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Abstract 

Mechanical characterization of protein molecules has played a role on gaining insight 

into the biological functions of proteins, since some proteins perform the mechanical 

function. Here, we present the mesoscopic model of biological protein materials 

composed of protein crystals prescribed by Go potential for characterization of elastic 

behavior of protein materials. Specifically, we consider the representative volume 

element (RVE) containing the protein crystals represented by Cα atoms, prescribed by 

Go potential, with application of constant normal strain to RVE. The stress-strain 

relationship computed from virial stress theory provides the nonlinear elastic behavior 

of protein materials and their mechanical properties such as Young’s modulus, 

quantitatively and/or qualitatively comparable to mechanical properties of biological 

protein materials obtained from experiments and/or atomistic simulations. Further, we 

discuss the role of native topology on the mechanical properties of protein crystals. It is 

shown that parallel strands (hydrogen bonds in parallel) enhance the mechanical 

resilience of protein materials. 
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INTRODUCTION 

Several proteins bear the remarkable mechanical properties such as super-elasticity, high 

yield-strength, and high fracture toughness.1-5 Such remarkable properties of some 

proteins have attributed to the mechanical functions. For instance, spider silk proteins 

exhibit the super-elasticity relevant to spider-silk’s function.4,5 Specifically, the super-

elasticity of spider silk plays a role on the ability of spider silk to capture a prey such 

that high extensibility enables the spider silk to convert the kinetic energy of flying prey 

into the heat dissipation, resulting in the capability of capturing the prey. Furthermore, it 

has recently been found that spider silk protein possesses the remarkable mechanical 

properties such as yield strength comparable to that of high-tensile steel and fracture 

toughness better than that of Kevlar.6 This highlights that understanding of mechanical 

behavior of protein materials such as spider silk may provide the key concept for design 

of biomimetic materials, and that mechanical characterization of protein materials may 

allow for gaining insight into the biological functions of mechanical proteins. 

 Mechanical characterization of biological molecules such as proteins has been 

successfully implemented by using atomic force microscopy (AFM), optical tweezers, 

or fluorescence method. AFM has been broadly employed for characterization of 

mechanical bending motion of nanostructures such as suspended nanowires,7-9 and 

biological fibers such as microtubules.10 Fluorescence method for a cantilevered fibers 

such as microtubules11 and/or DNA molecules12 has allowed one to understand the 

relationship between persistent length (related to bending rigidity) and contour length, 

enabling the validation of the continuum model of biomolecules such as microtubule 

and DNA. In last decade, since the pioneering works by Bustamante and coworkers13,14 

and Gaub and coworkers,15,16 optical tweezer and/or AFM has enabled them to 
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characterize the microscopic mechanical behavior of proteins such as protein unfolding 

mechanics. Such protein unfolding experiments has been illuminated in that these 

studies may provide the free energy landscape of proteins related to protein folding 

mechanism.17,18 Nevertheless, microscopic characterization such as protein unfolding 

mechanics may not be sufficient to understand the remarkable mechanical properties of 

biological materials. 

 Computational simulation for mechanical characterization of proteins has been 

taken into account based on atomistic model such as molecular dynamics19 and/or 

coarse-grained model.20 Atomistic model such as steered molecular dynamics (SMD) 

simulation has allowed one to gain insight into protein unfolding mechanics.19,21 

However, such SMD simulation has been still computationally limited to small proteins 

since the time scale available for SMD is not relevant to the time scale for AFM 

experiments of protein unfolding mechanics. Recently, the coarse-grained model such as 

Go model has been recently revisited for mimicking the protein unfolding 

experiments.20,22 It is remarkable that such revisited Go model has provided the protein 

unfolding behavior quantitatively comparable to AFM experiments, and that it has also 

suggested the role of temperature, AFM cantilever stiffness, and other effects on protein 

unfolding mechanism.23 Eom et al24,25 provided the coarse-grained model of folded 

polymer chain molecules for gaining insight into unfolding mechanism with respect to 

folding topology, and it was shown that folding topology plays a role on the protein 

unfolding mechanism. 

