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Abstract
We study how the results of molecular dynamics (MD) simulations are affected by various choices 
during the set-up, e.g. the starting velocities, the solvation, the location of protons, the conformation 
of His, Asn, and Gln residues, the protonation and titration of His residues, and the treatment of 
alternative conformations. We estimate the binding affinity of ligands to four proteins calculated 
with the MM/GBSA method (molecular mechanics combined with a generalised Born and surface 
area  solvation  energy).  For  avidin  and  T4  lysozyme,  all  variations  gave  similar  results  within 
2 kJ/mol. For factor Xa, differences in the solvation or in the selection of alternative conformations 
gave  results  that  are  significantly different  from those of  the  other  approaches  by 4–6 kJ/mol, 
whereas for galectin-3, changes in the conformations, rotations, and protonation gave results that 
differed by 10 kJ/mol, but only if residues close to the binding site were modified. This shows that 
the results of MM/GBSA calculations are reasonably reproducible even if the MD simulations set 
up with different software. Moreover, we show that the sampling of phase space can be enhanced by 
solvating the systems with different equilibrated water boxes, in addition to the common use of 
different starting velocities. If different conformations are available in the crystal structure, they 
should also be employed to enhance the sampling. Protonation, ionization, and conformations of 
Asn, Gln, and His may also be used to enhance sampling, but great effort should be spent to obtain 
as reliable predictions as possible close to the active site.

Keywords:  molecular  dynamics  simulations,  reproducibility,  conformational  sampling,  starting 
structure dependence, protonation, ligand-binding affinities, MM/GBSA.
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Introduction
During  the  latest  decades,  molecular  simulations  have  emerged  as  a  powerful  alternative  and 
complement to experiments for the study of macromolecular dynamics and function. A cornerstone 
of scientific investigations is reproducibility: An independent scientist should be able to repeat any 
investigation, getting the same results within statistical uncertainty. Unfortunately, this is a problem 
for macromolecular simulations. The theory and the algorithms underlying molecular simulations 
are stable and should give the same results, provided that reasonable settings are used. However, the 
set-up of macromolecular simulations involve numerous more or less sophisticated guesses, and it 
is  therefore  unlikely  that  two independent  scientists  using  different  software  would  set  up  the 
simulations in the same way, which may affect the result. For example, the following choices have 
to be made:

1. Which starting structure to use (if  there are several crystal  structures or an ensemble of 
NMR structures).

2. How to treat residues for which several conformations are visible in the crystal structure.
3. How to add hydrogen atoms to the starting structure. Hydrogen atoms are not visible in 

crystal structures, except at the highest resolutions. For some residues, e.g. the backbone and 
the aromatic side-chains, it is quite clear where the protons should be, but for other groups, 
e.g. the OH groups of Ser and Thr, the proton can be anywhere on a circle, and for crystal-
water molecules, the first proton can be added anywhere on a sphere around the oxygen 
atom. The positions of these protons strongly affect the hydrogen-bond structure. Previous 
investigations have shown that there is a large variation in how different software protonates 
crystal structures [1].

4. For neutral His residues, it is not even known to what atom the proton should be added, 
ND1 or NE2.

5. The net charge of ionisable residues is not known. For most residues, the normal pKa value 
in water solution is quite far from 7 (<5 or >9), so that it can be assumed that the majority of 
the ionisable groups are in their standard protonation states also in proteins (although it is 
well-known that exceptions exist,  especially for groups buried in the protein or close to 
metal sites [2,3]). However, for His residues, the reference pKa value is 6.6–7.0 [2] so that 
the two charge states are almost equally likely.

6. In crystal structures, it is hard to differ between C, N, and O atoms. Therefore, there are two 
possible conformations of the side-chains of Asn, Gln, and His residues (related by a 180
rotation)  that  cannot  be  decided  from  the  electron  density.  Only  one  conformation  is 
normally given in the crystal structure, but it is the result of a more or less sophisticated 
guess that should be checked [4,5].

7. The  macromolecule  is  normally  solvated  in  a  cell  of  water  molecule,  in  which  the 
coordinates of the water molecules are typically taken from an equilibrated water simulation 
or from water molecules on a grid, using some cut-off distance to avoid overlap with the 
macromolecule.

8. Starting  velocities  are  typically  either  calculated  from the  starting  forces  or  assigned at 
random according to a Maxwell–Boltzmann distribution.

