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Abstract
Implicit solvent models are powerful tools in accounting for the aqueous environment at a fraction
of the computational expense of explicit solvent representations. Here, we compare the ability of
common implicit solvent models (TC, OBC, OBC2, GBMV, GBMV2, GBSW, GBSW/MS,
GBSW/MS2 and FACTS) to reproduce experimental absolute hydration free energies for a series
of 499 small neutral molecules that are modeled using AMBER/GAFF parameters and AM1-BCC
charges. Given optimized surface tension coefficients for scaling the surface area term in the
nonpolar contribution, most implicit solvent models demonstrate reasonable agreement with
extensive explicit solvent simulations (average difference 1.0-1.7 kcal/mol and R2=0.81-0.91) and
with experimental hydration free energies (average unsigned errors=1.1-1.4 kcal/mol and
R2=0.66-0.81). Chemical classes of compounds are identified that need further optimization of
their ligand force field parameters and others that require improvement in the physical parameters
of the implicit solvent models themselves. More sophisticated nonpolar models are also likely
necessary to more effectively represent the underlying physics of solvation and take the quality of
hydration free energies estimated from implicit solvent models to the next level.

I. INTRODUCTION
The accurate calculation of absolute hydration free energies for small molecules is an
important step towards reliably estimating protein-ligand binding affinities.1 Appropriate
representation of these hydration free energies can provide a realistic basis for modeling the
thermodynamic processes of ligand desolvation and subsequent “resolvation” by the protein
binding pocket. The quality of these hydration free energies depends both on thorough
sampling methods and on high-quality force field parameters that describe the inter- and
intra-molecular interactions throughout the simulations. Alchemical free energy simulations
have been shown to provide well-converged results for vacuum and explicit solvent
simulations within ~0.2 kcal/mol.2-4 However, these explicit solvent simulations are
generally computationally expensive to perform given the many degrees of freedom in the
system that need to be explored. Furthermore, to obtain sufficient overlap in the simulated
ensembles, several intermediates along the alchemical transformation pathways usually need
to be sampled.5

Implicit solvent models have been developed as a strategy for representing the aqueous
environment of a solute but at a fraction of the cost of explicitly modeling individual water
molecules.6,7 In many implicit solvent models for macromolecules, the solvent is treated as
a uniform high dielectric environment while the solute is represented as a low dielectric
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region with a spatial charge distribution. The Poisson equation provides an exact description
of the electrostatic component of this solute-solvent system without explicitly representing
the degrees of freedom associated with individual water molecules. The numerical solution
of the finite-difference Poisson or Poisson-Boltzman (PB) equation is more computationally
efficient than performing explicit solvent simulations, but is still prohibitively expensive for
many macromolecular applications.

Generalized Born (GB) models have been developed as a pairwise approximation to the
solution of the Poisson equation for continuum electrostatic solvation.8-20 These GB models
depend on efficient strategies to determine the effective Born radii which quantify the
degree of “buriedness” of individual charges within the macromolecule. The Born radii
provide a correction to Coulomb's law used to calculate the electrostatic energy associated
between each pair of charges. GB models differ from one another primarily in how the Born
radii are estimated and how the solute volume is defined. Beyond modeling the electrostatics
of hydration, the nonpolar contribution to the solvation free energy for macromolecules is
required for accurate calculations.21,22 In many current implicit solvent models for
biomolecules, this contribution is estimated from a solvent-accessible surface area (SASA)
term that is scaled by an effective surface tension parameter.14,23 However, other more
sophisticated models for the nonpolar component of hydration free energies have also been
proposed and implemented.13,14,23-25

There are two fundamental two classes of parameters in GB models.26 The first class
contains “numerical parameters”, that is, parameters that are specific to a given GB model
and are optimized to reproduce results from corresponding high-resolution PB calculations.
These parameters include solvation free energies of small model compounds and proteins
and the effective Born radii. The second class includes “physical parameters”, that is
parameters that have well-defined physical meanings, such as the definition of the dielectric
boundary, the intrinsic atomic radii for defining the boundary location, and the effective
surface tension parameters associated with the nonpolar contribution to hydration free
energies. These parameters can be optimized to reproduce high-quality experimental
properties. In some GB models, however, parameters are optimized concurrently and so are
not neatly separable into these two categories. Additional factors that influence the quality
of simulated hydration free energies are the force field parameters for the solute, especially
the partial charges assigned to each atom center, as well as limitations in a given sampling
protocol. Given the speed of modern computers and efficiency of the GB implementations,
sampling limitations can generally be minimal for calculating small molecule hydration free
energies.