 However, the computational simulations aforementioned have been restricted 

for understanding the microscopic mechanics of protein unfolding. The macroscopic 

mechanical behavior of protein crystals has not been much highlighted based on 
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computational models, albeit there have been few literatures26-28 on macroscopic 

mechanical behavior of protein crystals. Termonia et al29 had first provided the 

continuum model of spider silk such that their model regards the spider silk as β-sheets 

connected by amorphous Gaussian chains. Even though such model reproduce the 

stress-strain relationship for spider silk comparable to experiments, this model may be 

inappropriate since spider silk has been recently found to consist of β-sheets and 

ordered α-helices.30 Zhou et al31 suggested the hierarchical model for spider silk in such 

a way that spider silk is represented by hierarchical combination of nonlinear elastic 

springs, inspired by AFM experimental results by Hansma and coworkers.4 Kasas et al32 

had established the continuum model (tube model) for microtubules based on their AFM 

experimental results. These continuum models and/or hierarchical model mentioned 

above are phenomenological models for describing the macroscopic mechanical 

properties of biological materials. 

 There have been few literatures26-28 on the characterization of macroscopic 

mechanical properties such as Young’s modulus of biological materials such as protein 

crystals and fibers based on physical model such as atomistic model (e.g. molecular 

dynamics simulation) for protein crystal. Despite of the ability of atomistic model to 

provide the macroscopic properties of protein crystals,28 the atomistic model has been 

very computationally restricted to small protein crystals. 

 In this work, we revisit the Go model in order to characterize the macroscopic 

mechanical properties of biological protein materials composed of model protein 

crystals such as α helix, β sheet, α/β tubulin, titin Ig domain, etc. (See Table 1). 

Specifically, we consider the representative volume element (RVE) containing protein 

crystals in a given space group for computing the virial stress of RVE in response to 
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applied macroscopic constant strain. It is shown that our mesoscopic model based on 

Go model has allowed for estimation of the macroscopic mechanical properties such as 

Young’s modulus for protein crystals, quantitatively comparable to experimental results 

and/or atomistic simulation results. Moreover, our mesoscopic model enables us to 

understand the structure-property relationship for protein crystals. The role of molecular 

structure on the macroscopic mechanical properties for protein crystals has also been 

discussed. It is provided that, from our simulation, the native topology of protein 

structure is responsible for mechanical properties of protein crystals. 

 

MODELS 

MESOSCOPIC MODEL FOR BIOLOGICAL PROTEIN MATERIALS 

We assume that the mechanical response of biological materials (fibers), as shown in 

Fig. 1, can be represented by periodically repeated unit cell referred to as representative 

volume element (RVE) containing the crystallized proteins with a specific space group. 

We assume that a unit cell is stretched gradually according to the constant, discrete, 

macroscopic strain tensor Δε0, where Δε0 = 0.001. Here, it is also assumed that the unit 

cell is stretched slowly enough that the time scale of stretching is much longer than that 

of thermal motion of a protein structure. This may be regarded as a quasi-equilibrium 

stretching experiment, where thermal effect and rate effect are discarded.24,33 Once a 

constant, discrete strain tensor Δε0 is prescribed to a unit cell containing protein crystal, 

the displacement vector u due to strain Δε0 for a given position vector r of a protein 

structure is in the form of 

         (1) ( ) 0= Δ ⋅u r rε

Accordingly, the position vector r* of a protein structure after application of discrete, 
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constant strain tensor to unit cell becomes r* = r + u(r). Then, we perform the energy 

minimization process based on conjugate gradient method to find the equilibrium 

position req for ensuring the convergence of virial stress,28,34 i.e. ∂V/∂r = 0 at r = req, 

where V is the total energy prescribed to protein structure. 

