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Abstract
We describe a complete implementation of all-atom protein molecular dynamics running entirely on
a graphics processing unit (GPU), including all standard force field terms, integration, constraints,
and implicit solvent. We discuss the design of our algorithms and important optimizations needed
to fully take advantage of a GPU. We evaluate its performance, and show that it can be more than
700 times faster than a conventional implementation running on a single CPU core.

Keywords
GPU; molecular dynamics; implicit solvent

Introduction
Graphics processing units (GPUs) originated as specialized hardware useful only for
accelerating graphical operations, but they have grown into exceptionally powerful, general
purpose computing engines. Modern GPUs far exceed CPUs in terms of raw computing power.
1,2 As a result, the use of GPUs for general purpose computing has become an important and
rapidly growing field of research. Many important algorithms have been implemented on
GPUs, often leading to a performance gain of one to two orders of magnitude over the best
CPU implementations.3

Molecular dynamics simulations of macromolecules are extremely computationally
demanding, which makes them a natural candidate for implementation on GPUs. With
currently available MD codes, for example, it is impossible to simulate the folding of any but
the smallest, fastest folding proteins.4,5 MD uses a combination of several algorithms. A few
previous studies have investigated GPU implementations of specific algorithms used for MD.
For example, Elsen et al., implemented a simple implicit solvent model (distance dependent
dielectric).1 Stone et al., have examined a GPU implementation for electrostatics.2 Anderson
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et al., have implemented several algorithms, including integrators, neighbor lists, Lennard-
Jones, and bond forces (but not torsions or constraints).6

Here, we present the GPU implementation of a complete, modern implicit solvent model for
all-atom protein simulation in traditional force fields, with a very high performance compared
to a single CPU core. We discuss some aspects of GPU architecture that impact the design of
the code, and describe important optimizations needed to obtain good performance. We then
evaluate it, and show that it can sometimes provide over 700 times the speed of highly optimized
CPU based implementations.

Challenges of Porting to a GPU
While GPUs offer tremendous computing power, this comes at the cost of reduced flexibility.
GPUs are different from CPUs in several fundamental ways that impact how they can be
programmed. It is important to understand these differences to obtain good performance.

Scaling
CPUs typically provide a small number of very fast processing units, whereas GPUs have a
large number of slower processing units. For example, the current high end Intel Xeon CPU
has four processor cores,7 while the current high end ATI GPU (Radeon 4870) has 800 math
units.8 That number is likely to continue increasing with future generations. Algorithms used
for MD are traditionally evaluated based on how they scale with the number of atoms being
simulated, but scaling considerations are only meaningful when the number of atoms is large
compared to the number of math units. GPUs have already reached a point where, for small or
medium sized proteins, the number of math units may be comparable to the number of atoms.
On such a processor, the total amount of computation to be done may be much less important
than how fully the available processing resources can be utilized.

Memory Access
One feature that CPUs and GPUs have in common is that memory access is much slower than
computation, although GPUs have much faster memory systems, some having greater than 100
GB/second. Loading a value from memory can stall the processor for tens or even hundreds
of clock cycles. CPUs deal with this by including a large amount of very fast cache memory.
This allows programs to access memory in random order, and as long as the amount of data in
use at one time is not too large, execution is fast.

In contrast, GPUs have only a very small amount of special purpose cache memory and hide
latency with massive multithreading. Programs cannot rely on caches to hide latencies from
random memory access. Instead, it is absolutely essential to group related data together and
access it in contiguous blocks. In many cases, it is more efficient to repeat a calculation than
to store the result in memory and reload it later.

Communication Between CPU and GPU
Data access from the math units to GPU local memory is slow compared to computation, but
transferring data between the GPU and CPU across the PCIe bus is much slower still. For this
reason, communication between the GPU and CPU should be kept to an absolute minimum.
Ideally, the simulation should be executed entirely on the GPU, and results should be sent back
to the CPU only infrequently for analysis and reporting. This requires that all parts of the
computation be implemented on the GPU, including force evaluations, constraints, integration,
etc. Otherwise, it will be necessary to transfer coordinates and/or forces between the CPU and
GPU as part of each time step, which will reduce performance.

Friedrichs et al. Page 2

J Comput Chem. Author manuscript; available in PMC 2010 April 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



To test the effect of data transfers between the CPU and GPU, we modified the molecular
dynamics code described in the next section to transfer all of the atomic coordinates from GPU
to CPU and back again at each time step. No extra computation was done with these values;
they were simply transferred and then discarded. Simulating the 576-atom villin headpiece
with implicit solvent on an ATI Radeon 4870 GPU, this change caused the overall performance
to decrease by 20%.