Several large-scale studies have been published that have focused on estimating absolute
hydration free energies for small molecules using a variety of force fields, charge
assignment methods and representations of the solvent environment. Rizzo et al. calculated
hydration free energies for more than 500 neutral and charged compounds using both a PB
and a GB model (TC model in AMBER) with a SASA nonpolar contribution to investigate
the quality of different charge models for the ligand parameters.27 For the 460 neutral
compounds, the correlation between the PB and GB results for the single-conformer
representations of the molecules were excellent regardless of charge method (R2=0.94) and
the AM1-BCC charge assignment strategy provided the best agreement with experimental
hydration free energies with overall average unsigned errors (AUE) of 1.36 and 1.38 kcal/
mol for the PB and GB models respectively. Mobley et al. expanded Rizzo et al.'s database
of neutral compounds to include 504 small molecules and explored the value of explicitly
treating entropic effects and modeling conformational changes in implicit solvent
simulations.28 In their analysis of small molecule hydration free energies estimated using
single conformers, multiple conformers or full trajectories, Mobley et al. demonstrated that
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conformational entropy changes in the solute can be up to 2.3 kcal/mol upon hydration.28

Thus, while they are more time intensive, full trajectories are required for more accurate
hydration free energy estimates. In their study, using the Generalized AMBER force field
(GAFF)29 with AM1-BCC partial charges30,31 the implicit solvent simulations yielded
estimated absolute hydration free energies with RMS errors of 2.0-2.4 kcal/mol and R2 of
0.69-0.77 compared with experiment depending on which AMBER-implemented implicit
solvent model was used (PB, TC, OBC2 or GBn). In a subsequent study, using the TIP3P
water model in explicit solvent simulations for the same database of compounds, Mobley et
al. found improved agreement between the calculated and experimental hydration free
energies with RMS errors of 1.2 kcal/mol and an R2 of 0.89.2

The quality of the ligand parameters themselves has a significant impact on the reliability of
the estimated hydration free energies. A large database of 239 diverse neutral compounds
was recently investigated using different force field parameters combined with implicit and
explicit solvent simulation strategies for calculating hydration free energies.3,4 All but 18 of
the compounds in this database are also contained in the database that was studied by
Mobley et al.2,28 Shivakumar et al. originally calculated hydration free energy estimates for
these 239 compounds using GAFF and CHARMm-MSI ligand parameters combined with
charge assignments from ChelpG, RESP or AM1-BCC protocols. Overall, the AM1-BCC
charges provided the best correlation between explicit TIP3P solvent simulations calculated
hydration free energies and experimental values with the GAFF/AM1-BCC (R2=0.87)
yielding higher quality results than the CHARMm-MSI/AM1-BCC parameters (R2=0.76).4
In a more recent study, Shivakumar et al. computed hydration free energies from explicit
solvent simulations using the OPLS-AA force field and charge parameterization scheme and
achieved even better agreement with experiment (R2=0.94).3

In the current study, we focus on the quality of the absolute hydration free energies that are
obtained for a large database of 499 compounds using different implicit solvent models for a
given set of force field parameters and extensive simulation trajectories. The objective is to
identify areas in which the current generation of implicit solvent models implemented in
CHARMM and AMBER needs refinement of their parameters in their quest for higher
quality hydration free energy estimates. In their original papers, each implicit solvent model
has demonstrated reasonable agreement between the electrostatic GB and PB calculations
for model compounds. Thus, in this work we are focused primarily on the physical
parameters, though we recognize that in some GB models, the physical and numerical
parameters are less readily separable from one another. First, we provide a brief overview of
the primary differences among the solvent models used in this study. Second, we present the
quality of the calculated hydration free energies with respect to reproducing experimental
values as well as results from explicit solvent simulations and discuss the similarities among
the models. Third, we discuss the results in the context of the chemical classes of
compounds that present challenges to the different implicit solvent models. Finally, we
explore the nature of the contributions of the nonpolar estimator to the quality of the
hydration free energy estimates.