Most simulation softwares have methods to add protons and water molecules, as well as to assign 
the starting velocities. On the other hand, it is normally up to the user to decide on issues related to 
the uncertainty in the crystal structure and the protonation state of His and other ionisable residues. 
Still, the importance of this problem has been increasingly recognised [6] and software and web-
servers start to appear to facilitate these decisions [1,4,5,7,8,9]. However, all such methods are quite 
crude,  typically  based  on  single  structures  and  simplified  solvation  models,  because  few 
investigators are willing to spend weeks of computer time for the set-up of the simulation. 

A related problem of simulation methods is sampling. It is well-known that macromolecules 
present a rugged potential-energy surface with many distinct conformations, separated by sizeable 
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barriers, which makes an extensive sampling of phase space necessary, but also hard [10,11]. Many 
methods to enhance the sampling have therefore been proposed [12], e.g., accelerated molecular 
dynamics [13], self-guided molecular dynamics [14], locally enhanced sampling [15], and replica 
exchange [16]. 

However, it has also been recognised that the above listed uncertainties can be employed to 
enhance the sampling of the phase space by running multiple copies of the same molecular system 
with slightly altered initial conditions [12]. This is an appealing approach because it also allows the 
trivial  parallelisation  of  the  problem by distributing  the  computations  onto  several  CPUs.  This 
approach has been used in several areas, e.g. for structural transitions [17], calculations of backbone 
order parameters [18], and free-energy calculations [10,19,20,21,22]. In particular, it has frequently 
been shown that it is more favourable to run several short and independent simulations than a single 
long simulation [10,18,21,23,24]. 

The simplest  and most  common method to obtain several  independent  simulations  is  to 
assign different starting velocities to the atoms, by giving different seeds to the random number 
generator that assigns the velocities [10,18,19,20,21]. A few studies have also tested to increase the 
sampling  by  starting  from  different  structures,  e.g.  from  different  crystal  structures  or  NMR 
ensembles [17,25,26,27,28], or even from structures generated by an initial conformational search 
[25]. Recently, we have also shown that the agreement of calculated and measured order parameters 
is  improved  if  the  MD  simulations  are  started  from  different  structures  obtained  from 
conformational disorder available in the crystal structures [18]. 

Thus, it has previously been examined how the first two and the last points in the list above 
affect the results of molecular simulations and it has been shown that they can be employed to 
enhance the sampling of conformational space. In this work, we go one step further and investigate 
how the  other  five  points  affect  the  results,  viz.  the  addition  of  protons,  the  solvation  of  the 
structure, and the treatment of conformational uncertainty of Asn, Gln, and His residues. As a test 
case, we use ligand-binding affinities, calculated by the MM/GBSA approach (molecular mechanics 
combined  with  generalised  Born  and  surface  area  solvation)  [29,30])  and  the  calculations  are 
performed for complexes with four different proteins. Thereby, this work is a continuation of our 
previous  study  [21]  that  showed  that  it  was  necessary  to  use  several  independent  trajectories 
generated by different starting velocities to obtain the same affinity for the four binding sites in the 
protein  avidin.  Here,  we investigate  whether  such a  rather  small  perturbation  to  the  system is 
enough to sample the full space or if larger perturbations are more effective. It will be seen that the 
effect is somewhat system dependent, but that in general a better sampling can be obtained with 
larger perturbations.
 

Methods

Protein and ligand preparations
Four systems were considered in this  study: Avidin in complex with biotin,  factor Xa (fXa) in 
complex with a 3-amidinobenzyl-1H-indole-2-carboxamide inhibitor (denoted c53 as in ref. no. 31), 
Galectin-3 (Gal3) with a N-acetyllactoseamine derivative (ligand 3 in [32], L3) and the Leu99Ala 
T4 lysozyme mutant in complex with benzene. The ligands are shown in Figure 1. The avidin–
biotin and lysozyme–benzene systems have been the subject of several previous theoretical studies 
[21,33,34,35,36,37,38,39,40,41,42,43,44,45], 