This applies not just to transferring data, but also to issuing commands. With any device
controlled by a CPU but not physically part of it, there is a time delay between issuing a
command and the beginning of its execution. In the case of a GPU, this latency can be greater
than the time required to actually perform the calculation. For example, on an ATI Radeon
4870 GPU running under Windows XP, the latency of executing a kernel is ∼25 µs with the
AMD Stream SDK 1.0.9 Given this processor’s maximum theoretical performance of over one
teraflop,8 25 million floating point instructions could have been executed in that time. To
combat this, it is necessary to do as much computation as possible in each function, combining
what would logically be several function calls into one whenever possible.

Flow Control
Another important feature of GPUs is that the processors are not independent of each other.
Threads are arranged in groups (typically between 16 and 64 threads on current GPUs), and
all the threads in a group must execute exactly the same instruction at the same time (i.e. SIMD
execution). This requires branching and other types of flow control to be used with care, since
there is a large performance penalty if multiple branches need to be followed by the threads in
a single group. When branch divergence occurs within a thread group, all threads will pay the
cost of executing both sides of the branch. Whenever possible, it is best to avoid branching
altogether. When it is absolutely necessary, it should be done in a spatially coherent way so
that adjacent threads will usually follow the same branch.

Development Tools
Aside from the technical differences between CPUs and GPUs, the development tools available
for GPU programming are much less mature than those for CPU programming. Our initial
efforts on AMD boards were marked by considerable problems with buggy compilers, errors
introduced by the requirement that array indices be floating point, limitations on the number
of registers available in a kernel and the iteration count available in do-loops, to name several
of the early ongoing issues. AMD and NVIDIA have expended considerable effort in fixing
these types of problems, and as a result porting code to the GPUs is now much less painful. A
major improvement on the AMD side was the introduction of the CAL9 framework which
allowed us to discontinue the use of the Microsoft DirectX 9 compiler which was the source
of many problems. Nonetheless, problems caused by immature development tools are still
frequently encountered.

In summary, realizing the full potential of the GPU still requires considerable effort in
reworking the data structures and code to take advantage of the particular GPU architecture,
and not all algorithms are amenable to these types of architecture. The AMD and NVIDIA
implementations described here are different in many ways, reflecting the different strategies
required to optimize the performance for the different boards.

Implementation
ATI Implementation Details

The ATI implementation is based on the Brook stream programming language.10 Brook
extends the C programming language to allow general-purpose programming on a GPU. The
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primary Brook constructs are streams and kernels. Streams are collections of relatively
homogenous data that can be operated on independently in parallel. Kernels are the subroutines
running on the GPU which carry out the parallel operations on the streams. In the current
context, an example stream would be the atom coordinates which are input to a kernel that
computes the bonded forces on each atom.

For the generations of ATI boards that were available while the software was under
development, scatter capability (i.e. indirect writes such as a[i] = x) was not available. To
circumvent this limitation, the different force and SHAKE calculations are carried out using
two kernels:

1. A computational kernel to calculate the force or modified coordinates in the case of
SHAKE and output the results to the frame buffer.

2. For each computational kernel a corresponding helper kernel to gather and sum the
results stored in the frame buffer and update the final atom-indexed force array with
the sum or updated coordinates in the case of SHAKE.

Bonded and Nonbonded 1—4 Interactions
The four bonded interactions (harmonic, angle, proper, and Ryckaert-Bellemans dihedrals) and
the 1–4 nonbonded Lennard-Jones and Coulomb interactions are calculated by a single kernel.
The inputs to the kernel are streams containing the indices of four covalently bonded atoms
and the bond parameters (force constants, ideal bond lengths and angles, …) needed to calculate
all possible bond and nonbonded 1–4 interactions among the four atoms. The kernel output is
the sum of these six forces for each of the four atoms. For example, if the atom indices are (i,
j, k, l), then the harmonic bond forces between atoms (i, j), (j, k), (k, l), angle bond force (i, j,
k) and (j, k, l), both proper and Ryckaert-Bellemans dihedral forces, and the 1–4 nonbonded
force between (i, l) are computed. Many of the atom sub groups will occur in more than one
input group. For example, the input atom indices (i, j, k, l) and (i, j, m, n) both implicitly include
the harmonic bond (i, j) interaction. To prevent the harmonic bond interaction between atoms
(i, j) from being included more than once, the input force constant for the duplicate entry is set
to zero. A similar approach is followed for the other force subtypes to insure that each valid
interaction is included exactly once and that invalid interactions do not contribute to the output
force.

