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Abstract
In this and the accompanying paper, we report the development of new physics-based side-chain-
rotamer and virtual-bond-deformation potentials which now replace the respective statistical
potentials used so far in our physics-based united-reside UNRES force field for large-scale
simulations of protein structure and dynamics. In this paper, we describe the methodology for
determining the corresponding potentials of mean force (PMF’s) from the energy surfaces of
terminally-blocked amino-acid residues calculated with the AM1 quantum-mechanical
semiempirical method. The approach is based on minimization of the AM1 energy for fixed values
of the angles λ for rotation of the peptide groups about the Cα ⋯ Cα virtual bonds, and for fixed
values of the side-chain dihedral angles χ, which formed a multi-dimensional grid. A harmonic-
approximation approach was developed to extrapolate from the energy at a given grid point to
other points of the conformational space in order to compute the respective contributions to the
PMF. To test the applicability of the harmonic approximation, the rotamer PMF’s of alanine and
valine obtained with this approach have been compared with those obtained by using a Metropolis
Monte Carlo method. The PMF surfaces computed with the harmonic approximation are more
rugged and have more pronounced minima than the MC-calculated surfaces but the harmonic-
approximation- and MC-calculated PMF values are linearly correlated. The potentials derived with
the harmonic approximation are, therefore, appropriate for UNRES for which the weights (scaling
factors) of the energy terms are determined by force-field optimization for foldability.

Keywords
protein folding; UNRES force field; potentials of mean force; quantum mechanics; harmonic
approximation

1 Introduction
Nowadays, all-atom simulations of protein structure and dynamics are very expensive, and
can be applied successfully only to small proteins even when the solvent is treated
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implicitly.1–4 Recent advancements in all-atom molecular dynamics by porting molecular
dynamics codes to Graphical Processor Units (GPUs),5 which has provided a 700-fold
speed-up compared to single-processor runs, as well as construction of computers dedicated
to molecular dynamics,6 will shift the available time scale of all-atom simulations; however,
it is not likely that the millisecond simulation scale will be available soon with the all-atom
approach. Coarse-grained approaches to the simulation of protein structure and dynamics, as
well as to protein-structure prediction, in which each amino-acid residue is represented by a
few interaction sites are, therefore, of great interest in the field.7–10 Defining a coarse-
grained model implies averaging over those degrees of freedom which are not considered in
the model. The partition function of a coarse-grained system and all ensemble averages
should correspond to those of the pertinent all-atom system; consequently, a logical choice
for the effective energy function of a coarse-grained system is the potential of mean force
(PMF), which is a function of the coarse-grained degrees of freedom;11–13 we also term
this PMF the restricted free energy (RFE) function.14, 15 The statistical or knowledge-based
potentials,7–10 which are commonly applied in predicting protein structure and even
simulations of protein folding16, 17 are obtained by converting the distributions of
geometrical variables (such as, e.g., the distances between side-chain or residue centers) into
potentials of mean force by applying the Boltzmann principle.18 Each such component is
determined in the context of an “average” protein environment and, consequently, the sum
of such components, which constitutes the total statistical potential-energy function, does
not have a connection to the partition function, of the respective all-atom system. In
particular, different component potentials might include the same interactions, which could,
therefore, be included more than once in the effective energy function. Moreover, the
distribution functions are derived from protein conformations at minimum free energy,
mostly in crystal state. The physical meaning of statistical potentials is, therefore, obscure.
19, 20