The avidin–biotin simulations were based on the 1avd [46] crystal structure, those of fXa–
c53 on 1lpk [31], those of Gal3–L3 on 1kjr [32], and those of lysozyme–benzene on 181l [47]. The 
preparation of the avidin, fXa, and Gal3 systems has been described previously [22,37,38], and 
lysozyme was set up in a similar way. In particular, all Asp and Glu residues were assumed to be 
negatively charged and all Lys and Arg residues were positively charges. Avidin has one histidine 
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residue in each subunit of the tetrameric protein, and it was normally (i.e. when it was not allowed 
to titrate) assumed to be protonated on the ND1 atom [39]. FXa has six histidine residues, three of 
which were normally assumed to be protonated on NE2, two on ND1, and one double protonated 
[40]. Gal3 has four His residues, one of which was normally assumed to be protonated on ND1 and 
three on NE2 [22]. T4 lysozyme has one histidine that was normally assumed to be protonated on 
ND1, according to a consideration of the hydrogen-bonding network and local environment. 

All  proteins  were  described  by  the  Amber99SB  force  field  [48],  biotin  [37]  with  the 
Amber99 force field [49] and c53, L3, and benzene with the generalized Amber force field [50]. 
Charges on the ligands were obtained by the restrained electrostatic potential-procedure [51], using 
electrostatic potentials calculated at the Hartree–Fock level and the 6-31G* basis set, and sampled 
according to the Merz–Kollman scheme [52], but using a higher than default density of points (10 
concentric layers with 17 points/Å2). The protein–ligand systems were immersed in an octahedral 
box of TIP4P–Ewald water molecules [53], extending at least 8 Å from the protein. 

Generation of independent simulations
Four different approaches to generate independent trajectories were considered

● VIIT (velocity-induced independent trajectories): The simulations were started with different 
starting velocities.

● SIIT (solvation-induced independent trajectories): The protein–ligand system was solvated in 
different water boxes.

● CRPIIT  (conformation,  rotation,  and  protonation-induced  independent  trajectories): 
Variations in the titration, conformations of Asn, Gln, and His, as well as in the rotation of 
bonds to polar hydrogen atoms were allowed.

● ACIIT (alternative-conformation-induced  independent  trajectories):  The  simulations  were 
started from different conformations of disordered residues in the crystal structure.

The  different  start  velocities  were  obtained  by  giving  different  seeds  to  the  random-number 
generator that assigns velocities according to a Maxwell–Boltzmann distribution. The other three 
approaches are more involved and are described below.

Generation of different water boxes (SIIT). In Amber, the protein–ligand system is solvated by using 
a  template  box of  water  molecules,  equilibrated  with the  same water  model  to  be  used in  the 
simulations. This water box is extended in all dimensions and atoms that overlap with a protein or a 
ligand atom are removed (we used the default parameters to identify overlap, i.e. if the atoms are 
closer than the sum of their van der Waals radii). Therefore, we took the pre-equilibrated TIP4P–
Ewald water box of 256 water molecules from the Amber 10 library and put it in a periodic system 
that was equilibrated for 10 ns in the NPT ensemble. Details of the simulations were identical to the 
protein–ligand simulations, described below. Thereafter, the system was simulated for 500 ns in the 
same ensemble. Coordinates were sampled every 12.5 ns and these 40 boxes were used to solvate 
the systems using the Amber 10 tleap module. 

Titration, conformational and rotational sampling (CRPIIT). We utilized an in-house Monte Carlo 
(MC) program (TitProt) to titrate all His and Tyr residues in avidin, but only the His residues in the 
other proteins. Initial test runs showed that the Asp, Gly, Lys and Arg residues did not titrate. We 
also sampled two alternative conformations of the side chains of the Asn and Gln residues (180
rotation around the outermost C–C bond) as well as the His residues (180 rotation around the CD–
CG bond). We also rotated the polar hydrogen atoms in Ser, Thr, Cys, Lys, and Tyr residues, as well 
as  the protons  in  crystal-water  molecules.  Initially,  the systems were protonated  with  the  tleap 
module of Amber 10. The protein was put in a simulation sphere and counter ions were added to 
neutralize  the  system  and  to  mimic  experimental  conditions,  see  Table  1.  The  system  were 
equilibrated for 106 MC steps at 300 K and pH 7, and then simulated for another 2106 (avidin) or 

5



4106 steps.  Snapshots  were  taken  at  even  intervals  from  the  last  simulation  and  those  were 
immersed in  a  truncated octahedral  box of  TIP4P–Ewald waters,  using exactly  the same water 
molecules in all systems (i.e. only one snapshots was solvated with tleap and then the same water 
molecules were used for all snapshots). Note that this approach will change the normal protonation 
of the His residues, described above.