The strategy of computing forces that do not ultimately contribute to the final output force
superficially seems to increase the computational time. However, the advantages of this
approach are two-fold:

1. The number of helper gather kernels required is reduced from 15 to 4,

2. The number of memory accesses is significantly reduced.

The computational effort used in the helper kernels is minimal. However the overhead
associated with the launch of each kernel is significant relative to the overall computational
time for the relatively small systems considered here and in aggregate the overhead required
is a significant fraction of the total time. For larger systems or for boards with scatter capability,
this advantage may diminish in importance depending on the performance of scatter.

The number of memory accesses is minimized since if the coordinates for atoms i, j, k are
retrieved to calculate the angle bond force, then under the merged approach adopted here the
coordinates can be ‘reused’ for the calculations of the (i, j) and (j, k) harmonic bond forces. In
general memory accesses are expensive relative to computations in terms of clock cycles
required. For the 576-atom villin headpiece, the total number of bonded interactions was 4197,
the merged list had 1770 entries. Of the 1770 entries, 552 of the Ryckaert-Bellemans
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interactions, 1652 proper dihedral, 2485 angle, 5016 bonded, and 267 1–4 force calculations
were not used (i.e., force contribution was set to zero). However, the speedup over an earlier
unmerged collection of kernels for each of the bond and 1–4 nonbonded interactions was a
factor of 6.2 for villin.

Nonbonded Interactions
The nonbonded interactions include the 6–12 Lennard-Jones and Coulomb potentials. The
inputs to the computational kernel are the two Lennard-Jones parameters, the atomic charges,
and an exclusion matrix of size N2/4, where N is the number of atoms in the system. The output
is the computed nonbonded forces. The entries in the exclusion matrix are encoded such that
the (i, j) element of the matrix signals whether atoms with indices 4j, 4j+1, 4j+2, 4j+3 are to
be excluded from interacting with atom i; this reduces the number of memory access and storage
required. The choice of four j-entries per entry was made based on the degree of loop unrolling
of the inner loop (see below). The encoding is accomplished by setting the initial value of each
entry to 210 = 2 × 3 × 5 × 7. If atom 4j is to be excluded, the entry is divided by two, if atom
4j+1 is to be excluded the entry is divided by 3,… The kernel then decodes the exclusion entry
by testing whether the modulus of the exclusion matrix entry divided by (2, 3, 5, 7) for the four
atoms (4j−4j+3) respectively, is nonzero. For instance if atom 4j+2 is to be excluded from
interacting with atom i, but the other three atoms (4j, 4j+1, 4j+3) are to be included, then the
exclusion matrix entry at (i, j) is 42. Since 42 is divisible by 2, 3, 7, but not 5, the interaction
of atom i and atom 4j+2 is excluded, while the other three interactions are included. The
exclusion matrix can be reduced to size O(N) at the expense of making the kernel slightly more
complicated. However, empirical tests showed this reduction does not lead to a significant
lowering of the computational time required for the proteins of sizes being simulated here.

For the current ATI implementation, the computation time for the nonbonded terms scales as
N2 due to the absence of a scatter capability. In contrast, the Nvidia implementation makes use
of scatter capability and the computation time scales as N2/2. The nonbonded computational
kernel (as opposed to helper kernel to gather the total force on each atom) unrolls both the inner
and outer loops over the atoms by four. One objective of unrolling is to take advantage of
streaming SIMD extension (SSE)-like capabilities available on some graphic boards. For
example in calculating 1/r, the code

is used, where r2 contains the four squared distances between atom i and atoms j, j+1, j+2, j
+3. The function rsqrt( ) computes 1/√r for all four distances using SSE-like instructions to
reduce the number of processor cycles needed. Unrolling also lowers the number of memory
accesses since atom coordinates and parameters are reused: the coordinates and parameter
associated with atom i only need to fetched from memory once to calculate the force between
it and atoms j, j+1, j+2, j+3 and not four times as would be required for more naïve
implementations.