During the last decade, we have been developing a coarse-grained physics-based force field
termed UNRES (UNited RESidue).14, 15, 21–29 By contrast to most united-residue force
fields, UNRES was carefully derived, based on the physics of interactions, as a cluster-
cumulant expansion30 of the RFE function of a protein plus the surrounding solvent, in
which the secondary degrees of freedom had been averaged out.14, 15, 25 The cluster-
cumulant expansion expresses the many-body PMF as a sum of factors, each of which
pertains to a smaller part of the system, taking into account only those parts of the total
many-body PMF which are not present in the other factors. This feature of the cluster-
cumulant expansion prevents us from multiple counting of the same interactions in more
than one term. Each group of related factors constitutes given terms in the effective energy
function (such as, e.g., virtual-bond stretching, virtual-bond-angle bending, virtual-bond
torsional, side-chain side-chain interaction, etc.); if a factor pertains to more than two
interaction sites, it corresponds to effective multibody interactions. This approach to derive
the effective energy function provides a clear physical meaning of its constituents and
enables us to consider small systems while parameterizing the factors; consequently, even
highly accurate methods of molecular quantum mechanics have been used in parameterizing
UNRES energy components.24, 25, 27 Moreover, approximate analytical expressions can be
derived for the energy terms,15 based on Kubo’s30 generalized-cumulant expansion, which
is especially important for multibody terms, for which conventional formulas (such as, e.g.,
the Lennard-Jones functional form for non-bonded interactions) are not applicable.
Furthermore, the factor expansion of the total PMF and the expansion of the factors into
Kubo’s cumulant series enabled us to introduce the temperature dependence of the
correlation terms.28 An alternative approach to treat the many-body PMF of coarse-grained
systems, termed multi-scale coarse-graining (MS-CG) was proposed recently by Voth and
coworkers;11–13 in this approach, the coarse-grained forces are fitted to the average forces
obtained from all-atom simulations of a given system.
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For practical reasons, the cluster-cumulant expansion has to be truncated; in the present
UNRES we keep up to fourth-order factors. Because of this truncation and because it is not
possible to determine the factors in an absolutely accurate manner, the UNRES force field
has been calibrated to reproduce structural and folding-thermodynamics data of training
proteins; for this purpose, we designed a hierarchical-optimization method23, 26, 28, 31, 32
in which the force field is optimized so that the free energy decreases with increasing native-
likeliness below the folding-transition temperature. The multibody terms were not present in
the first version of UNRES,21, 22 and the force field was applicable to recognize protein
folds only in threading-with-energy-minimization calculations.22 Ab initio structure
calculations with UNRES became possible after the correlation terms were introduced. At
first, only the terms accounting for the correlation between backbone-electrostatic
(hydrogen-bonding) interactions were introduced,14 which enabled us to calculate the
structures of α-helical proteins,33, 34 while later introduction of the correlation terms
pertaining to the coupling between backbone-local and backbone-electrostatic interactions15
enabled us to extend the application of UNRES to the β and α + β proteins. The UNRES
force field is outlined in section 2.1.

Initially,33–36 UNRES was applied to predict protein structure by global optimization of the
effective potential-energy function. We implemented the Conformational Space Annealing
(CSA) method33, 37–39 to carry out global optimization with UNRES. The UNRES/CSA
approach was found to be capable of ab initio prediction of the structures of proteins of
different structural classes with good accuracy, as demonstrated in the CASP blind-
prediction experiments; 33, 35, 36 these results were obtained by predicting the native
structure of a protein as the global minimum in the UNRES energy surface.

Later,40–42 by developing the Langevin-dynamics formalism for UNRES, we extended its
application to simulating protein-folding pathways. We found42 that ab initio folding of
real-size proteins can be simulated with this approach, and that UNRES provides a 4000-
fold speed-up compared to all-atom simulations with explicit water and about a 200-fold
speed-up compared to all-atom simulations with implicit water. We have pursued this
approach further by introducing replica-exchange molecular dynamics,43, 44 which enabled
us to revise the force field to calculate thermodynamic characteristics of protein folding.28
We have also extended the UN-RES/MD approach to multichain proteins45 and to simulate
dynamic formation and breaking of disulfide bonds during protein folding and unfolding,46
and implemented principal-component analysis to investigate protein-folding pathways with
UNRES.47, 48 Recently, by fine-graining the UNRES code for calculations on massively-
parallel machines,49 we extended the time and size scale of simulations to microsecond
simulations of about 800-residue proteins, making it possible to accomplish such
simulations in days. Given the fact that the UNRES time scale is about 3 orders of
magnitude larger than the all-atom time scale, the UNRES time scale is equivalent to an all-
atom millisecond time scale and comparable to the biological time scale.

In its intial form,21, 22 UNRES was parameterized mainly by using distribution functions
determined from protein-crystal data except for those corresponding to backbone-
electrostatic interactions parameterized earlier, by using free-energy surfaces derived from
all-atom calculations, 50 based on our dipole model of peptide-group interactions.51 Most
of these knowledge-based potentials have subsequently been replaced in UNRES by those
derived from all-atom energy surfaces obtained by ab initio24, 25, 27 quantum-mechanical
calculations. Nevertheless, two types of local knowledge-based terms, both in functional
form and parameterization, determined in our earlier work22 from the statistics of the
Protein Data Bank (PDB)52 remained until recently; these were the virtual-bond-angle
bending potentials and the potentials determining the energetics of side-chain rotamers.
These terms did not determine the fold of the chain and, therefore, did not impair the overall
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characterization of UNRES as a physics-based force field. Nevertheless, these short-range
terms determine the details of the geometry of the polypeptide chains particularly in the loop
regions. It should be noted that the PDB statistics used to derive them is biased by long-
range interactions which certainly impairs the accuracy of these local potentials and,
consequently, the accuracy of the calculated structures. Moreover, we found that the
functional forms that best fit the PDB statistics22 may result in unstable forces in UNRES/
MD simulations.40 In our recent paper,27 we reported the determination of physics-based
virtual-bond-angle bending potentials [Ub(θi) in eq. 1] for UNRES by using our general
approach15 of factoring the RFE of the polypeptide chains into contributions coming from
specific types of interactions together with the energy maps of terminally-blocked glycine,
alanine, and proline calculated in our earlier work.24 In this and the accompanying paper,53
using the AM1 semiempirical method54 to compute energy surfaces, we determined the
side-chain-rotamer and side-chain and backbone virtual-bond-stretching potentials. In this
paper, we present the methodology and illustrate it with examples of terminally-blocked
alanine and valine. In the accompanying paper, we discuss in detail the semiempirical side-
chain-rotamer and side-chain and backbone virtual-bond-stretching energy surfaces,
compare them with the surfaces determined from PDB statistics, fit analytical expressions to
them, and present the performance of the updated force field (which also includes the new
physics-based virtual-bond-angle-bending potentials determined in our recent work27) in
simulations of the folding of small proteins.