TitProt uses a fixed protein structure (besides the variations mentioned above), hard spheres 
of all atoms with an radius of 2.0 Å, no explicit water molecules (besides those available in the 
crystal structures), atomic charges (the same as in the MD simulations), and a dielectric constant of 
80 everywhere. Similar conditions (but with cruder charges) have been used successfully to study 
the titration of proteins [54], although the approach is questionable for titrable groups inside the 
protein.  However,  here  we  only  used  it  to  generate  reasonable  starting  structures  for  MD 
simulations.  The high dielectric constant ensures that we sample many different conformations, 
protonation states, and proton locations. The sampling frequencies were 0.77 for ionic moves and 
0.08 for  titrations,  rotations,  and conformational  changes.  Protein  charges  were taken from the 
Amber 1994 libraries both for the neutral and ionised residues [55], except for neutral Arg, for 
which we used charges determined in our group [39] and for negatively charged Tyr, for which the 
following charges were used (RESP charges,  obtained in the same way as for the ligands):  N  
–0.4157, H 0.2719, CA –0.0014, HA 0.0876, CB –0.0152, HB 0.0295, CG –0.0011, CD –0.1906, 
HD 0.1699, CE –0.2341, HE 0.1656, CZ 0.3226, OH –0.5579, HH 0.3992, C 0.5973, and O –
0.5679.
 
Crystal conformations (ACIIT). This approach was only tested for Gal3, because this was the only 
crystal structure that contained alternative conformations. Five residues had two conformations with 
an occupancy of 0.5. All 32 permutations of these two conformations were used as initial structures, 
resulting in 32 simulations of Gal3 with this approach. All permutations were solvated with the 
same set of water molecules. In the other three approaches, the A conformation was used for all 
residues.

MD simulations 
Molecular  dynamics  (MD) simulations  were  run  by the  Amber  10  sander  module  [56].  In  all 
simulations, the SHAKE algorithm [57] was used to constrain bonds involving hydrogen atoms, 
making a time step of 2 fs possible. The temperature was kept constant at 300 K using a Langevin 
thermostat [58] with a collision frequency of 2.0 ps-1. The pressure was kept constant at 1 atm using 
a weak-coupling isotropic algorithm [59] with a relaxation time of 1 ps. Long-range electrostatics 
were handled by particle-mesh Ewald summation [60], with a fourth-order B spline interpolation 
and a tolerance of 10–5. The non-bonded cut-off was 8 Å and the non-bonded pair list was updated 
every 50 fs. 

The systems were energy minimized for 500 cycles of steepest  descent,  with  all  atoms, 
except water molecules and hydrogen atoms, restrained to their start position with a force constant  
of 418 kJ/mol/Å2. This was followed by a 20 ps NPT simulation with the same restraints (this was 
the step in which different starting velocities were used in the VIIT approach) and a 100 ps (avidin 
and  lysozyme)  or  1000 ps  (fXa and Gal3)  unconstrained  NPT equilibration.  Finally,  a  200 ps 
production run was initiated and coordinates were saved every 5 ps for the MM/GBSA calculations, 
according to the simulation protocol recently developed to obtain MM/GBSA estimates with an 
precision close to 1 kJ/mol [21].

MM/GBSA calculations
The binding free energy, ΔGbind, of the ligands to their receptors was estimated with the MM/GBSA 
method [61,62]. The free energy of the ligand, the protein and the complex, was estimated as a sum 
of four terms
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G =E MMG solvGnp TSMM > (1)
where  EMM is  the MM energy of  the molecule,  i.e.,  a  sum of  internal  energies,  van der Waals  
interactions  and  electrostatic  interactions.  Gsolv is  the polar  solvation  energy,  estimated  by  the 
generalized Born method of Onufriev et al., model I (GBOBCI) [63], i.e. with α = 0.8, β = 0, and 
γ = 2.91.  Gnp is the non-polar solvation energy, estimated from the solvent-accessible surface area 
(SASA), using the formula  Gnp = 0.0227 SASA (in Å2) + 3.85 kJ/mol [35,62].  T is the absolute 
temperature and  SMM is  an entropy estimate at  the MM level.  The entropy was estimated on a 
truncated and buffered system, as described previously, to improve the statistical precision of the 
estimate [25]. All the terms in Eqn. (1) were averages over 40 MD snapshots. The binding free 
energy is then calculated as