 For computing the effective material properties of protein crystal, one has to 

evaluate the overall stress σ0 for a unit cell to contain protein crystal due to applied 

constant, discrete strain Δε0. The stress σ(r) at a position vector r, which is obtained 

from application of displacement u(r0) for a given position vector r0 for a protein crystal 

and consequently energy minimization process, can be computed from the virial stress 

theory35,36 

 ( ) ( ) (
1
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where N is the total number of atoms for a protein crystal in a unit cell, rij = rj – ri with 

the position vector of ri for an atom i in a unit cell, Φ(rij) the inter-atomic potential for 

atoms i and j as a function of distance rij between these two atoms,  indicates the 

tensor product, and δ(x) is the delta impulse function. The overall stress σ

⊗
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estimated. 
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Here V is the volume of RVE, and a symbol Ω in the integration indicates the volume 

integral with respect to RVE. 

 The process to obtain the stress-strain relationship for protein materials is 

summarized as below: 

(i) We adopt the initial conformation of a protein crystal as the native 
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conformation deposited in protein data bank (PDB) for a given protein 

crystal in a unit cell. Such initial confirmation for a protein crystal is 

denoted as r0. 

(ii) A discrete, constant strain tensor Δε0 is applied to a unit cell, so that the 

displacement field u for a protein crystal in a unit cell is given by u(r0) = 

Δε0·r0. The atomic position vector for a protein crystal is, accordingly, r* = 

r0 + u(r0) 

(iii) In general, the position vector r* is not in equilibrium state, i.e. ∂V/∂r|r = r* ≠ 

0. The equilibrium position vector req is computed based on energy 

minimization (using conjugate gradient method) for an initially given 

conformation r*. 

(iv) Compute the overall virial stress σ0 using Eq. (3) with an atomic position 

vector of r = req. 

(v) Set the initial conformation r0 as req, i.e. r0  req. 

(vi) Repeat the process (ii) – (v) until a unit cell is stretched up to a prescribed 

strain. 

In general, the stress-strain relationship for protein materials obeys the nonlinear elastic 

behavior. We employ the tangent modulus as the elastic modulus such that the elastic 

modulus (Young’s modulus) is estimated such as E = ∂σ0/∂ε0 at ε0 = 0,37,38 where ε0 is 

the total strain applied to RVE.  

 

INTER-ATOMIC POTENTIALS: GO MODEL & ELASTIC NETWORK MODEL 

In last decade, it was shown that protein structures can be represented by Cα atoms with 

an empirical potential provided by Go and coworkers, referred to as Go model.22,23,39 Go 
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model describes the inter-atomic potential for two Cα atoms i and j in the form of 

 
( ) ( ) ( )
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Here, k1 and k2 are force constants for harmonic potential and quartic potential, 

respectively, ψ0 is the energy parameter for van der Waal’s potential, λ is the length 

scale representing the native contacts, superscript 0 indicates the equilibrium state, and 

δi,j is the Kronecker delta defined as δi,j = 1 if i = j; otherwise δi,j = 0. Here, we used k1 = 

0.15 kcal/mol·Å2, k2 = 15 kcal/mol·Å2, ψ0 = 0.15 kcal/mol, and λ = 5 Å.40 The inter-

atomic potential in the form of Eq. (4) consists of potential for backbone chain 

stretching and the potential for native contacts. Go potential is a versatile model for 

protein modeling such that Go model enables the computation of conformational 

fluctuation quantitatively comparable to experimental data and/or atomistic simulation 

such as molecular dynamics.39 Moreover, Go model has recently allowed one to 

understand the protein unfolding mechanics qualitatively comparable to AFM pulling 

experiments for protein unfolding mechanics.22,23 

Elastic network model (ENM), firstly suggested by Tirion41 and later by several 

research groups,42-47 regards the protein structure as a harmonic spring network. The 

inter-atomic potential for ENM is given by 

 ( ) ( ) (2

2
o

ij ij ij c ij
Kr r r H rΦ = − ⋅ − )or       (5) 

Here, K is the force constant for an entropic spring (K = 1 kcal/mol·Å2),42 rc is the cut-

off distance (rc = 7.5 Å), and H(x) is Heaviside unit step function defined as H(x) = 0 if 

x < 0; otherwise H(x) = 1. As shown in Eq. (5), the harmonic potential represents the 

native contacts defined in such a way that the two Cα atoms i and j are connected by an 
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entropic spring with force constant K if the equilibrium distance  between two C0
ijr α 

atoms i and j is less than the cut-off distance rc. 