The last remaining statistical terms of UNRES are the potentials for side-chain side-chain
interactions. We are now replacing these original terms21 by determining them from all-
atom molecular-dynamics simulations of pairs of molecules modeling amino-acid side
chains in explicit water.55–58 We are also working on introducing temperature dependence
into the side-chain side-chain interaction potentials,59 which is very important in view of
the significant dependence of hydrophobic association on temperature.

2 Methods
2.1 The UNRES force field

In the UNRES model,14, 15, 21–29 a polypeptide chain is represented by a sequence of α-
carbon (Cα) atoms linked by virtual bonds with attached united side chains (SC) and united
peptide groups (p). Each united peptide group is located in the middle between two
consecutive α-carbons. Only these united peptide groups and the united side chains serve as
interaction sites, the α-carbons serving only to define the chain geometry, as shown in
Figure 1. The UNRES force field has been derived as an RFE function14, 15 of an all-atom
polypeptide chain plus the surrounding solvent, where the all-atom energy function is
averaged over the degrees of freedom that are lost when passing from the all-atom to the
simplified system (viz. the degrees of freedom of the solvent, the dihedral angles χ for
rotation about the bonds in the side chains, and the torsional angles λ for rotation (Figure 2a)
of the peptide groups about the Cα ⋯ Cα virtual bonds).60 The RFE is further decomposed
into factors coming from interactions within and between a given number of united
interaction sites.15 Expansion of the factors into generalized Kubo cumulants30 enabled us
to derive approximate analytical expressions for the respective terms,14, 15 including the
multibody or correlation terms, which are derived in other force fields from structural
databases or on a heuristic basis.61 The theoretical basis of the force field is described in
detail in our earlier paper.15

The energy of the virtual-bond chain is expressed by eq. (1).
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(1)

Each term is multiplied by an appropriate weight, wx and the terms corresponding to factors
of order higher than 1 are additionally multiplied by the respective temperature factors
which were introduced in our recent work28 and which reflect the dependence of the first
generalized-cumulant term in those factors on temperature, as discussed in ref. 28. The
factors fn are defined by eq. (2).

(2)

where To = 300K.

The term USCiSCj represents the mean free energy of the hydrophobic (hydrophilic)
interactions between the side chains, which implicitly contains the contributions from the
interactions of the side chain with the solvent. The term USCipj denotes the excluded-volume
potential of the side-chain – peptide-group interactions. The peptide-group interaction
potential is split into two parts: the Lennard-Jones interaction energy between peptide-group

centers  and the average electrostatic energy between peptide-group dipoles ;
the second of these terms accounts for the tendency to form backbone hydrogen bonds
between peptide groups pi and pj. The terms Utor, Utord, Ub, and Urot are the virtual-bond-
dihedral angle torsional terms, virtual-bond dihedral angle double-torsional terms, virtual-
bond angle bending terms, and side-chain rotamer terms; these terms account for the local
propensities of the polypeptide chain. The terms  represent correlation or multibody
contributions from the coupling between backbone-local and backbone-electrostatic

interactions, and the terms  are correlation contributions involving m consecutive
peptide groups; they are, therefore, termed turn contributions. The multibody terms are
indispensable for reproduction of regular α-helical and β-sheet structures.14, 15, 61 The
terms Ubond(di), where di is the length of the ith virtual bond and nbond is the number of
virtual bonds, are simple harmonic potentials of virtual-bond distortions; they have been
introduced recently40 for molecular-dynamics implementation.