Gbind = Gcomplex − G protein − Gligand (2)
The reported ΔG values are the average of ΔG over 20 (avidin) or 40 independent simulations (each 
with 40 snapshots) and the reported standard error is the standard deviation of this average divided 
by the square root of the number of independent simulations. To obtain stable energies, the same 
geometry was used for all three reactants (i.e. only the complex was simulated). The binding free 
energy was estimated for all four subunits of avidin, treating the other three ligands as a part of the 
protein (this is the reason why it is enough with 20 independent simulations for this protein – each 
simulation gives four estimates of the binding affinity). The reported binding free energy is the 
average over the four subunits. All MM/GBSA calculations were done with the Amber 10 software 
[56].

Results and Discussion 
We calculated MM/GBSA estimates of the binding free energy, ∆Gbind, for four test systems, using 
three or four different methods to obtain independent simulations (depending on whether alternative 
conformations are present in the crystal structure or not). The results are collected in Table 2. We 
will discuss the results for the four test systems in turn.

For the biotin–avidin complex, the results in Table 2 show that there are is little difference in 
∆Gbind obtained from simulations started with different velocities (VIIT), with a different solvation 
(SIIT),  or with different protonations and conformations (CRPIIT): All  three approaches give a 
calculated affinity between –114 and –116 kJ/mol, i.e. with differences of only 1–2 kJ/mol. The 
standard errors of the calculated affinities (estimated from the 20 independent simulations) are 1 
kJ/mol (note that we need to use a larger number of energy calculations, 4 20 40 = 3200, than 
normally is used with MM/GBSA to obtain such a precision [21]). We performed a two-tailed, 
unpaired Student's  t  test  (allowing for  unequal  variances)  to  test  whether  there  is  a  significant 
difference between the simulations based on the VIIT approach and the other two approaches. The 
resulting  p  values  in  Table  3 show that  there  is  no significant  difference (p  > 0.42).  All  three 
approaches also give similar estimated affinities for the four subunits of avidin, as can be seen from 
the results of the individual simulations, plotted in Figure 2.

To check that these small differences also remain with longer simulations, we extended the 
production simulation time from 0.2 ns to 2 ns. These results are also shown in Table 2 (column 
avidin/biotin  long).  It  can be seen that  the results  for the VIIT and CRPIIT approaches hardly 
changed, whereas those with the SIIT approach changed slightly. However, the results of the three 
approaches are still the same within the statistical uncertainty, as can be seen from the p values in 
Table 3.

This is an important and promising result. It indicates that the binding affinity of biotin to 
avidin estimated with this method is very stable and certain. In particular, it shows that any scientist 
would  get  the  same  results  (provided  that  the  precision  is  good  enough),  irrespectively  what 
program is  used  to  set  up  the  calculations.  In  fact,  even  uncertainties  in  the  crystal  structure 
regarding the location of the C, N, and O atoms in Asn, Gln, and His residues, and the problematic 
uncertainty in the protonation state of His residues do not have any influence on the calculated 
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values. This strongly increases the credibility of the results.
However, from Table 2, it can also be seen that the MM/GBSA estimate is quite far from the  

experimental ∆G, –85 kJ/mol [64]. This has been observed and discussed in several studies [22,39]. 
In particular, absolute binding affinities strongly depend on the method to used to calculate the polar 
solvation energies and other  solvation methods than the generalised Born approach (or  another 
variant of this approach) may shift the results by up to ~200 kJ/mol [65], but the relative solvation 
energies between similar ligands are typically stable within 3–5 kJ/mol [66]. However, this is not of 
any concern in  this  study, because we are only interested in differences  in the results  between 
various approaches to set up the simulations. It is also notable that all approaches give a similar 
standard error, ~1 kJ/mol, indicating that all the results are converged and that none of the three 
approaches give a larger spread of the results. 