 

RESULTS AND DISCUSSIONS 

We take into account the biological materials composed of model protein crystals 

(shown in Table 1) and their mechanical behaviors. The number of residues for model 

protein crystals ranges from 20 to ~2000, which are typically computationally 

ineffective for atomistic simulation such as molecular dynamics for mechanical 

characterization. For mechanical characterization of protein crystals, the constant 

volumetric strain e is applied to RVE, in which protein crystal resides. 

 ( )0 0 0 01 1
3 3xx yy zze Tr ⎡ ⎤= + + ≡ ⎣ ⎦ε ε ε ε       (6) 

where Tr[A] is the trace of matrix A, and εxx is the normal strain induced by extension in 

longitudinal direction x. Once the overall stress for model protein crystal is computed 

from Eq. (3), the hydrostatic stress (pressure) p can be estimated such as 

 ( ) [ ]1
3 3xx yy zzp 1Trσ σ σ σ= + + ≡       (7) 

Here, σxx is the normal stress in the longitudinal direction x. The constitutive relation 

provides the material properties such as Young’s modulus E and bulk modulus M such 

as p = Me; and consequently, M = E/[3(1 – 2ν)], where ν is the Poisson’s ratio.38 

 For mechanical characterization of protein materials, we restrict our simulation 

to quasi-equilibrium stretching experiments,24 where the thermal effect is disregarded. 

Thermal effect does also play a role in mechanical behavior of protein materials, since 

thermal fluctuation at finite temperature assists the bond rupture mechanism, i.e. 

thermal unfolding behavior.23,48 However, thermal effect does not change the 
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mechanical unfolding pathway related to native topology of protein.23,48 Also, the bond 

rupture force (i.e. a peak force, corresponding to the bond rupture event, in the force-

extension curve) as well as force-extension curve are insensitive to temperature change 

near the room temperature.23 Moreover, the mechanical behavior of materials is 

generally dependent on stretching rate.49 The protein unfolding mechanism depends on 

the pulling rate such that bond rupture force is determined by stretching rate.25,34,50 

However, such stretching rate effect does not affect the unfolding pathway mechanism 

responsible for mechanical resilience of protein structure.24,25 Further, rate effect is 

generally not a control parameter for AFM bending experiment, which provides the 

Young’s modulus of biological materials such as microtubule.11 Thus, quasi-equilibrium 

stretching experiment, which discards the thermal effect and the stretching rate effect, is 

sufficient to understand the role of folding topology in the mechanical behavior of 

protein materials as well as their mechanical properties such as Young’s modulus. 

The relation between hydrostatic stress and strain for biological protein 

materials made of model protein crystals are taken into account with virial stress theory 

based on Go potential prescribed to protein crystal structure. Based on the relationship 

between hydrostatic stress and strain, we compute the Young’s modulus for protein 

materials composed of model protein crystals (for details, see Table 1). First, let us 

consider the tubulin as a model protein crystal and its mechanical properties. Tubulin is 

renowned as a component for microtubules, which plays a mechanical role in 

maintaining the cell shape. Our simulation provides that the Young’s modulus for 

biological material consisting of tubulin crystal is Etub = 0.138 GPa, which is 

comparable to AFM bending experiments of microtubule predicted as E = ~0.1 GPa.10 It 

is remarkable that our simulation allows for computation of the material property of 
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microtubule based on the tubulin crystals, which is comparable to AFM experimental 

results. However, it should be noted that estimated Young’s modulus by experiments is 

very sensitive to experimental environments and/or experimental methods. The Young’s 