Another optimization technique employed was to partition the inner loop over the atoms into
roughly equal-sized blocks that are processed independently. Hence if the number of blocks is
specified as p, then for a fixed outer loop index i (in practice i, i+1, i+2, i+3 since the outer
loop is unrolled by four), p GPU threads are used to process the inner loop. The first thread
would handle atoms with indices j = 1, q, the second thread would handle atoms with indices
j = q+1, q+2, … 2q, … and the pth thread would handle atoms with indices j = q × (p − 1) +
1, N, where q − int(N − 1/p) + 1. The advantage of this approach is that it allows the thread
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scheduler on the GPU board to allocate resources more efficiently. While one block of work
is waiting for coordinates and parameters to be retrieved from memory, another block whose
data is available can be processed. The disadvantage to this approach is that more gathers are
required to sum the total force on each atom: for p blocks, p gathers will be required to sum
the contribution from each block. For the current generation of boards, a value of p equal to
four was found to be optimal. For larger values of p, while the computation kernel was faster,
the speed up was offset by the increased time to do the gathers, resulting in negative or little
net gain.

OBC Implicit Solvent
The implicit solvent model used here is based on the OBC Type II model.11 The electrostatic
part of the solvation free energy is given by the equation

Here qi is the charge on atom i, Ri is the Born radius for atom i, rij is the distance between
atoms i and j, and ɛw is the solvent dielectric. fGB (rij, RI, Rj) is taken to have the functional
form:

Since the Born radii are a function of the conformation of the biomolecule and hence the ri the
force dΔGpol/dxik is given by the equation

The calculation of the OBC force is implemented with three N2 loops. The first loop calculates
the Born radii based on the current biomolecule conformation. The next loop computes
(∂ΔGpol/∂rij) and accumulates the ∂ΔGpol/∂Rm for each atom i. Using the term ∂ΔGpol/∂Rj
calculated in the second loop, the third loop computes the second term of the force and adds it
to the term ∂ΔGpol/∂rij to get the implicit solvent force on each atom.

The optimization strategies employed for the nonbonded interactions discussed above were
also applied to both of the implicit solvent loops with the same degree of unrolling and
partitioning of the inner loop. One approach that was tried but was unsuccessful in reducing
the computational time was to merge the second loop of the implicit solvent calculation with
the non-bonded calculations. The obvious advantage of this approach is that only two sets of
N2 loops instead of three would be needed. This approach would also remove one set of gathers
required to sum the forces. However, the required time actually increased. Further analysis
showed that the number of cache misses increased significantly and the register requirements
were much higher.

Another approach attempted was to merge the calculation of the Born radii with the third loop,
thereby removing the need for the initial N2 loop. The drawback to this strategy is that the Born
radii used in the two remaining loops are then based on the conformation at the previous
timestep. Given that the Born radii change slowly relative to the femtosecond timestep
employed, the approximation appeared to be worth the reduction in computational effort.
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However energy conservation studies using a Verlet integrator showed the approximation led
to unacceptable drift in the energy, and as a result, this approach was abandoned.

SHAKE Algorithm and Stochastic Dynamics
Stochastic dynamics was applied to the system as outlined by van Gunsteren and
Berendsen12 The bond lengths between hydrogen atoms and their heavy atom partners were
constrained to their ideal value using the SHAKE algorithm.13 The stochastic dynamics
algorithm with constraints is implemented in four major steps (see Performance section of Ref.
12): an integration step, followed by an application of SHAKE, followed by another integration
step and a final application of SHAKE. Each of the steps is implemented as a O(N) loop and
no effort was made to optimize these steps since the contribution of this portion of the
simulation to the total simulation time is small.

One small change to naïve implementations of stochastic dynamics and then SHAKE algorithm
was to not compute the new coordinates until the last major stochastic dynamics step; instead
the change between the new and old coordinates is passed between the method calls (Δx), as
opposed to intermediate coordinate values (x). This reduces the number of additions and
subtractions and hence minimizes the error introduced through rounding. We observed a
significant improvement in the degree of energy conservation when this small change was
included with runs using the velocity Verlet algorithm.

The Gaussian-distributed random numbers used in the stochastic dynamics algorithm are
generated using the KISS14 and Box and Mueller15 algorithms. The KISS algorithm is a
combination of three simple random number generators that yields a uniform distribution of
values on the interval [0, 1]; it has been shown to pass a number of stringent tests.16 The Box-
Mueller algorithm takes the output values from KISS and transforms them into a Gaussian
distribution. A large set of random values (∼106) is generated on the CPU using these
algorithms and written to the GPU; the random values cannot be generated efficiently on the
GPU due to a lack of integer arithmetic on the available ATI boards. For even relatively small
proteins, the set of random values is quickly consumed. To generate a new set of random values
on the CPU and copy them to the GPU each time a set is exhausted slows the program
significantly. Hence the following strategy was adopted: once the set of random values is
consumed, the values are recycled after being randomly permuted. After 100 such shuffles, a
new set of random values is generated on the CPU and copied to the GPU, overwriting the
previous set. In practice for a protein of 544 atoms, a new set was generated every ∼100,000
timesteps and for a 1254 atom protein every ∼40,000 timesteps.