The internal parameters of  were derived by
fitting the analytical expressions to the RFE surfaces of model systems computed at the
MP2/6-31G** ab initio level,24, 25, 27 while the parameters of USCiSCj , USCipj , Ubond, and
Urot were derived by fitting the calculated distribution functions to those determined from
the PDB.22 The equilibrium values of the virtual-bond lengths were taken from the PDB
statistics as mean values corresponding to the Cα ⋯ SC or Cα ⋯ Cα virtual bonds,22 while
the force constants were assigned an arbitrary value of 500 kcal/(mol × Å2).40 The purpose
of the present work is to determine physics-based Urot and Ubond terms for the side chains,
as well as the Ubond terms for the backbone. The w′s are the weights of the energy terms, and
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they can be determined only by optimization of the potential-energy function, as described
in our earlier work.23, 26, 28

2.2 Determination of physics-based Urot and Ubond potentials
2.2.1 Formulation of the problem—In this work, in order to determine physics-based
Urot and Ubond terms for the side chains, we have implemented our earlier-developed
formalism15 in which the RFE of a polypeptide chain is factored into components, each of
which corresponds only to interactions involved in a particular RFE term. We used
terminally-blocked amino-acid residues as model systems (Figure 2a) and calculated the
potential of mean force for each residue type53 as a function of the components of the unit
vector of the Cα ⋯SC vector (r̂SC) expressed in a local coordinate system with the x axis
being the bisector of the virtual-bond angle θ, the y axis lying in the plane of the three Cα

atoms, , and the z axis making a right-handed coordinate system with those two
axes, as shown in Figure 2b. The dependence of the energy on the bSC virtual-bond length is
included in the side-chain Ubond term of eq. (1). The most important variables to be
averaged out (i.e., those which have a wide range of variation) are the angles λ(1) and λ(2) for
rotation of the peptide groups about the Cα ⋯ Cα virtual-bond axes60 (Figure 2a) and the
internal angles of rotations of the side chains (χ, Figure 2a); we will group the variable χ′s
into a vector χ = (χ1, χ2, ⋯, χn)T where n is the number of the χ angles and “T” in the
superscript denotes the transpose of a matrix or a vector. The remaining variables to be
averaged out are the angles for the rotation of the methyl groups (these are ignored because
the energy depends only weakly on them), the distortions of the chemical bond lengths and
bond angles of the all-atom chain, and the out-of-plane distortions of the peptide groups;
additionally, we require that the space spanned by these variables is orthogonal to that
spanned by the angle θ and the coordinates of r̂SC; in other words, their variation does not
change these geometric parameters. We will denote these other variables by y′. Thus, the
potential of mean force FX of a terminally-blocked residue of type X can be expressed as a
function of θ and rSC by eq. (3).

(3)

where β = (RT)−1, T being the absolute temperature and R the universal gas constant, Ωy′
denotes the region of space corresponding to y′, whereas dVy′ denotes the respective volume
elements, eX denotes the energy surface of terminally-blocked residue of type X. To compute
the Urot(θ, r̂SC) term, we must subtract from FX(θ, r̂SC) the contribution already
considered27 in the virtual-bond angle potential; we will denote it by F̄X′(θ) where X′ is
terminally-blocked alanine, proline, or glycine, alanine representing all residue types except
for proline and glycine. The quantities, Urot(θ, r̂SC) and F̄X′(θ) are defined by eq. (7) and eq.
(8), respectively. The coordinates of the geometric center of a side chain and the
components of the corresponding unit vector r̂SC are defined by eq. (4) and eq. (5),
respectively (it should be noted that these equations refer to the coordinate system of Figure
2, where the central Cα atom is placed at the origin of the coordinate system).

(4)
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(5)

with

(6)

where NSC is the number of non-hydrogen atoms in a side chain except Cα which is part of a
side chain in the UNRES representation but is located at the origin of the coordinate system
defined in Figure 2b and li is the number of the ith non-hydrogen side-chain atom (excluding
Cα).

(7)

(8)

The virtual-bond-stretching potentials of the side chains, Ubond(bSC), are defined by eq. (9)
as the potential of mean force for the deformation of a virtual Cα ⋯ SC bond in a terminally-
blocked amino-acid residue.

(9)

where y″ denotes the subspace of variables, of a terminally-blocked amino-acid residue that
conserve a given value of bSC given the values of λ(1), λ(2), and χ1, χ2, … χn, Ωy″ is a
shorthand for the space spanned by these variables, and dVy″ is the respective volume
element.