modulus of microtubule evaluated as Etub = ~0.1 GPa by using AFM bending 

experiments10 is different from that using nondestructive method (Etub = ~2.5 GPa)51 by 

an order. Such discrepancy in different experiments may be attributed to the role of fiber 

length on the persistent length of microtubule related to its bending rigidity (elastic 

modulus).11 Also, the other effects such as temperature and solvent may affect the 

estimation of Young’s modulus of biological fibers.10 Further, for validation of our 

computational model for biological protein materials consisting of protein crystals, as 

shown in Fig. 2, we also compare the mechanical behavior of titin Ig domains such as 

proximal and distal domains. Our simulation suggests that distal domain exhibits the 

better mechanical resistance than proximal domain (i.e. Eprox = 0.187 GPa < Edist = 

0.254 GPa), in agreement with experimental result showing that distal domain is stiffer 

than proximal domain.52 

 Fig. 2 depicts the mechanical resistance of biological materials composed of 

model protein crystals. As mentioned above, the mechanical property such as Young’s 

modulus estimated from our model is quantitatively and/or qualitatively comparable to 

experimental results (e.g. microtubule, titin Ig domain). It is remarkable that, in Fig. 2, 

the Young’s modulus for biological materials based on model protein crystals is in the 

range of 0.1GPa to 1 GPa, in agreement with experimental result that Young’s modulus 

for biological materials made from proteins usually ranges from 1 MPa (e.g. elastin) to 

10 GPa (e.g. dragline silk).53 It is also interesting in that our simulation shows that β-

sheet exhibits the excellent mechanical resistance such as Young’s modulus E and 
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maximum hydrostatic stress, σmax, among model protein crystals. This is in agreement 

with previous studies24,25,34,54 which reported that β-sheet structural motif plays a vital 

role on toughening the biological materials. 

 For further understanding the role of molecular interactions as well as topology 

of protein crystal, we employ the elastic network model (ENM)41,42 instead of Go 

potential for computing the virial stress for model protein crystals – α-helix and β-sheet. 

Since ENM assumes the harmonic potential field to protein structure, the simulation 

based on ENM predicts the piecewise linear elastic behavior of two model protein 

crystals. As shown in Fig. 3, the ENM-based simulation overestimates the Young’s 

modulus of two model protein crystals, which may be attributed to the harmonic 

potential field prescribed to protein structure. This indicates that, for precise 

quantification of material properties of protein crystal, anharmonic potential field (e.g. 

Go potential) is necessary. However, it is remarkable that even ENM-based mesoscopic 

model provides the mechanical resistance of two model protein crystals, qualitatively 

comparable to our model based on Go potential. Specifically, mesoscopic model based 

on both ENM and Go model (Go potential) provide that β-sheet possesses the higher 

Young’s modulus than α-helix by factor of ~2. This implies that the material property 

such as Young’s modulus for biological protein material may be correlated with native 

topology of protein crystal. Moreover, we also consider the fibronectin III (fn3) 

domains with different crystal structures for understanding the role of protein topology 

on the material property. As shown in Table 1, our mesoscopic model provides that fn3 

domain with a space group of P43212 exhibits the higher Young’s modulus than those of 

space groups such as P21 and/or I2 2 2. This indicates that the topology of crystal 

structure dictated by space group does also play a role on Young’s modulus of protein 
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materials. 

 In order to gain insight into the role of native topology on the mechanical 

properties of biological protein materials, we introduce the dimensionless quantity Q 

representing the degree of folding topology of proteins. For a protein with N residues, 

the degree-of-fold, Q, is defined as Q = Nc/(N(N – 1)/2), where Nc is the number of 

native contacts and N(N – 1)/2 is the maximum possible number of native contacts. 

Here, the native contact is defined in such a way that, if two residues are within a cut-

off distance (7.5 Å), then these two residues are in the native contact. The degree-of-

fold (Q) is almost identical to contact-order (CO), which is typically used to represent 

the native topology of proteins (see Fig. 4). Herein, the contact-order is defined such 

as55 

 1
ij

c

CO S
L N

=
⋅ ∑Δ        (8) 

where L is the total number of residues, Nc is the total number of native contacts, and 

ΔSij is the sequence separation, in residues, between contacting residues i and j. In Fig. 5, 

it is shown that the degree-of-fold, Q, is highly correlated with Young’s modulus, 

implying the role of contact-order on the Young’s modulus for protein materials. 