NVIDIA-Specific Implementation Details
The NVIDIA implementation of the kernel was first meant to be a rough port of the existing
ATI code into CUDA, a C-like language present on all NVIDIA GPUs from the 8xxx series
onward. In general, the CUDA implementation followed the ATI implementation outlined
above. However, it immediately became clear that exploiting architectural features of CUDA
allowed for significantly more efficient execution, with differences from the ATI
implementation as detailed below.

Bonded and Nonbonded 1–4 Interactions
Relatively little effort was put into the CUDA implementation of bonded and nonbonded 1–4
interactions because it only consumes about 1/6th of the total execution time and because
CUDA allows one to spread the calculation over many independent threads. The only caveat
here is that the interactions were padded such that no thread divergence based on the type of
bonded interaction would occur within a warp since the execution of such divergence is
cumulative. An attempt was made to use the texture unit to accelerated reading atomic
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information from GMEM. While this slightly accelerated G8x/G9x kernels, it slightly
decelerated GT2xx kernels so it was discarded.

Nonbonded Interactions
Due to the existence of scatter, thread synchronization, and a 16 K of high-speed shared
memory in each processor within CUDA-compatible GPUs, each nonbond kernel can exploit
the symmetry of the force calculation matrix to calculate fij, then reverse its sign to generate
fji. This reduces the magnitude of the overall calculation by a factor of ∼2 while incurring a
small amount of overhead to coordinate this calculation. To do so, the kernel operates on the
unique set of p x p tiles of the force matrix that are either above or along the diagonal, where
p is the warp width (see Fig. 1). For each of these tiles, there is a corresponding swath of p
atoms along the x and along the y axis.17

Each tile is then operated on by warps of p threads within a larger thread block, up to eight
warps on G8x/G9x and up to 10 warps on GT2xx. For each of these tiles, there is a
corresponding swath of p atoms along the x and y axis. To calculate the force data for such a
tile, p threads then read one atom’s worth of data from the x swath into their register space and
then the corresponding set of atomic data for the tile’s y swath into the shared memory.
Furthermore, because all the threads in a warp are guaranteed to execute synchronously, each
thread can interact with one atom’s data in shared memory at a time for p iterations without
any fear of overlap or any need for overt synchronization.

Additionally, as mentioned above, there were 3 O(n2) non-bond kernels in the ATI
implementation. However, unlike the ATI client, merging the nonbond kernel with the first
loop of the implicit solvent kernel was a big win, improving performance by 20%. The
difference here lies in the ability of the shared memory to hold a sufficient number of
intermediate values to make this a net win.

SHAKE Algorithm and Stochastic Dynamics
Essentially the same update and SHAKE algorithm as implemented on the ATI client was
implemented for the CUDA client. One noteworthy difference between the two codes was that
the Gaussian-distributed random values used in the update algorithm are generated on the GPU
since integer arithmetic is available on the Nvidia boards; this is in contrast to the ATI client
where the values are generated on the CPU and transferred to the GPU. As a result, the random
values were not recycled using permutations as is done on the ATI client. One observation
particular to the Nvidia client is that optimal performance for this section of the code was
achieved when the workload was spread evenly across all SMs even when those SMs ran very
small thread blocks (<30 threads).

Performance
Speed

To assess the improvement in speed from using GPUs rather than CPUs, we ran a series of
benchmark calculations on several different protein systems, utilizing the ATI and Nvidia GPU
codes. For comparison, the same calculations were run on one core of a 2 × 2.66 GHz Dual-
Core Intel Xeon (running Mac OS X) with the AMBER9 program18 built with commercial
Intel compilers. We ran simulations of the D14A variant of the lambda repressor monomer
(1254 atoms)19,20 in a fully extended conformation, the N68H mutant of the villin headpiece
subdomain (582 atoms)21 in a folded conformation, the Fip35 WW domain (544 atoms)22,23

in both folded and extended conformations, and one chain of the α-spectrin subunits R15, R16,
and R17 from chicken brain (5078 atoms).24
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The solvent was an Onufriev-Bashford-Case (OBC) generalized Born model11 for both
minimization and molecular dynamics. The parm03 and parm96 force fields (as noted in Table
1) were used for the CPU calculations, but in the case of villin, where both force fields were
used, the difference in CPU performance was negligible. After a standard energy minimization
step, 40,000 Langevin dynamics iterations were run for each of the benchmark systems using
a nonbonded ‘cutoff’ of 999 Å and no periodic boundary conditions to ensure an O(N2)
calculation. The Langevin collision frequency was 91/ps and the bath temperature was 300 K.
Bonds involving hydrogen were constrained with SHAKE with default settings.