2.2.2 Use of harmonic approximation to evaluate Urot and Ubond from AM1
energy surfaces—To evaluate FX(θ, r̂SC) for calculating Urot from eq. (7) and to
calculate Ubond, we first computed the energy maps of all natural terminally-blocked L-
amino-acid residues as functions of λ(1), λ(2), and the χ angles involving non-hydrogen
atoms (thus, no χ angle was defined for the alanine residue) by using the AM1
semiempirical method.54 Use of the ab initio approach was prohibitively expensive and it
was found in earlier works24, 62 that the AM1 method gives energy surfaces of terminally-
blocked glycine, alanine, and proline qualitatively similar to those computed with the ab
initio method. Glycine was not considered because it does not have a side chain. For Ala,
only the grid in λ(1) and λ(2), and for Pro only the grid in λ(2) angles was defined. For each
grid point, a starting conformation was constructed based on the standard valence geometry;
the conformation was subsequently energy-minimized in all internal coordinates except for
the grid variables. We used the MOPAC’9363 program to carry out the calculations.
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To evaluate the integral in eq. (3), we need to express eX as a function of λ(1), λ(2), θ, rSC,
and y′. To simplify further notation, we define z, the vector composed of θ and the three
coordinates of rSC, as given by eq. (10). (We will switch to the unit vector, r̂SC in eq. (29)
which expresses the final potentials of mean force for side-chain rotamers.)

(10)

As in our earlier work,27 in which we determined physics-based potentials for virtual-bond-
angle bending, we used the harmonic expansion of the energy at each point of the grid to
explore the energy surface in the space orthogonal to that spanned by the grid variables, as
given by eq. (11).

(11)

with

(12)

(13)

(14)

(15)

(16)

(17)

where H denotes a Hessian matrix, and the asterisks indicate the values corresponding to the
points on the non-adiabatic energy maps. The terms with the first derivatives of eX are not

present in eq. (11) because  has been minimized with respect to all variables
except for λ(1), λ(2), and χ, which are held constant. The symbol Δz⊥ = (Δθ, ΔrSC⊥) denotes
the distortion of z from the value corresponding to the relaxed geometry at a given grid
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point, subject to the condition that the values of χ dihedral angles are the same as those at the
grid point. In the linear approximation, the vector ΔrSC⊥ can be defined as a linear
combination of the columns of an N × 3-dimensional matrix vSC⊥ , which is calculated from
the matrix vSC defined by eq. (18) by applying a projection operator, Pχ, to remove the
components that belong to the space spanned by dihedral angles χ in the neighborhood of a
grid point, as given by eq. (19) and eq. (20).

(18)

(19)

(20)

with

(21)

where R denotes the vector of Cartesian coordinates of all the atoms of terminally-blocked
residue X and Im × m is an m-dimensional identity matrix [where m = 3 in eq. (18) and m =
3N in eq. (20)], while 03 × 3 denotes a 3 × 3 matrix of zeros. The matrices of zeros in eq. (18)
correspond to the positions of the coordinates of non-side-chain atoms and Cα in the vector
vSC, while the unit matrices in eq. (18) correspond to those of side-chain atoms excluding
Cα; for clarity these are the last entries in the vSC matrix.

Likewise, the subspace corresponding to Δy′ is defined, in the linear approximation, by the
set of 3N − 6 − n − 4 eigenvectors (with n fixed χ angles, 3 fixed coordinates of rSC and
fixed angle θ) corresponding to non-zero eigenvalues of the projection operator, Py′ which
removes the contributions corresponding to the variation of λ(1), λ(2), χ, and z⊥, as well as
net translations and rotations of the molecule, from the space spanned by the Cartesian
coordinates of all atoms.

(22)

(23)

where T3N × 3 and Ω3N × 3 are the matrices of the basis vectors of translations and of the
increments of the coordinates of the atoms of the system resulting from infinitesimal
rotations of the molecule about the axes of the reference system, respectively [eq. (24)].
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(24)

with

(25)

Thus, the parts of the Hessian matrix can be computed from (eq. 26 – eq. 28).

(26)

(27)

(28)

where HRR denotes the Hessian matrix in Cartesian coordinates expressed in the local
coordinate system of Figure 2a, and Πy′ denotes the matrix of the eigenvectors of Py′ of eq.
(22) corresponding to non-zero eigenvalues; the columns of this matrix define the space
orthogonal to that spanned by the columns of Y.

Inserting eq. (11) into eq. (3) and integrating over y′ results in eq. (29) for the potential of
mean force.

(29)

with

(30)

where  is the value of the virtual-bond length corresponding to a given grid point.

By slight modification of eq. (29), we obtain an approximate expression for the virtual-
bond-stretching potential, Ubond [eq. (31)].
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(31)

with

(32)

To determine the backbone virtual-bond-stretching potentials, we have to provide a formula
for the force constant of the trans peptide group, kpept. Following the procedure of ref 27,
and using N-acetyl-N′-methyl amide, we can express it by eq. (33).