Specifically, α-helix and β-sheet exhibit the high degree-of-fold, Q, as well as high 

Young’s modulus. On the other hand, some protein materials such as titin Ig domains 

and TTR have the low degree-of-fold, Q, but intermediate value of Young’s modulus. 

This may be ascribed to the fact that titin Ig domain and TTR are known as mechanical 

proteins which performs the excellent mechanical role due to hydrogen bonding of β-

sheet structural motif. This indicates that hydrogen bonding of β-sheet motif plays a 

significant role in mechanical properties of biological protein materials. Moreover, we 

also consider the relationship between degree-of-fold, Q, and maximum hydrostatic 
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stress, σmax. As shown in Fig. 6, β-sheet possesses the high degree-of-fold, Q, as well as 

high maximum stress, σmax, while α-helix exhibits the relatively high degree-of-fold, Q, 

but low maximum stress, σmax. This may be attributed to the fact that α-helix behaves 

like a nonlinear helical spring, whereas β-sheet acts like a spring with breakage of 

hydrogen bonds. In general, the mechanical strength of protein materials is typically 

originated from the unfolding of folded domain induced by breakage of hydrogen 

bond.24,34,54 This is consistent with our simulation results showing that titin Ig domain 

and TTR have the relatively high maximum stress, σmax, albeit these protein materials 

have the low degree-of-fold, Q. In other words, the high maximum stress for titin Ig 

domain and TTR is originated from the β-sheet structural motif that undergoes the 

bond-breakage upon mechanical loading. This indicates that the β-sheet, which has the 

high degree-of-fold, Q, is responsible for high yield stress of biological protein 

materials through breakage of hydrogen bond of β-sheet structural motif. 

 For deeper understanding the role of native topology on the elastic resilience of 

protein materials, let us consider the polymer chain with hydrogen bonds that can be 

unfolded in response to external mechanical loading (see Fig. 7). Here, we take into 

account the two limiting cases: (i) a polymer chain with NB serial bonds, and (ii) a 

polymer chain with N

B

BB parallel bonds. For a single bond, the rate for bond-breakage is 

given by Bell such as k(f) = k0exp(f/fc), where k(f) is the unfolding rate as a function of 

force (f) applied to a single hydrogen bond, and fc is given as fc = kBT/xB b with 

Boltzmann’s constant kBB, temperature T, and pulling distance xb.25,54,56-58 The probability 

for a bond to withstand a force f with a loading rate μ is P(f) = exp[(k0fc/μ){1 – 

exp(f/fc)}]. Now, consider the case (i) where a polymer chain with NB serial bonds is 

pulled with a loading F and a loading rate μ. For this case, the force exerted on every 

B
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bond is identical such as f = F for every bond. The probability for every bond in serial 

configuration to be intact under the mechanical loading F is in the form of 

 ( ) ( )(0exp 1 exp / )
BN

c
c

k fP F F f
μ

⎡ ⎤⎧
= −⎨⎢

⎩ ⎭⎣ ⎦

⎫
⎬⎥      (8) 

The probability density ρ(F) to find the first fracture event of any single bond under the 

mechanical loading F is given by ρ(F) = –dP/dF. The most probable mechanical loading, 

Fm, for the first fracture event is obtained from dρ/dF = 0 such as Fm = fcln[μ/NBkB 0fc]. 