As expected for an N2 calculation, there was no important speed difference on the GPU or the
CPU when comparing folded and extended conformations of the same system. To exhaustion,
the variable determining the simulation performance was the system size. The times are given
in Table 1. These benchmarks show that running on the ATI GPU can result in more than 60×
speedup over the CPU for small systems of ∼600 atoms. These smaller systems gain more than
100× speedup on the Nvidia GPU. Both GPUs are capable of more than two orders of
magnitude speedup compared to the CPU when calculating an MD trajectory for the larger
systems, such as lambda repressor (∼1200 atoms).

The scaling of performance with number of atoms is quite different for the GPU codes than
for the CPU calculations. On the CPU, the scaling is very close to O(N2), indicating that non-
bonded interactions are dominating the calculation time. In contrast, when going from 544
atoms to 1254 (a factor of 2.3), the ATI code only slows down by a factor of 2.0. The scaling
in this regime is actually sublinear. This is not surprising, given that the number of atoms in
the smaller system (544) is less than the number of math units in the GPU (800), and it is
difficult to generate enough parallel computation to use all math units and hide latencies. Even
when going from 1254 atoms to 5078 (a factor of 4), both GPUs still scale subquadratically (a
factor of 10.0 for ATI and 11.9 for NVidia). This suggests that the speedup of GPUs over CPUs
could be even greater for still larger systems.

Another important performance metric is the overall processor utilization. By seeing how close
we come to the peak theoretical performance of the GPU, we can see how efficiently our
implementation makes use of the large computational resources available. The results are
shown in Table 2. Note that we use two different methods for calculating GFLOPS which yield
different numbers. See Appendix A for details. The performance increases with increasing
system size, but even for α-spectrin we are only reaching a fraction of the processor’s peak
theoretical performance. This suggests that further optimization might significantly improve
the performance, especially for small proteins, by better exploiting the resources of the GPU.

In practice, molecular dynamics simulations on a CPU are not run as described above. Rather,
cutoffs are frequently applied for both long range interactions and Born radii calculations.
These approximations reduce the complexity of the calculation from O(N2) to O(N log N)
which can be a significant performance gain even for small systems. However, Born radii
calculations are formally O(N2), and to our knowledge no GB formalism exists for which
cutoffs are explicitly taken into account. Thus, the effects of applying a cutoff to GB are
unknown so their use could be extremely dangerous. On the other hand, application of long-
ranged cutoffs in nonperiodic systems is less risky, but still involves an approximation with
an unknown effect on accuracy. As such, the benchmarks presented here represent the
performance gain of running MD calculations on the GPU over running the most accurate CPU
calculation possible for a given force field and GB model, rather than a performance gain over
typical simulation conditions. However, it is clear from the performance gain that there is no
longer a need to run CPU calculations which apply cutoffs to long-ranged interactions and to
Born radii calculations. Instead, more accurate simulations can now be run using GPUs which
do not involve approximations to the chosen model.
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Even taking the above into account, the speed improvements listed in Table 1 should not be
taken as precise measures of the intrinsic speed advantage of GPUs over CPUs. The AMBER
benchmarks were run on a single CPU core, but most desktop CPUs today have two or four
cores. Also, it is possible that its performance could be improved by further tuning. AMBER
is a mature and widely used package, so we expect that significant work has been done to
optimize it, but it is always possible that further work could yield additional performance gains.
Our goal in presenting CPU benchmarks is simply to give a point of reference against which
the performance of the GPU code may be approximately measured.

Accuracy
Another important consideration in evaluating any dynamics code is the accuracy of the
trajectories it produces. Both implementations described here used single precision floating
point numbers throughout, since double precision has only very recently become available on
GPUs and still carries a large performance penalty. Previous work has shown that single
precision is sufficient to produce high quality results in molecular dynamics,5 but only if care
is taken to do calculations in a way that avoids unnecessary loss of accuracy. Also, some
floating point operations on GPUs are not IEEE compliant. Any error resulting from this should
be very small, but given the already limited precision being used, it is potentially a cause for
concern.

To test the accuracy of our GPU codes, we incorporated the velocity Verlet algorithm into
them, ran a series of simulations of lambda repressor, and measured how accurately energy
was conserved. The results are shown in Table 3. Simulations were performed both with and
without bond length constraints. When constraints were used, the accuracy of energy
conservation was found to depend strongly on the convergence tolerance used for SHAKE, so
results are shown for three different tolerance values.