However, for the other proteins, the results are somewhat different. For fXa, the VIIT and 
CRPIIT  approaches  give  the  same  results  (–61  to  –63  kJ/mol;  Table  2)  within  the  statistical 
uncertainties, with a p value from the t  test of 0.2 (Table 3). However, the SIIT approach gives a 
slightly less negative affinity, –57 kJ/mol. According to the  t test,  this difference is statistically 
significant with a confidence of 98%. A scatter plot of ∆Gbind values from all simulations (Figure 3) 
shows that there is a general weak trend of the SIIT simulations to give slightly less negative values. 
Solvation is probably more important for fXa than for avidin because the fXa active site is more 
solvent exposed than the buried binding site in avidin. The standard error of ∆Gbind is slightly lower 
with the VIIT approach than with the other two approaches, indicating that the VIIT approach does 
not sample the conformational space as well as the other two approaches. The calculated binding 
affinities are always ~40 kJ/mol more favourable than the experimental estimate [31]. 

The Gal3 system is even more challenging than the fXa system. For this system, the VIIT 
and SIIT approaches give similar results, –62 kJ/mol. This is interesting because the Gal3 binding 
site is fully exposed to the bulk water and it could expected that the different water structures might 
result in significantly different solvation of the exposed ligand. 

The 32 simulations started with different conformations observed in the crystal  structure 
give somewhat less negative result (–58 kJ/mol), but the confidence of this difference is only 92% 
(Table 3). This is also interesting, because the selection of what alternative conformation to use in 
the  MD simulations  is  arbitrary  (because  both  conformations  have  the  same  occupancy).  The 
present results show that this has a small (4 kJ/mol) influence on the final results. Previously, we 
have  shown  that  MD-derived  order  parameters  for  Gal3  are  somewhat  improved  if  several 
independent simulations are used, starting from different conformations, compared to simulations 
started from a single conformation [18]. The standard error for Gbind is also slightly larger with the 
ACIIT approach than with the VIIT and SIIT approaches, indicating that the conformational space 
is better sampled if the alternative conformations are employed. 

The challenge with the Gal3 system becomes clear when we consider the CRPIIT approach, 
for which the estimated binding affinity is –54 kJ/mol, i.e. 8 kJ/mol more positive than for the VIIT 
approach. This difference is significant with practically 100% confidence. This extensive difference 
is somewhat surprising, considering the results for avidin and fXa. To understand the cause of this 
difference, we tested to exclude the titration of the His-158 residue, which makes a hydrogen bond 
with the ligand and we also excluded the conformational sampling of two Asn residues and the 
rotational sampling of one Ser residue, which all are within 5 Å of the ligand. This resulted in a  
Gbind of -63 kJ/mol, 9 kJ/mol more negative than if these four residues were included and with no 
significant difference from the results obtained with the VIIT and SIIT approaches. This shows that 
one has to be careful when the preparing the protein close to the binding site. The results of the  
three approaches are plotted in Figure 4.

Finally,  for  T4  lysozyme,  all  three  approaches  gave  similar  binding  energies,  –1  to  –3 
kJ/mol.  However,  considering  the  low  standard  error  of  these  estimates  (~0.5  kJ/mol),  the 
differences are actually significant with 96–99% confidence. Thus, our results again indicate that it 
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is advantageous to increase the conformational sampling by using the SIIT or CRPIIT approaches, 
which also give slightly larger standard errors. The results of the three approaches are shown in 
Figure 5. All three approaches underestimate the experimental binding free energy [67] by almost 
20 kJ/mol. It is interesting that MM/GBSA gives a too positive estimate for this system, whereas it  
is too negative for the other three proteins. This may be related to the fact that the binding site in  
lysozyme is entirely hydrophobic, whereas the binding of the other three ligands involves several 
hydrogen bonds.

Conclusions
In this paper, we have studied two related questions, viz. how reproducible ligand-binding affinities 
predicted by the MM/GBSA method are, if set up by independent scientists using different software, 
and how conformational sampling can be enhanced by employing the rather arbitrary choices made 
during the set-up of MD simulations of proteins. As test cases, we have used the binding of ligands 
to four different proteins, avidin, factor Xa, galectin 3, and T4 lysozyme.