II. THEORY
Overview of implicit solvent models

The specifics of each implicit solvent model are already fully documented in the original
papers. Here, we simply highlight the fundamental differences among the implicit solvent
models that are investigated in this study; Table 1 provides an overview of these differences.
All models that were studied decompose the total hydration free energy into an electrostatic
component and a nonpolar component. Each model employs variations of the Generalized
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Born model to approximate the electrostatic contribution to the solvation free energy. The
GB formalism originally proposed by Still and coworkers is described by the equation9:

(1)

where rij is the distance between the charges qi and qj, εm and εsolv are the dielectric
constants assigned to the solute molecule and solvent respectively, N is the number of solute
atoms, αi is the effective Born radius for atom i and κ has a value of 2 in the work of Still et
al.9 and typically is set to 4 or 8. The effective Born radius of each solute atom reflects the
degree of its burial within the molecule and becomes the key parameter for the calculation of
the electrostatic contribution to the solvation free energy. The effective Born radius for atom
i can be calculated from the atomic electrostatic self-solvation energy in the Born equation
(Eq 1):

(2)

The primary advantage of GB models lies in their ability to estimate the Born radii by
alternative, computationally-efficient means. Here, we focus primarily on volume-based GB
models where the Coulomb Field Approximation (CFA), which approximates the electric
displacement around an atom by the Coulomb field, is used to estimate the magnitude of the
Born radius:

(3)

where Ri is the intrinsic radius of atom i (the Born radius in the absence of all other atoms)
and is often set equal to the van der Waals radius and where the second term is the Coulomb
field integral which is computed over the volume of the solute excluding the sphere of radius
Ri around atom i. Different flavors of GB models employ alternative approaches to
calculating and scaling this integral and some include higher order correction terms to
account for limitations in the CFA that arise from off-center charges and non-spherical
volumes of many systems.

The implicit solvent models explored in this study all approximate nonpolar contributions to
the total hydration free energy using a solvent-accessible surface area term. In traditional
MM-PSBA and MM-GBSA methods, the total molecular solvent-accessible surface area,
SASA, is used and the nonpolar contribution is described by:

(4)

where γ and β are the surface tension parameter and off-set values respectively. For a series
of linear alkanes, fitting molecular surface area terms to experimental hydration free
energies yielded values of γ=0.00542 kcal/(mol·Å2) and β=0.92 kcal/mol.32

In this study, we also consider an empirical strategy that was recently developed by Caflisch
and coworkers.33,34 In this strategy, atomic Born radii and SASAs are calculated from
combinations of a measure of the volume occupied by the solute around this atom, Ai, and a
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measure of the symmetry of distribution of atoms around this atom, Bi. For specific van der
Waals radii, five parameters were optimized to reproduce PB atomic solvation energy values
and four parameters were optimized to estimate atomic SASA.

Implicit solvent models implemented in AMBER 35—All the methods that are
implemented in AMBER are based on the pairwise descreening formalism for estimating
Born radii that was outlined by Hawkins et al.16 In the early GB model of Hawkins, Cramer
and Truhlar (HCT) (with parameters described by Tsui and Case,20TC, igb=1)16 the
molecular volume in the Coulomb field integral is estimated based on the van der Waals
sphere of each solute atom and is parameterized for use with the AMBER force field.
However, this approximation to the molecular volume creates regions of interstitial high
dielectrics that would be too small to accommodate a solvent molecule. Onufriev, Bashford
and Case demonstrated how the use of a packing correction factor, λ:

(5)

could reduce the influence of these spurious high dielectric regions in the HCT model. An
empirical value of λ=1.4 was shown to provide good agreement between charge-charge
interaction energies calculated with PB and GB.19 The Onufriev, Bashford and Case models
(OBC; igb=2; OBC2, igb=5)36, however, use an alternative approach to correct the
deficiencies of the GBHCT model for compounds which have significant interior regions. In
these OBC models, the effective Born radii are rescaled by empirical parameters that are
proportional to the degree of the atom's burial, as quantified by the volume integral in Eq. 3,
such that:

(6)

where s=0.09 Å and ψ represents:

(7)

where Ri is the van der Waals radius of atom i; and δ, β, and χ are dimensionless parameters
that were optimized to reproduce PB radii. This well-behaved rescaling function has a
“smooth” upper bound on Ri as a function of volume integral to ensure numerical stability.
The OBC and OBC2 models differ by the values of {δ,β,χ} used in Eq. 6 (OBC: δ=0.8, β=0
and χ=2.90912; OBC2: δ=1.0, β=0.8 and χ=4.851). In the development of the OBC and
OBC2 implicit solvent models, parameters were optimized to ensure agreement between the
GB and corresponding PB calculations as well as with experimental hydration free energies.
Solvent-accessible surface areas were computed by the Linear Combinations of Pairwise
Overlap (LCPO) algorithm.37

Implicit solvent models implemented in CHARMM38

Several Generalized Born Molecular Volume (GBMV)11,12 models are implemented in
CHARMM. The first, GBMV, is a two-parameter grid-based method that uses nearly the
same molecular volume that is used in conventional Poisson calculations and includes an
empirical correction term, ΔG1

elec, to the Coulomb field approximation, ΔG0elec, based on a
measure for the deviation from the ideal spherical shape such that:
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(8)

where the effective Born radii are estimated from:

(9)

In this formalism, A4 is related to the Coulomb Field term in Eq. 3 and A7 to the correction
term, such that:

(10)

and

(11)

The second GBMV model, GBMV2, is a five-parameter analytical method in which the
molecular volume is constructed from a superposition of atomic functions. The fundamental
advantage of this analytical approach over the grid representation is that forces are readily
expressed. In GBMV2

(12)

Generalized Born with a smooth SWitching function model (GBSW)10 alleviates the
numerical instability of solvent force calculations arising from discontinuities in the
dielectric boundary by using a simple polynomial switching function to smooth the
dielectric boundary. In the original GBSW formalism, a van der Waals surface
representation replaces the more expensive molecular surface representation in GBMV. In
GBSW, the two parameters C0 and C1 in Eq. 12 (with S=1 and D=0) are obtained for
various smoothing lengths, 2w, to reproduce the exact self-solvation free energies from
Poisson theory using a van der Waals definition of the dielectric boundary. With the smooth
switching function, the Coulomb term is described by:

(13)

and the correction term is described by:

(14)

where V(r,{rα}) is the solute interior volume and is defined by:
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(15)

and where the atomic volume exclusion function, Hi(r), is given by:

(16)

where {RPB} are the set of atomic radii that are used to define the dielectric boundary in the
PB calculations. Two additional parameterizations of the GBSW model were investigated.
In the GBSW/MS model, the adjustable parameters were optimized to reproduce Poisson
self-solvation free energies using the sharp, molecular surface description of the dielectric
boundary.39 In this case, for w=0.2 Å, C0=1.204 and C1=0.187 in Eq. 12. To reflect the
importance of reproducing small Born radii accurately since they contribute most
significantly to the electrostatic solvation free energies, GBSW/MS226 was recently
parameterized using the equation:

(17)

where optimal values of C’0=1.437, C’1=0.1631 and D’=-0.0505 were obtained.