The results compare favorably to those for other molecular dynamics codes, including ones
which use double precision.5 This gives us confidence that lack of precision is not harming the
quality of our simulations. We do note that the accuracy is somewhat lower for the ATI
implementation than for the Nvidia implementation. We are still investigating to determine
why this is true.

Future Work
A complete system for simulating molecular dynamics on GPUs has been presented. In the
interest of creating such a complete system in a timely manner, some molecular dynamics
scenarios have not been fully explored. It has not escaped the authors’ notice that there remain
several areas for which the molecular dynamics capabilities of this GPU implementation might
be extended and enhanced. What follows are descriptions of a few such areas for potential
enhancement.

The use of an implicit solvent model represents a tactical choice in the implementation of the
current work. Two advantages of this choice include the avoidance of boundary condition
issues, and minimization of the number of explicit atoms being simulated. On the other hand,
explicit solvent simulations can, in principle, be performed on GPUs. The most important
enhancement required to perform accurate simulations in explicit solvent is the implementation
of periodic boundary conditions. Further, the calculation of long range forces would need to
be enhanced to take such boundary conditions into account. Established techniques for such
long-range force computations can also improve the asymptotic complexity of the algorithms,
compared to the current implementation (see below).
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The current work has been restricted to relatively small macromolecules (roughly 500–5000
atoms). Efficient simulation of significantly larger systems may require algorithms with lower
time complexity than those used in this work. Our GPU implementations use some force
computation algorithms that scale quadratically [O(n2)] with respect to the number of atoms
in the simulation. This approach is justified in the case of small proteins and smaller molecules,
as the simplicity of the algorithms permits saturation of the parallel processing units. For larger
molecule simulations, it may be more efficient to also provide linear time [O(n)] and/or log-
linear [O(n log(n))] algorithms for the force calculations. Such methods typically involve
separating nonbonded interactions into short-range and long-range components. The long-
range components are computed using Fourier or hierarchical methods,25 while the short-range
components are computed using cell linked list methods.26 Such algorithms with lower time
complexity will be especially important for simulations in explicit solvent, which contain many
times the number of atoms found in implicit solvent simulations. The Fourier methods, in
particular, are well suited to handling periodic boundary conditions, thus facilitating explicit
solvent simulations as well.

Because our GPU implementations have been developed over a period of time, some of the
latest advances in GPU hardware have not been fully exploited. For instance, recent ATI
hardware permits “scatter” operations, which involve writing to different memory locations
within a kernel. Our ATI implementation has avoided scatter operations because they were not
available on earlier generation hardware. It might be possible to achieve greater computation
efficiency by reengineering certain methods to take advantage of scatter operations. Another
recent advance in GPU computing is support for double-precision floating point computations
on ATI and NVIDIA GPUs. Double precision arithmetic still carries a significant performance
penalty relative to single-precision arithmetic. It may be worth investigating situations in which
the increased accuracy of higher precision arithmetic might be worth the additional
computational cost.

Because we find ourselves in the somewhat special circumstance of creating many
implementations of the same algorithms to support different hardware, we are especially
sensitive to the importance of effective software testing environments. We would like to extend
our test cases to be able to apply tests of correctness to essentially all molecular dynamics
simulation programs.

More generally, there are undoubtedly many additional methods that could be implemented
on GPUs to extend the range of available simulation scenarios. For example, more sophisticated
force fields, such as polarizable force fields,27 could benefit from GPU acceleration. The
precise details of how best to implement these methods remain to be worked out. We hope that
our current work will help form the basis for an ever increasing library of GPU accelerated
molecular dynamics techniques.

Availability
The implementation reported in this manuscript will be made available at Simtk.org as part of
the OpenMM API (http://simtk. org/home/openmm). OpenMM is designed for incorporation
into molecular dynamics codes to enable execution on GPUs and other high performance
architectures.
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Appendix

Appendix A
The performance numbers in Table 2 were determined by inspecting the code to count the exact
number of floating point operations in each time step. There is no universally accepted way of
counting operations, however. Addition, subtraction, multiplication, and division each count
as a single operation, but we also must assign operation counts to transcendental functions such
as logarithm and exponential. These operations are expensive to perform on a CPU, so they
are traditionally assigned large operation counts. GPUs, in contrast, have specialized circuitry
which allows them to be calculated very quickly.