For the first question, we obtain rather encouraging results: All calculated binding affinities 
agree within 10 kJ/mol, and all except three estimates (CRPIIT and ACIIT for Gal3 and SIIT for 
fXa) actually agree within 2 kJ/mol. This must be considered quite impressive, considering the quite 
large changes made to the systems, including the total charge of the protein, nearly free rotation of 
crystal waters and polar groups, flips of Asn, Gln, and His residues, and variation in the protonation 
of  His  residues.  These  variations  should  include,  and  probably  surpass,  possible  differences 
encountered if the systems were set up by different scientists using different software. The 2-kJ/mol 
difference, is close to the statistical precision of the approach (0.4–1.5 kJ/mol). Moreover, the 10 
kJ/mol difference is well within the accuracy of the MM/GBSA approach, even if only the same 
protein and similar ligands are considered; for example, we obtained a mean absolute deviation of 
15 kJ/mol for the binding of seven biotin analogues to avidin, using the same simulation protocol 
[21]. Thus, we can conclude that even if the set-up of MD simulations of proteins involve a large 
number of hard choices, the results are reasonable reproducible, considering the current precision 
and accuracy, at least for binding affinities predicted by MM/GBSA. However, great care should be 
taken in the set-up of the calculations close to the active site, as will be more discussed below.

Regarding  the  second  question,  our  results  show  that  in  two  of  the  four  test  cases, 
significantly different results are obtained if the protein is solvated in different water boxes than if 
exactly the same structure is started with different velocities. In three of the four cases, the standard 
errors of the estimated ligand affinities are also larger with the SIIT approach. Therefore, it seems 
that the VIIT approach somewhat undersamples the phase space and therefore also overestimates 
the precision of the calculated binding affinities. Considering that the SIIT approach is almost as 
easy  to  implement  as  the  VIIT  approach,  and  neither  of  them  induce  any  increase  in  the 
computational  load,  we see no reason not  to  use it  as  a  means to  increase  the conformational  
sampling  with  the  independent-trajectories  approach.  Of  course,  the  two approaches  should  be 
combined by also using different random number seeds for the generation of the starting velocities.

Likewise, we see no reason not to use conformational disorder in the crystal structure, if 
available, to enhance the conformational sampling. This is most conveniently obtained by clustering 
the residues with alternative conformations according to distance (so that conformations that depend 
on each other go into the same group) and then simply select conformations by random (possibly 
weighted by the occupancies, if different). In this investigation, the results obtained with the ACIIT 
approach  gave  only  barely  significantly  different  results  from  the  VIIT  approach  (but  a  97% 
significance  compared  to  the  SIIT  approach).  However,  in  a  previous  study,  we  obtained 
significantly improved order parameters with this approach [18].

For  the  CRPIIT approach,  the  interpretation  is  more  troublesome:  Whereas,  the  starting 
velocities and the solvation is in principle completely arbitrary, this is not the case for ionisations, 
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protonations,  and conformations.  On the contrary,  in most  cases there are  probably correct  and 
erroneous choices, i.e.  most residues reside in one titration state or one conformation the great 
majority of the time, or at least the various choices do not have equal probability. The problem is 
only that we do not know which choice is correct, and we do not want to spend the time necessary 
to needed to obtain a more certain answer, owing to the large number of possibilities and residues 
with uncertain choices. The CRPIIT approach, as implemented by the TitProt program may give us 
a first indication of how important these choices are for the final results. It gives a simple and rather 
fast estimate of the involved energies (the calculations in this paper were run over a night and it is  
possible that even shorter simulations could be used), and this approach has been shown to give 
good results for titration curves of solvent-exposed residues [54]. In fact, a MC approach seems to 
well  suited for the problem, because it  gives  completely random sampling if  no information is 
available about the relative energies of the various states, whereas it will correctly bias the sampling 
to the more probable states if the energies differ. 

However, we want to emphasize that the results of the current implementation of TitProt are 
highly approximate and that we have selected this simple approach mainly to obtain an extensive 
sampling, rather than on the basis on accuracy. In fact, we have deliberately used a high dielectric 
constant  also  for  buried  interactions  to  enhance  the  sampling  of  different  conformations  and 
rotations. The approach could easily be adapted for more accurate energy calculations, although at a 
higher expense. In particular, our results for Gal3 show that for residues close to the active site, the 
choice  of  ionization,  protonation,  conformation,  and rotation  is  especially  important.  The ideal 
approach is  probably to use more accurate and detailed methods to decide the protonation and 
conformations close to the site of interest, whereas the CRPIIT approach can be used more distant 
residues. The same probably applies to the solvation of water-exposed active sites, like that in fXa. 
Then, enhanced sampling of different solvation states should be tested close to the active site.