(33)

where dp is the Cα ⋯ Cα virtual-bond length, hdpdp is the second derivative of the energy of
the model system in dp (the Hessian element), hdpy is the vector of mixed derivatives of the
energy in dp and other variables orthogonal to it (contained in the vector y), and Hyy is the
matrix of the second derivatives of the energy in the orthogonal variables. We leave the
determination of the virtual-bond potentials to the accompanying paper.53

As in our earlier work,24, 27 we evaluate FX, defined by eq. (29), by numerical quadrature
on an (n + 2)-dimensional grid in λ(1), λ(2), χ1, χ2, …, χn. The grid size in the λ(1), λ(2), and χ
angles for the Ac-Ala-NHMe and Ac-Val-NHMe test cases considered in this work was 30°.
This resulted in 144 grid points for Ac-Ala-NHMe, where only λ(1) and λ(2) formed a grid
(the only χ angle corresponds to methyl group rotation and is not significant) and 1728
points for Ac-Val-NHMe. All potentials of mean force were computed at T = 298°K.

2.2.3 Use of canonical Monte Carlo method to compute PMF—In order to obtain
insight about the possible inaccuracy in, and artifacts introduced by, using the harmonic
approximation in this work, we have also calculated the PMF’s of terminally-blocked
alanine and valine by using a canonical Monte Carlo approach.64 The procedure was as
follows: for a current conformation of Ac-Ala-NHMe or Ac-Val-NHMe, an atom and a
Cartesian coordinate (x, y, or z) were selected at random and the coordinate perturbed by
adding a random number drawn from a uniform probability distribution from the interval
[−δ, δ], where δ is a perturbation amplitude (0.1 Å in this work). Then the energy was
evaluated by using the AM1 semiempirical method of molecular quantum mechanics with
the MOPAC’93 program.63 The Metropolis test64 was applied to accept or reject the new
conformation. Three-dimensional histograms in the angles α′, β′, and θ were constructed “on
the fly”. The MC algorithm was merged into the MOPAC’93 program.

For Ac-Ala-NMe and Ac-Val-NHMe, we ran 144 and 216 independent trajectories,
respectively. The starting conformations were taken from non-adiabatic energy maps of
these peptides, defined on a grid with 30° size in λ(1) and λ(2) for Ac-Ala-NHMe (144
points) and 60° size in λ(1), λ(2), and χ1 for Ac-Val-NHMe (216 points); each of the dihedral
angles ranged from −180° to 180°. Each trajectory consisted of 14 million MC steps for Ac-
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Ala-NHMe and 15 million MC steps for Ac-Val-NHMe, respectively. The acceptance rate
was about 55%.

In order to check whether the sampling procedure did not introduce artifacts and the number
of steps was sufficient, we calculated the autocorrelation function for the virtual-bond angles
θ. The autocorrelation function is defined by eq. (34).

(34)

where t is the number of MC steps (the “time”) and 〈⋯〉 denotes direct average. The
autocor-relation functions for both Ac-Ala-NHMe and Ac-Val-NHMe are shown in Figure
3. It can be seen that they exhibit a uniformly decaying behavior and become effectively
zero after about 50,000 MC steps, which is a more than four orders of magnitude smaller
number compared to the total simulation length.

3 Results and Discussion
The contour plots of the PMF surfaces of Ac-Ala-NHMe and Ac-Val-NHMe calculated with
the direct MC approach and with the use of the harmonic approximation, respectively, for
two selected values of θ (90° and 140°) are shown in Figure 4. The plots have been drawn in
cylindrical projection with the parallels and meridians of the energy maps corresponding to
the β′ and α′ angles, respectively. For better visualization, the center of the projection has
been shifted to α′ = 180°. The construction of this projection is outlined in Figure 5. It can be
seen that the low-PMF regions of both residues are in the region of 90° < α′ < 180° and β′ <
0°, fitting the geometry of L-amino-acid residues. For θ = 90°, the low-PMF region extends
to lower values of α′ and the PMF’s calculated with the use of the harmonic approximation
even have two minima: one for large values of α′ (about 165°) and another one for α′ ≈
105°; for both minima β′ ≈ −90°. Only the first minimum appears for θ = 140°. The first
minimum corresponds to positioning of the SC site almost along the bisector of the
corresponding θ angles, pointing away from the Cα ⋯ Cα ⋯ Cα frame as found in the β-
strands. The second minimum corresponds to the perpendicular orientation of the Cα ⋯SC
axis with respect to the Cα ⋯ Cα ⋯ Cα plane with the SC center located above the plane. A
closer inspection of conformations with the most significant statistical weight showed that
the dominant conformations contributing to this minimum are those from the  region,
which is almost absent in proteins. On the other hand, with the AM1 energy function, the

 conformation is only 1.67 kcal/mol above the global minimum (the  conformation).
Ab initio calculations carried out in our earlier work24 have also shown than the 
conformation of L-alanine is not as disfavored by energy as would appear from the analysis
of PDB statistics. It should be noted that the free-energy map of rotamer potentials of valine
(Figure 4e and f) has no low-energy region (for α′ close to 105°) corresponding to the 
conformation. Therefore, the absence of  conformations of alanine might be the effect of
protein context. This problem, along with comparison of all AM1-derived potentials with
statistical potentials, will be discussed in the accompanying paper.53