This indicates that, for a serial bond, the force at fracture event of a bond has the weak, 

logarithmic dependence on number of serial bonds. On the other hand, for the case (ii) 

where parallel bonds reside in the polymer chain, the force exerted for each bond in 

parallel configuration is given by f = F/NBB. The probability to withstand the force F for 

every bond in parallel is given as 

 ( ) ( )(0exp 1 exp / )
BN

c
B c

k fP F F N f
μ

⎡ ⎤⎧
= −⎨⎢

⎩ ⎭⎣ ⎦

⎫
⎬⎥     (9) 

In the similar argument to case (i), the most probable mechanical force, Fm, for the first 

fracture event for any single bond is estimated such as Fm = NBfB cln[μ/NBBk0fc]. This 

suggests that the force corresponding to the rupture of any single bond in parallel 

configuration is dependent on the number of bonds, NB, with a scaling of FB m ~ 

NBBln(1/NB). It indicates that the bonds in parallel configuration improve the mechanical 

resistance to mechanical loading. Conclusively, from these two limiting cases, the 

configuration of bonds related to native topology of protein structure plays a dominant 

role on the mechanical resilience dictated by mechanical loading for fracture event of a 

bond. In other words, the mechanical resilience of proteins is correlated with the native 

topology characterized by the secondary structure contents, that is, contact order.  

B

55,59-61
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As stated earlier, the bonds in parallel configuration enhances the mechanical resilience, 

consistent with previous studies  showing that parallel strands in β-sheet structural 

motif are responsible for mechanical strength of mechanical proteins. 

24,34,54

 

CONCLUSION 

In this study, we provide the mesoscopic model of biological protein materials made of 

protein crystals based on Go model and virial stress theory. It is shown that our model 

enables the quantitative predictions of the mechanical properties (e.g. Young’s modulus) 

for biological protein materials, quantitatively and/or qualitatively comparable to AFM 

experimental result. More remarkably, we suggest the structure-property relation for 

protein materials such that degree-of-fold, Q, representing the folding topology plays a 

vital role on both Young’s modulus and maximum stress exerted to protein materials. 

For deeper understanding the role of such native topology on mechanical resilience of 

protein materials, we introduced the simple chain model with NB hydrogen bonds in two 

configurations: (i) serial configuration, and (ii) parallel configuration. It is provided that 

the hydrogen bonds in parallel configuration enhance the mechanical resilience, 

highlighting the significance of hydrogen bonds in parallel configuration typically 

observed in β-strand structural motif for mechanical behavior of protein materials. In 

summary, our model based on Go potential and virial stress theory may make it possible 

to further understand the structure-property relation for protein materials made of large 

protein crystal which may be computationally inaccessible with atomistic simulation. 

B
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Figure Captions 
 
Fig. 1. Schematic illustration of biological protein materials composed of protein 
crystals. (a) cartoon of a fiber, made of protein crystals, under mechanical loading. (b) 
protein crystal lattices constituting the biological fiber. (c) a unit cell containing a 
protein crystal 
 
Fig. 2. Stress-strain curves, computed from our mesoscopic model based on Go 
potential, for biological protein materials composed of model protein crystals 
 
Fig. 3. Stress-strain curve, computed from our mesoscopic model with Tirion’s potential, 
for biological protein materials made of α helix and β sheet 
 
Fig. 4. Relationship between degree-of-fold (Q) and contact-order (CO). It is shown that 
degree-of-fold is highly correlated with contact order such that Q ≈ CO. 
 
Fig. 5. Relationship between Young’s modulus of biological protein materials and 
degree-of-fold Q. It is shown that degree-of-fold Q is highly correlated with Young’s 
modulus of protein materials 
 
Fig. 6. Relationship between maximum hydrostatic stress of protein materials and 
degree-of-fold Q. It is provided that degree-of-fold Q is related to the mechanical 
resilience of protein materials. 
 
Fig. 7. Schematic illustration of a polymer chain with hydrogen bonds (a) in a serial 
configuration and/or (b) in parallel configuration 
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Table 1. Model Protein Crystals for Biological Protein Materials 

 
 
* Young’s moduli of model protein materials are computed from our mesoscopic model 
(in silico) based on Go potential field. 
# Young’s moduli of protein fibers are obtained from in vitro experiments reported in 
References10,51,53. 
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