The Fast Analytical Continuum Treatment of Solvation model (FACTS)34 is significantly
different from the above GB models in that it does not assume the Coulomb Field
approximation and does not require the dielectric boundary between the solvent and solute
to be defined. Instead FACTS is based on the analytical evaluation of the volume, Ai, and
spatial symmetry, Bi, of the solvent that is displaced from around solute atom i. These two
measures are combined in empirically parameterized equations to approximate the self-
electrostatic energies:

(18)

where ao and a1 are determined by using the limiting cases of a fully buried and fully
exposed atom respectively. The other parameters: b1, b2, a2, a3 and Rsphere (which defines
the solute volume considered in calculating Ai and Bi) are optimized for each van der Waals
radius. The self-electrostatic energies then provide the effective Born radii via Eq. 2.
Similarly, the solvent-accessible surface area is approximated by:

(19)

and its corresponding parameters are optimized to reproduce exact SASA values. Since the
FACTS model only requires the vectors between neighboring atom centers it is significantly
faster than the corresponding families of GBMV and GBSW calculations and has been
documented to be only four times slower than vacuum calculations.34
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III. METHODS
Small molecule database

A large database of 499 small neutral organic compounds has been studied. The original
database was made available from Mobley et al.2 which in turn was compiled from
molecules from Rizzo et al.27, Guthrie40 and their earlier studies.41,42 Five duplicate
compounds were identified in the original database of 504 compounds and were removed.
This database contains a wide variety of chemical environments that are commonly
encountered in drug design applications, including saturated and unsaturated hydrocarbons,
aromatic and heterocyclic rings, halides and polar functional groups. Checkmol43 was used
to classify the functional groups that are represented in each molecule. Table 2 lists the
frequency of each class of functional groups that is represented in this database. The full list
of ligands that were assigned to each functional group classification is included in Table S1
of the Supplementary Material.

Small molecule parameterization
AMBER GAFF29/AM1-BCC30,31 parameters and partial charges for all compounds in the
database were obtained directly from the supplementary materials provided by Mobley et
al.2 which used the Merck-Frosst implementation of the AM1-BCC charge assignments and
augmented van der Waals well-depth parameters for triple bonded carbon atoms. The
AMBER prmtop files were converted to the corresponding CHARMM topology and
parameter files using the conversion tool AMBER2CHARMM which will be incorporated
into the MMTSB toolset44 (http://mmtsb.org); prmtop charges were scaled by
332.0522173-1/2 to account for the difference in the charge conversion factors used in
AMBER and CHARMM.35 Validation of the consistency between the vacuum energies that
are calculated from both AMBER and CHARMM is provided in Appendix A1. In keeping
with the intrinsic radii that are suggested in the Amber manual, Amber6 radii were used for
the TC analyses whereas modified Bondi van der Waals radii45 (mbondi2) were used for the
OBC and OBC2 analyses. Appropriate radii were incorporated into the prmtop files using a
variation of the AMBER2CHARMM tool.

Molecular dynamics simulations and analysis
Simulation trajectories were generated for each molecule in both vacuum and the GBMV2
implicit solvent environment. Infinite cutoffs were used; covalent bonds involving hydrogen
atoms were restrained using the SHAKE46 algorithm and the time step was 1.5 fs. The
temperature was maintained near 298 K by coupling all heavy atoms to a Langevin heat bath
using a frictional coefficient of 10 ps-1. Simulation trajectories were 10.5 ns in length.
Snapshots were saved every 5 ps throughout the last 10 ns for subsequent free energy
analysis. Simulation trajectories were generated and energy evaluations associated with the
GBMV, GBSW and GBSW/MS and FACTS implicit solvent models were obtained using
the CHARMM molecular dynamics package c36a4.38,47 Energies associated with the
GBSW/MS2 implicit solvent model was obtained using a modification of CHARMM
provided by Chen.26 Energies calculated with the TC, OBC and OBC2 implicit solvent
models were obtained for each of the snapshots using the MMTSB utility44enerAMBER.pl.
Simulations were analyzed by the Bennett Acceptance Ratio method (BAR)48 using a
modified version of pyMBAR.49 An analysis of the sensitivity of the results to the specific
Hamiltonian used to generate the trajectory is provided in Appendix A2. All simulations and
calculations were performed on dual 2.66 GHz Intel Quad Core Xeon CPUs.