The results  in Figures 2–5 clearly illustrate the importance of sampling for MM/GBSA: 
Even if the results of each simulation is based on an average over 40 snapshots, they may differ by 
up to 60 kJ/mol. Therefore, stable and reliable results can only be obtained by averaging over a 
significant number of independent simulations [21].

Finally, we want to point out that the present results were obtained for the calculation of 
ligand-binding  affinities  with  the  MM/GBSA approach.  However,  the  results  are  most  likely 
directly applicable also to studies of other properties, although the differences and the accuracy may 
be different (for example, the use of the continuum solvation model in the MM/GBSA energies 
probably makes this method less sensitive to the solvent structure than free-energy perturbations 
with explicit water). Therefore, we strongly encourage the use of the SIIT and ACIIT approaches to 
enhance  the  sampling  in  the  simulations  and  to  increase  the  reproducibility  of  the  results.  To 
simplify such calculations, we provide on our home page the 40 equilibrated TIP4P-Ewald water 
boxes (http://www.teokem.lu.se/~ulf/waterboxes.html).  The TitProt program is  also available for 
free  upon request.  For  residues  not  inside  the  site  of  interest,  we  also  recommend  the  use  of 
different protonation states, conformations Asn, Gln, and His residues, and location of the polar 
hydrogen atoms, although based on as sophisticated guesses as can be afforded.
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Table 1. Details of the Monte Carlo simulations with TitProt.

System Sphere size (Å) # negative ions # positive ions [protein] (mM) [ions] (mM) 

avidin 203 269 251 4 100

fXa 200 65 60 4 25 

Gal3 200 30 26 10 400

lysozyme 1500 2600 2597 0.001 25
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Table 2. MM/GBSA estimates of ∆Gbind for various approaches to generate independent simulations 
in kJ/mol. Standard errors are given in parenthesis. 

Approach avidin/biotin avidin/biotin (longb) fXa/c53 Gal3/L3 lysozyme/benzene

VIIT -114.2 (1.1) -114.8 (1.0) -61.2 (1.1) -61.5 (0.9) -3.1 (0.4)

SIIT -113.7 (0.8) -115.6 (0.8) -56.9 (1.5) -62.4 (1.0) -1.8 (0.5)

CRPIIT -115.5 (1.1) -115.4 (0.9) -63.4 (1.4) -53.6 (1.1) -1.1 (0.6)

CRPIIT a -63.3 (1.2)

ACIIT -58.4 (1.5)

Experimental -85.4 [64] -85.4 [64] -19.3 [31] -34.8 [32] -21.7 [67]
a No titration and no sampling of residues within 5 Å of L3. 
b These simulations had a production simulation time of 2 ns, whereas it was 0.2 ns for the other  
simulations.
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Table  3.  Calculated p  values  from  a  two-tailed,  unpaired  Student's  t  test,  assuming  unequal 
variances, for ∆Gbind, obtained with the various approaches compared to the VIIT approach. 

Approach avidin/biotin avidin/biotin (longb) fXa/c53 Gal3/L3 lysozyme/benzene

SIIT 0.69 0.58 0.02 0.49 0.04

CRPIIT 0.42 0.69 0.20 0.00 0.01

CRPIIT a 0.24

ACIIT 0.08
a No titration and no sampling of residues within 5 Å of L3. 
b These simulations had a production simulation time of 2 ns, whereas it was 0.2 ns for the other  
simulations.

15



Figure 1. Ligands considered in this study. A) biotin, B) c53, C) L3 and D) benzene.
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Figure 2. Individual binding affinities in the three sets of simulations for avidin/biotin. The first 20 
simulations are for subunit A, the next 20 for subunit B, and so on. 
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Figure 3. Individual binding affinities in the three sets of simulations for fXa/c53. 

18

0 5 10 15 20 25 30 35 40

-90

-80

-70

-60

-50

-40

-30

VIIT
CRPIIT
SIIT

Simulation

∆
G

 (
kJ

/m
o

l)



Figure 4. Individual binding affinities in the five sets of simulations for gal3/L3.

19

0 5 10 15 20 25 30 35 40

-90

-80

-70

-60

-50

-40

-30
VIIT
CRPIIT
CRPIIT*
SIIT
ACIIT

Simulation

∆
G

 (
kJ

/m
o

l)



Figure 5. Individual binding affinities in the three sets of simulations for lysozyme/benzene.
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