This creates an ambiguity about how to calculate performance. One option is to assign operation
counts that accurately reflect how quickly a GPU can perform each operation: if an exponential
takes no more time to calculate than an addition, it should be counted as a single operation.
Alternatively, one could assign operation counts that reflect how expensive an operation is on
a CPU. If a typical CPU requires 20 clock cycles to calculate an exponential, the GPU should
be given credit for doing 20 floating point operations, even though it does it much more quickly.

We therefore chose to use two different methods for calculating performance based on the two
sets of operation counts shown in Table 4. The first set reflects how quickly a GPU can calculate
various functions, and is most appropriate when comparing multiple simulations run on a GPU.
The other set of values reflects how quickly a typical CPU can calculate those functions, and
is most appropriate for comparing the performance of a GPU to a CPU.
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Figure 1.
The set of pxp tiles required for force calculation-only the pink and green tiles need to be
calculated. Force data for the grey tiles can be generated by negating the sign of the forces
calculated for the corresponding green tile on the other side of the pink diagonal.

Friedrichs et al. Page 14

J Comput Chem. Author manuscript; available in PMC 2010 April 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Friedrichs et al. Page 15
Ta

bl
e 

1
B

en
ch

m
ar

k 
R

es
ul

ts
.

M
ol

ec
ul

e
A

to
m

s
Fo

rc
e 

fie
ld

Pl
at

fo
rm

N
s/

da
y

Im
pr

ov
em

en
t

fip
35

54
4

pa
rm

03
C

PU
/A

M
B

ER
4.

5
–

fip
35

54
4

pa
rm

03
A

TI
27

9.
2

62

fip
35

54
4

pa
rm

03
N

vi
di

a
57

6.
2

12
8

V
ill

in
58

2
pa

rm
03

C
PU

/A
M

B
ER

3.
9

–

V
ill

in
58

2
pa

rm
03

A
TI

26
0.

8
67

V
ill

in
58

2
pa

rm
03

N
vi

di
a

52
8.

5
13

6

La
m

bd
a

12
54

pa
rm

03
C

PU
/A

M
B

ER
0.

79
–

La
m

bd
a

12
54

pa
rm

03
A

TI
14

1.
7

17
9

La
m

bd
a

12
54

pa
rm

03
N

vi
di

a
20

1.
6

25
5

α-
sp

ec
tri

n
50

78
pa

rm
99

C
PU

/A
M

B
ER

0.
02

3
–

α-
sp

ec
tri

n
50

78
pa

rm
99

A
TI

14
.2

61
7

α-
sp

ec
tri

n
50

78
pa

rm
99

N
vi

di
a

16
.9

73
5

Im
pr

ov
em

en
t i

s t
he

 sp
ee

du
p 

ob
ta

in
ed

 b
y 

ru
nn

in
g 

on
 th

e 
G

PU
 v

er
su

s r
un

ni
ng

 A
M

B
ER

 o
n 

th
e 

C
PU

.

A
TI

: R
ad

eo
n 

H
D

 4
87

0 
G

PU
.

N
vi

di
a:

 G
eF

or
ce

 G
TX

 2
80

 G
PU

.

J Comput Chem. Author manuscript; available in PMC 2010 April 30.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Friedrichs et al. Page 16

Table 2
Computational Performance.

Molecule Atoms Platform GFLOPS

Fip35 544 ATI 88 (176)

Fip35 544 Nvidia 83 (148)

Villin 582 ATI 95 (188)

Villin 582 Nvidia 87 (155)

Lambda 1254 ATI 239 (475)

Lambda 1254 Nvidia 154 (275)

α-spectrin 5078 ATI 392 (780)

α-spectrin 5078 Nvidia 212 (378)

See Appendix A for details of how the numbers were calculated. The value in parenthesis is based on the cost estimates that are more appropriate for
CPUs than GPUs.

ATI: Radeon HD 4870 GPU.

Nvidia: GeForce GTX 280 GPU.
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Table 3
Energy Drift per Degree of Freedom (kT/ns/dof).

Constraints Nvidia ATI

None 0.0054 0.0178

H-bonds (SHAKE tolerance 10−4) 0.0611 0.1031

H-bonds (SHAKE tolerance 10−5) 0.0220 0.0541

H-bonds (SHAKE tolerance 10−6) 0.0060 0.0558

All simulations were 1 ns in length and used a time step of 1 fs.

ATI: Radeon HD 4870 GPU.

Nvidia: GeForce GTX 280 GPU.
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Table 4
Operation Counts for Transcendental Functions.

Function GPU Operation count CPU Operation count

Sqrt 1 15

Reciprocal Sqrt 2 16

Log 1 20

Exp 1 20
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