To determine if the presence of a minimum with dominant contributions from the  region
is not caused by not including solvation, we carried out additional AM1 calculations for the
terminally-blocked Ala residue with the COSMO mean-field solvation model.65 As shown
in Figure 6, the minimum still appears.

It can be observed that the low-energy regions in the PMF plots obtained by direct MC
simulation are wider and nearly flat, compared to those obtained by using the harmonic
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approximation, which show steeper variation of the PMF and are more featured. For
example, for Ac-Ala-NHMe, the second minimum in the section of the PMF at θ = 90° (with
α′ ≈ 105°, β′ ≈ −90°), which is clearly observed in the PMF obtained with the use of the
harmonic approximation (Figure 4b), is very shallow in the PMF obtained by direct MC
simulations (Figure 4a). This observation suggests that the harmonic approximation
overestimates the increase of the PMF between grid points and, consequently, the
ruggedness of the PMF surfaces.

Despite the overemphasized ruggedness of the harmonic-approximation PMF’s, they are
quite well related by linear regression to those determined by using the Metropolis MC
approach. When the PMF values within 20 kcal/mol above the global PMF minimum are
taken into account, these regression lines are given by eq. (35) and eq. (36) for alanine and
valine, respectively.

(35)

(36)

where  are the PMF’s of Ala and Val obtained with the Metropolis MC

method,  are those obtained with the use of the harmonic approximation,

σPMF is the standard deviation of , from the regression line, and R is the correlation
coefficient. The corresponding plots are shown in Figure 7.

4 Conclusions
As a follow-up to our recent work on the determination of the potential of mean force
corresponding to the Cα ⋯ Cα ⋯ Cα virtual-bond-angle bending in polypeptide chains,27 we
have proposed an approach to calculate the potentials of mean force corresponding to the
energetics of the side-chain-rotamer states, Urot, as well as virtual-bond deformation, Ubond,
in the UNRES model of polypeptide chains. This approach is based on constructing non-
adiabatic energy maps of terminally-blocked amino-acid residues on a grid in the angles λ(1)

and λ(2) for rotation of the peptide group about the Cα ⋯ Cα virtual bonds (where energy is
minimized in all variables except those forming the grid), and then integrating over the
space of all variables except those defining the local geometry of a side chain and the
adjacent Cα ⋯ Cα ⋯ Cα frame (θ, α′, and β′) or the length of a Cα ⋯SC virtual bond (bSC) by
using the energy calculated at grid points and the harmonic approximation outside the grid
points. The approach requires local energy minimization for several hundreds to several tens
of thousands conformations, depending on the kind of amino-acid residue (compared to tens
of millions energy evaluations when using Monte Carlo methods to determine the PMF),
which enables us to use the methods of molecular quantum mechanics to compute the
energy. Comparison of the PMF’s calculated with this approach and those obtained with the
use of a direct approach based on canonical Monte-Carlo sampling has shown that use of the
harmonic approximation results in too-steep an increase of the PMF outside the regions of
minima and, thereby, too-rugged PMF landscapes with more minima or more pronounced
minima than for the PMF surfaces in the MC-determined PMF’s. This suggests that fitting
the PMF’s with an analytical expression should not be aimed at reproducing all fine details
of the PMF surfaces but, instead, should be directed at smoothing them. Nevertheless, the
PMF values determined by using the harmonic approximation and by using canonical MC
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are related by linear regression with a slope of about 0.3, which is not a problem because
every UNRES energy term is multiplied by a weight factor [eq. (1)], which is determined
only by optimization of the complete force field.23, 26, 28 Because the MC approach is an
option to determine the PMF with the use of QM methods only for small amino-acid
residues such as alanine and valine, while it is prohibitively expensive for larger amino-acid
residues, we consequently use the harmonic-approximation-based method to determine Urot
and Ubond for all 19 side chains in the accompanying paper.
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Fig. 1.
The UNRES model of the polypeptide chain. Dark circles represent united peptide groups
(p), open circles represent the Cα atoms, which serve as geometric points. Ellipsoids
represent side chains, SC′s, with their centers of mass attached at the bSC to the
corresponding Cα′s. The p’s are located half-way between two consecutive Cα atoms. The
virtual-bond angles θ, the virtual-bond dihedral angles γ, and the angles αSC and βSC that
define the location of a side chain with respect to the backbone are also indicated. In
addition, the angle α′ (which is the supplement of α) implemented in the construction of
side-chain polar coordinate system (Figure 2 and Figure 5) is shown.
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Fig. 2.
Illustration of an all-atom representation (a), and the united-residue representation with
atoms and chemical bonds colored light grey (b), of the model systems for the calculation of
the potentials of mean force of the rotamers of united side chains and side-chain virtual-
bond-stretching potentials of mean force. In both pictures, the dashed lines indicate the
virtual bonds and solid lines chemical bonds. The  atom is at the origin of the reference
system, the x axis of the reference system is the bisector of the virtual-bond angle θ, the y
axis lies in the plane of the three Cα atoms, is perpendicular to the x axis and directed from