Standard parameters in the MMTSB utility enerAMBER.pl were employed but with infinite
non-bonded cutoffs for the TC, OBC and OBC2 models. The solvent-accessible surface area
for the nonpolar contribution to the hydration free energy was calculated using the LCPO
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model.37 The GBMV model used a dodecahedron angular integration grid, geometric cross-
term in the Still equation and κ=8 in Eq. 1; the multiplicative factor, S, and shift, D, of αi in
Eq. 12 were 0.9026 and -0.007998 respectively. The GBMV2 model used a Lebedev angular
integration grid with grid size of 38, geometric cross-term in the Still equation and κ=8 in
Eq. 1; the multiplicative factor, S, and shift, D, of αi in Eq. 12 were 0.9085 and -0.102
respectively. For the GBSW and GBSW/MS calculations, the half smoothing lengths, w,
were 0.3 and 0.2 Å respectively. The grid spacing in the lookup table was 1.5 Å and the
optimized default values for the coefficients for the Coulomb Field approximation and
correction terms were used (i.e. Co and C1 in Eq. 12). The GBMV and GBSW intrinsic radii
were assigned from the van der Waals radii. Default FACTS parameters were employed
with infinite nonbonded cutoffs. FACTS parameters were used that had been optimized for a
solute dielectric constant of 1. van der Waals radii which had not be investigated in the
original FACTS study had FACTS parameters estimated by interpolation or extrapolation
from the optimized FACTS parameters using the “tavw” option in CHARMM. To be
consistent with the FACTS parameterization strategy, polar hydrogens were assigned van
der Waals radii of 1.0 Å.

The nonpolar surface tension coefficient, γ, was systematically varied between 0.0 and 0.07
kcal/(mol·Å2) for each implicit solvent model. The optimal surface tension coefficient was
identified for each implicit solvent model to be the value of γ that minimized the average
unsigned error for a test set of compounds. The test set was comprised of every tenth
molecule in the full dataset sorted by experimental hydration free energies. In addition, the
free energies were evaluated for γ=0.00542 kcal/(mol·Å2) with an offset value of β=0.92
kcal/mol.

IV. RESULTS & DISCUSSION
Overall quality of absolute hydration free energy estimates across implicit solvent models

Using optimized values of the nonpolar surface tension parameters, each of the nine
different implicit solvent models performs reasonably well in reproducing experimental
hydration free energies for the database of 499 compounds. The measures of model quality
are summarized in Table 3. Not including GBSW/MS2, the average unsigned errors (AUE)
for the implicit solvent models range from 1.1-1.4 kcal/mol; the root mean square (RMS)
error varies between 1.5-2.1 kcal/mol and the correlation coefficients lie between R2=0.66
and 0.81. About half of the compounds in the database (44-59%) have hydration free
energies that are correctly predicted within 1 kcal/mol of their experimental values. At least
three quarters of the compounds (75-83%) have hydration free energies that are correctly
predicted within 2 kcal/mol and about 90% of the compounds (87-97%) have hydration free
energies that are correctly predicted within 3 kcal/mol. Among the models explored in this
study, the GBMV, GBMV2 and GBSW models demonstrate the best overall agreement with
experiment. The measures of model quality are systematically poorer for the GBSW/MS2
models in which the average unsigned and signed errors are 1.9 and -1.0 kcal/mol
respectively, the RMS error is 2.5 kcal/mol and the R2=0.684.

All the implicit solvent models also showed reasonable agreement with the hydration free
energies reported for TIP3P explicit solvent simulations for the same compounds by Mobley
et al.2 Again, not including the GBSW/MS2 model, the average unsigned and signed
differences are less than 1.7 and 1.5 kcal/mol respectively. While the models show
comparable magnitudes of the signed and unsigned differences, the GBMV, GBMV2 and
GBSW models show slightly better correlation with the hydration free energies estimated
compared with explicit solvent simulations (R2=0.91) whereas the rest of the models have
R2 < 0.86. