations of ref. 15 in spin-free form over doublet spin-

adapted configurations involving only spatial orbitals. For the

remaining spin-adapted formulas, which we use in our imple-

mentation, see ref. 17. We use real orbitals with indices i, j, k,
l,. . . to denote holes and a, b, c, d,. . . for particles, which indi-

ces p, q, r,. . . refer generically to either. (pq|rs) denotes a two-

electron repulsion integral in ‘‘charge-cloud’’ notation, ep are the

orbital energies and epqrs 5 ep 1 eq 2 er 2 es. The second order

non-Dyson term of a matrix element between configurations

with holes in orbital i and j thus reads

C
ð2Þ
ij ¼ 1

2

X
a;b;k

ðaijbkÞ ðakjbjÞ � 2ðajjbkÞð Þ eabki þ eabkj
eabkieabkj

(1)

The non-Dyson third order contribution is conveniently di-

vided in four terms:

C
ð3Þ
ij ¼ C

ð3aÞ
ij þ C

ð3bÞ
ij þ C

ð3cÞ
ij þ C

ð3dÞ
ij (2)

whose spin-free expressions are as follows:

C
ð3aÞ
ij ¼

X
a;b;c;d
k

ðabjcdÞðaijckÞ 2ðbjjdkÞ � ðbkjdjÞð Þ 1

eacikebdjk
(3)

C
ð3bÞ
ij ¼

X
a;b;c
k;l

ðbkjclÞ ðakjbiÞ�2ðaijbkÞð Þ ðaljcjÞ�2ðajjclÞð Þþf

ðbcjklÞ ðajjclÞ ðakjbiÞ�2ðaijbkÞð ÞþðaljcjÞððaijbkÞ�2ðakjbiÞÞ½ �g:
1

eabikeacjl
(4)

C
ð3cÞ
ij ¼

X
a;b
k;l;m

ðaljbmÞðakjbjÞ 2ðimjklÞ�ðiljkmÞð Þ 1

eablmeabkj
þði$ jÞ

(5)

C
ð3dÞ
ij ¼

X
a;b;c
k;l

ðakjciÞ ðbjjclÞ�2ðbljcjÞð Þ ðaljbkÞ�2ðakjblÞð Þþf

ðacjikÞ ðbjjclÞ ðakjblÞ�2ðaljbkÞð ÞþðbljcjÞ ðaljbkÞ�2ðakjblÞð Þ½ �g:
1

eabklebcjl
þði$ jÞ

(6)

Computational Aspects of the ND-ADC(3) Code

Even with the great advantages offered by the non-Dyson sim-

plification, it is generally not practical to carry out a full diago-

nalization of the nD-ADC(3) matrix because of its dimensions,

although it is often necessary to extract with sufficient accuracy

(6)

(4)
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large portions of the spectrum, which may be extremely dense

(as happens for example for inner valence ionization). Thus the

solution of the ADC eigenvalue problem is a major computa-

tional burden of the whole procedure. For this, we resort to iter-

ative methods such as Lanczos20,22,23 Davidson21–23 or, more

appropriately, their block-variants.18,22,23 The block-Lanczos

method, in particular, is especially well-suited to extract quite

effectively all the most useful spectral information from Green’s

function calculations.18,24,25 It is one of a quite broad class of

subspace iterations approaches,22,23 attempting to produce some

approximate eigenvalues using a projection of the whole matrix,

in a subspace as small as is convenient. The subspace is itera-

tively enlarged until the desired eigensolutions are accurate

enough. An invariable feature of all these methods is that, dur-

ing the diagonalization procedure, the matrix must be used many

times in matrix–vector or matrix–matrix multiplications, which

are needed for the iterative refinement of an initial (trial) set of

vectors. Indeed the most expensive computational task during

the whole block-Lanczos procedure is this matrix multiplication.

It is in general not possible to store the whole ADC matrix

in memory to use it during the numerous multiplication steps.

Current hard-disk sizes make it a plausible approach to store it

in such nonvolatile storage devices. However, this is generally

inefficient because of the substantial I/O activity involved as the

matrix must be read many times during the computation. A third

possible method for the computation and handling of the ADC

matrix, the direct approach, is therefore to be preferred. Similar

approaches to the handling of large matrices and two-electron

integrals have become standard in most modern quantum chem-

istry software. More specifically, the scheme we adopt essen-

tially involves recomputing the large 2h1p/2h1p block of the

matrix whenever it is required, while the much smaller 1h/1h
and 2h1p/1h blocks may safely be computed and stored once for

all in memory or disk. Recomputing the latter two blocks is not

necessary given their size and would be more difficult as they

are non-sparse and their computation is more demanding.

Recomputing the small S(1) matrix would be particularly

inconvenient as it entails a costly iterative procedure.

Integral-Driven Equations

The computational strategy we used to avoid memory and disk

limitations, both in terms of size and access speed, is the adop-

tion of an integral-driven procedure. Such approach is also well-

established in conventional wave-function methods. The basic

idea behind the integral-driven approach is simple: since it is in

general not possible to store in main memory all the two-elec-

tron integrals and it would of course be very inefficient to access

them randomly as required on disk, we must reformulate the

equations so that they represent an iteration over the integrals

rather than over matrix elements. In other words, we must be

able to access the integrals (or subsets thereof) in any given

order and add their contributions to the appropriate matrix ele-

ments, rather than exhaust each matrix element in turn by

retrieving all the appropriate integral contributions. The integral-

driven reformulation requires a somewhat lengthy reanalysis of

the working equations but leads to a very efficient and open-

ended algorithm, essentially free from storage limitations. For

the present implementation, we only applied the integral-driven

approach to the handling of those matrix element contributions

involving two-electron integrals over four virtual orbitals, which

is by orders of magnitude the most numerous integral class. This

enables very large-scale calculations without unduly complicat-

ing the code. This approach essentially involves the sole imple-

mentation of the non-Dyson contribution Cij
(3a), eq. (3). An

entirely similar integral-driven scheme is already adopted in our

conventional Dyson ADC(3) code for the one-particle Green’s

function.

In summary, the integral-driven procedure works as follows.

We read all the integrals into memory, except the 4-virtual ones.

The integrals in memory are sorted and indexed so that they can

be accessed in any order and they are used in the standard con-

figuration-driven iteration to evaluate the matrix element blocks.

A set of 4-virtual integrals is then loaded from disk together

with their indices to fill a specified memory area and each inte-

gral is processed in turn according to the formulas reported in

Table 1, evaluating its contribution to any matrix element that

requires it. When the current batch of integrals has been entirely

used, we fill again the buffer with integrals from disk and pro-

ceed likewise, until all the integrals have been processed. To

make the code simpler and more readable, the core of the inte-

gral-driven code is constituted by one routine which implements

eq. (3) (except of the loop over virtual indices) and is called as

many times as needed for each integral, with the appropriate set

and permutation of argument indices. Note that this algorithm is

easily parallelizable, e.g. in a ‘‘multithreading’’ computational

environment. Finally, as mentioned earlier, we also wrote the code

implementing the formulation of the nD-ADC(3) scheme presented

in ref. 16. The results we obtained in both cases agree within the

expected threshold for this kind of calculations, thus representing

also an independent check of the correctness of the code.

There is a final very important issue concerning the nD-ADC

approach which we have neglected in the foregoing discussion:

the calculation of the static self-energy matrix S(1). This

remains an important contribution to the main block of the ADC

matrix and the accuracy of its evaluation is known to affect

non-negligibly the quality of the ADC results. Because of the

separation of the N 1 1-particle space, in the non-Dyson method

we must still calculate the 1h/1h part of S(1). The standard

Dyson Expansion Method (DEM) for the calculation of the static

self-energy is an iterative approach discussed, e.g., in ref. 13. Its

fundamental drawback is that, regardless of the particle number

of the configurations involved, it requires the availability of both

the ionization and affinity blocks of the K 1 C matrix. It is evi-

dent, therefore, that this method of calculation of S(1) has a

significant negative impact on the efficacy of the non-Dyson

approach and, in fact, may represent a computational bottleneck.

It is clearly desirable to have a non-Dyson approximation

method for the static self-energy which requires only matrix ele-

ments in the N 2 1-electron space. Such a method, referred to

as the S(41) scheme, has indeed been proposed and shown to

lead to an approximation essentially as good as the standard

DEM approximation.16 Since we are still in a phase of compara-

tive study of the non-Dyson and Dyson approaches, we have not

yet implemented the S(41) scheme in our code, so that both

methods rely on an identical evaluation of the static self-energy
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via the same DEM code. Work to remove the DEM bottleneck

will however be undertaken in the very near future. We mention

here that a non-Dyson ADC(3) algorithm has also been reported

in the framework of the relativistic four-component theory.26

Besides other differences, it differs essentially from ours in that

it implements directly spin-orbital formulas without spin-adap-

tion and it does not adopt an integral-driven approach.

To summarize, the complete flow of computation in our

implementation of the nD-ADC method may be sketched as

follows:

1. The S(1) matrix is computed (currently using the conven-

tional DEM algorithm) and stored.

2. The 1h/1h block of the K 1 C matrix, matrix, augmented

with the extra non-Dyson terms in eqs. (1)–(6) are com-

puted. In computing the latter, the 4-virtual integrals are

processed list-wise from disk according to the scheme in

Table 1. The 1h/1h and S(1) matrices are added and stored.

3. The 2h1p/1h block of the ADC matrix (UII) is computed and

stored.

4. The chosen iterative diagonalizer (block-Lanczos) is started.

At each iteration, the required non-zero sub-blocks of the

2h1p/2h1p matrix are recomputed from the integrals.

5. After a prescribed number of iterations, the subspace projection

of the ADC matrix is diagonalized and the computed eigenval-

ues and eigenvectors are stored for subsequent processing.

SOME RESULTS

In this section, we show some preliminary results obtained for

CF4 as a test case. Our main intention is to demonstrate to the

reader the actual differences between the various approaches

that have been described in this work and, in particular, some of

the most evident advantages of the non-Dyson approach with

respect to the Dyson one. Therefore, we performed calculations

using three different method: (a) a standard ADC(3) calculation

including the full N 1 1-electron space, (b) an ADC(3) calcula-

tion featuring the preliminary block-Lanczos reduction of the af-

finity block, described in ref. 18, (c) a nD-ADC(3) calculation.

CF4 represents a small and interesting test case, affording

accurate calculations with extensive basis sets.25,27 The molecule

plays an important role in various different technologies, for

example in the semiconductor industry as a plasma etching gas.

Also, by industrial use it has been introduced into the earth’s

outer atmosphere, where it is widely believed to be involved in

the depletion of the earth’s ozone layer.

Table 1. Integral Driven Formulas for the C(3a) Matrix Elements.

Case Index relations Integrals Contribution

1 a 5 b 5 c 5 d (aa|aa)
P

l
ðaijalÞ
eaail

ðajjalÞ
eaajl

2 a 5 b 5 c[ d (aa|ab), (aa|ba), (ab|aa), (ba|aa)
P

l
ðaijalÞ
eaail

ðajjblÞ þ ðaljbjÞ
eabjl

þ ðaijblÞ þ ðaljbiÞ
eabil

ðajjalÞ
eaajl

� �

3 a 5 b[ c 5 d (aa|bb), (bb|aa)
P

l
ðaijblÞ
eabil

2ðajjblÞ � ðaljbjÞ
eabjl

� �
þ ða $ bÞ

� �

4 a 5c[ b 5 d (ab|ab), (ab|ba), (ba|ab), (ba|ba)
P

l
ðaijalÞ
eaail

ðbjjblÞ
ebbjl

þ ðaijblÞ
eabil

2ðaljbjÞ � ðajjblÞ
eabjl

� �
þ ða $ bÞ

� �
5 a[ b5 c 5 d (ab|bb), (ba|bb), (bb|ab), (bb|ba) Same as Case 2, with a $ b.

6 a 5 b[c[ d (aa|cd), (aa|dc), (cd|aa), (dc|aa)
P

l
ðaijclÞ
eacil

2ðajjdlÞ � ðaljdjÞ
eadjl

þ ðaljciÞ
eacil

2ðaljdjÞ � ðajjdlÞ
eadjl

� �
þ ðc $ dÞ

� �

7 a 5 c[ b[d (ab|ad), (ab|da), (ba|ad), (ba|da),

(ad|ab), (ad|ba), (da|ab), (da|ba)

X
l

ðaijalÞ
eaail

2ðbjjdlÞ � ðbljdjÞ
ebdjl

þ ðaijdlÞ
eadil

2ðaljbjÞ � ðajjblÞ
eabjl

 (

þðaljbiÞ
eabil

2ðajjdlÞ � ðaljdjÞ
eadjl

þ ðbijdlÞ
ebdil

ðajjalÞ
eaajl

þ ðb $ dÞ
!)

8 a[ b 5 c[ d (ab|bd), etc. Same as Case 7, with a $ b.

9 a[ c[ b 5 d (ab|cb), etc. Same as Case 7, with a $ b and d?c.

10 a[ c 5 d[ b (ab|cc), etc. Same as Case 6, with a $ c and d?b.

11 a[ b[ c 5 d (ab|cc), etc. Same as Case 10.

12 a[ b[ c[ d (ab|cd), (ab|dc), (ba|cd), (ba|dc),

(cd|ab), (cd|ba), (dc|ab), (dc|ba)

P
l

ðaijclÞ
eacil

2ðbjjdlÞ � ðbljdjÞ
ebdjl

þ ðc $ dÞ
� �

þ ða $ bÞ
� �

þ ½a $ c; b $ d�
� �

13 a[ c[ d[ b Same as Case 12.

14 a[ c[ b[ d Same as Case 12.

A 4-virtual integral (ab|cd) is multiplied by the contribution appropriate to its case and the result added to the C
ð3a
ij

matrix element.
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The preliminary Hartree-Fock calculation generating the mo-

lecular orbital basis for the ADC has been performed using the

GAMESS-UK package.28 We have used two different basis

sets,29 aug-cc-pVDZ and cc-pVTZ, at the tetrahedral equilibrium

geometry of the molecule,30 with a C��F bond length of 1.32 Å.

The ionization spectrum obtained with the nD-ADC(3) method

and the cc-pVTZ basis set is displayed in Figure 2. The spectra

obtained by the three different ADC(3) methods are of course

the same to within imperceptible deviations. The differences due

to the change in basis are also essentially marginal. The spec-

trum reproduces the experimental results quite well, except for

the interval 37.0–50.0 eV. An accurate comparison between

experimental and similar theoretical results can be found in ref. 31.

Even if the results of the three ADC calculations are practically

indistinguishable, the computation effort required in the three cases

varies very significantly, as we shall now analyze.

For the purpose of analysis, it is useful to see the entire

ADC computation as divided into three main steps:

1. The computation and storage of the smaller blocks of the

ADC matrix, involving the 1h and 1p configurations, their

coupling to the respective excitations (UII) and the constant

self-energy contribution.

2. The execution of the prescribed block-Lanczos iterations. In

this step we include also, for the Dyson computation, the pre-

liminary block-Lanczos reduction of the affinity block

described in ref. 18. At the end of the iterations, this process

yields a block diagonal subspace matrix that needs be subse-

quently diagonalized.

3. The diagonalization of the Lanczos projected block-diagonal

matrix. The final results are the (approximate) eigenvalues

and the corresponding eigenvectors. The latter may be com-

puted in full or, as is most often sufficient for the reproduc-

tion of ionization spectra18 and very much less demanding,

only their 1h (1p) components.

In Table 2 we report the timing on a ‘‘Intel Pentium 4 CPU

3.06 GHz’’ for the steps above in the three ADC methods. As

the table evidences, Step 1 is clearly more expensive in the non-

Dyson calculation, due to the necessary overhead to evaluate the

extra non-Dyson contributions to the 1h/1h block of the matrix.

However, this nD-ADC(3) overhead is much exaggerated in the

present tests because the code implementing it is in a very pre-

liminary stage of development where the problem of its effi-

ciency has not yet been studied in any detail. In addition, as

explained above, the full DEM approach to the computation of

the static self-energy is still used. Replacing this with the S(41)

method would significantly speed up Step 1 of the nD-ADC(3)

calculation.

During the second step of the calculations, the block-Lanczos

iterations are performed and here the superiority of the non-

Dyson approach is evident, largely offsetting the overhead

incurred in Step 1. Indeed the computation time requested is

well over one order of magnitude smaller than in the Dyson

cases. But the advantage of separating the ionization problem

from the electron affinity one is in fact even much greater.

Finally, in the last step, the diagonalization of the block-diag-

onal subspace matrix is performed. This is the least onerous step

in the calculation but here too the speed-up achieved in the non-

Dyson calculation is spectacular and is basically due to elimina-

tion of the 1p configuration space: the final size of the block-

diagonal matrix is equal to the number of iterations performed

times the number of Lanczos starting vectors. Now the latter is

equal to the total number of orbitals (1p 1 1h) in the standard

ADC, but only to the number of occupied orbitals in nD-ADC.

This makes for at least one order of magnitude reduction in size,

which translates into three orders of magnitude reduction in

diagonalization time. In addition, the band of the block-diagonal

matrix is also equal to the size of the main space and is thus

also reduced in nD-ADC.

Turning now to a brief comparison between the timings for

the two basis sets used, we mention that the number of active

orbitals was 105 in the aug-cc-pVDZ calculation and 145 in the

cc-pVTZ one. Although more data would be desirable for a

more thorough analysis, inspection of Table 2 then shows that

the time for the full ADC(3) calculation scales roughly as n5.5

Table 2. Computation Time (s) for the Various Steps of the three ADC

Procedures Discussed in the Text.

Basis Method Step 1 Step 2 Step 3 Tot

aug-cc-pVDZ ADC(3) 719.4 8168.5 371.8 9259.7

Reduced ADC(3) 719.8 4499.5 352.4 5204.3

nD-ADC(3) 2882.3 305.5 0.4 3188.2

cc-pVTZ ADC(3) 2997.4 50640.0 1034.1 54671.5

Reduced ADC(3) 2953.9 14239.8 1100.1 18293.8

nD-ADC(3) 11555.6 819.0 0.4 12375.0

The times reported are cumulative for all the separate symmetry calcula-

tions, each involving 200 Lanczos iterations, used to obtain the spectra

of Fig. 2. The time for Step 2 of the ‘‘Reduced ADC(3)’’ calculation

includes 50 block-Lanczos iterations to truncate the affinity block,

according to ref. 18.

Figure 2. The single ionization spectrum of tetrafluoromethane

obtained using the nD-ADC(3) method and the cc-pVTZ basis set.

The spectra obtained using the three different ADC methods are

essentially superimposable.
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(which is essentially the scaling of Step 2) while the affinity-

reduced and the nD-ADC calculations both scale as n4. How-
ever, this dependence is of course entirely dominated by the

DEM construction of the energy-independent self-energy in Step

1 and would be very much less demanding for the nD-ADC

method once the S(41) approach is implemented. Note further

that while Step 3 scales of course as n3 in the conventional

methods, it is independent of the basis size in nD-ADC, as here

it only depends on the number of electrons.

In the present example, for comparison purposes, we per-

formed the same number of iterations in all three calculations.

However, as we discussed earlier, the relevant rate of eigenvec-

tor convergence in the nD-ADC case is much more favorable

than in the conventional calculations, meaning that a much

smaller number of iterations is required to achieve convergence

on the desired region of the spectrum or, if the case, a much

wider spectrum can be studied. In the present case for example,

converging the same number of ionization poles requires as little

as one fourth of the number of Lanczos iterations.

SUMMARY AND CONCLUSIONS

The basic idea of the non-Dyson approach is to apply the ADC

procedure separately to the G2 (x) and G1 (x) parts of the

one-particle GF, instead of applying it to the self energy S(x).
The diagrammatic perturbation expansion of the latter is in fact

easier, and has for long time been the standard approach, but the

final result is made computationally impractical by the fact that

the N 2 1-electron (ionization) and the N 1 1-electron (affinity)

problems are coupled. In the nD-ADC approach, the two prob-

lems are fully decoupled and can be treated separately, at the

cost of some additional higher order terms in the small 1h/1h
(1p/1p) block of the ADC matrix. For calculating a molecular

ionization spectrum, the computational advantage of the nD-

ADC approach is enormous on at least three fronts. First, the

generally very much larger affinity configuration space (in

ADC(3), in particular, the 1p configurations and all their single

excitations) disappears from the ADC eigenvalue problem. This

makes the size of the ADC matrix vary as the square of the

number of electrons rather than of the basis set size, a reduction

of roughly two orders of magnitude for typical accurate molecu-

lar calculations. The diagonalizer (block-Lanczos in our case)

iterations are correspondingly much faster by several orders of

magnitude. Second, the elimination of the affinity poles auto-

matically makes the desired ionization energies appear at the

outer edge of the ADC spectrum rather than in the middle, and

this dramatically speeds up the convergence rate of the diagonal-

izer in terms of required number of iterations. Third, the main

configuration space, deprived of the 1p configurations, is typi-

cally one order of magnitude smaller and so are both the band-

width of the final Lanczos projection and its overall size for a

given number of block-iterations.

There are two new main computational issues which must be

successfully tackled in order to make the nD-ADC(3) approach

fully efficient for application to large molecular systems. The

first is that the extra third order terms that appear in the 1h/1h
block of the matrix involve two-electron integrals with four vir-

tual indices. As these are in general too numerous to be held in

fast memory in the sorted and individually addressable fashion

necessary to evaluate each matrix element in turn, we adopted

an integrals driven approach, where the list of integrals is

scanned (in principle, irrespective of their storage medium or

computational source) and their contributions suitably scattered

over the matrix elements. The second problem is presented by

the evaluation of the energy-independent term of the self-energy.

Adopting here the standard iterative approach where the ioniza-

tion and electron affinity spaces are still coupled defeats in part

the whole idea and advantage of the non-Dyson approach. Fortu-

nately, a new procedure has recently been proposed where the

decoupling of the N 2 1- and N 1 1-electron spaces is exploited

also for the construction of S(1).16 Work is in progress to incorpo-

rate this approach in our program. The preliminary tests presented

in this article clearly suggest that the final implementation of the

non-Dyson method will truly open new and exciting perspectives

for the theoretical simulation of molecular ionization spectra.
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