 and all three axes (x, y, and z) form a right-handed reference system. rSC is the
vector pointing from  to the geometric center of the side chain, λ(1) and λ(2) are the
dihedral angles for the rotation of the peptide groups about the Cα ⋯ Cα virtual-bond axes60
and χ1, χ2 … are the dihedral angles for the rotations about the bonds of the side chain. The
angles α′ (which is the supplement to the αSC angle of Figure 1) and β′ (which is the negative
of the βSC angle of Figure 1) are the polar coordinates of the side-chain unit vector, r̂SC. The
polar angle β′ corresponds to clockwise rotation of the SC center about the x axis from the xy
plane, starting from the positive side of the y axis. For small side chains (e.g,. Ala, Pro, Ser,
Thr), β′ has the same sign as the Cβ − Cα − ⋯ C′ dihedral angle (which is ≈ −120° for the L-
and ≈ 120° for the D-amino-acid residues).
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Fig. 3.
Decay of the autocorrelation function C(t) [eq. (34)] of the angle θ in Metropolis Monte
Carlo simulations for alanine (solid line) and valine (dashed line)
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Fig. 4.
Side-chain-rotamer PMF surfaces of Ac-Ala-NHMe (a – d) and Ac-Val-NHMe (e – h)
obtained by Metropolis MC (a, c, e, g) and harmonic approximation approaches (b, d, f, h)
for θ = 90° (a, b, e, f) and θ = 140° (c, d, g, h), respectively. See Figure 5 for explanation of
the applied cylindrical projection of the polar coordinates of r̂SC on the rectangle. The
parallels (lines of constant α′) are the distorted circles centered about the “South Pole”
(except the parallel corresponding to α′ = 90°, which is a square centered at the “South
Pole”) and semicircles centered about the “North Pole” (except those corresponding to α =
90° which constitute two half-squares). The meridians are the lines intersecting the parallels
and running between the “North Pole” and the “South Pole”. The parallels and the meridians
are each spaced 15°. The PMF color scale (in kcal/mol) is shown above the contour plots
and the PMF’s on each plot are relative to the lowest PMF in the corresponding section of
the PMF surface.
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Fig. 5.
Illustration of the cylindrical projection of the unit sphere spanned by the end of the r̂SC
vector in the local side-chain coordinate system of Figure 2 on the rectangle representing the
polar coordinates implemented to draw the PMF maps in Figure 4 and Figure 6 as well as in
Figure 2 and 3 of the accompanying paper.53 The “South Pole” (α′ = 180°) is the point in
the center of the rectangle, and the “North Pole” (α′ = 0°) is in the middle of the left and of
the right vertical side of the rectangle. The axis x runs through the poles with α′ = 180°
corresponding to negative and α′ = 0° to positive x, the axis y runs through the “Equator” (α′
= 90°) at β′ = 180° (negative y) and β′ = 0° (positive y), and the axis z runs through the
“Equator” at β′ = 90° (positive y) and β′ = −90° (negative y). The “Equator” and its
projection on the rectangle are marked by a dashed circle and dashed lines, respectively, and
the meridians running through the axes x and y or x and z and their projections are marked
with solid circles and lines. Other parallels (radial lines running through the poles) and
meridians (distorted circles or distorted semicircles centered in the poles) are not shown to
keep the picture readable; they are shown in the PMF maps in Figure 4 and Figure 6.

Kozłowska et al. Page 21

J Comput Chem. Author manuscript; available in PMC 2011 April 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 6.
Side-chain-rotamer PMF surface of Ac-Ala-NHMe obtained by including the solvation
COSMO model65 in AM1 calculations. The free-energy scale is shown in the small top
panel.
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Fig. 7.
Scatter plots of the harmonic-approximation (abscissae) and MC-determined (ordinates)
side-chain-rotamer PMF’s of Ac-Ala-NHMe (a) and Ac-Val-NHMe (b) with regression
lines.
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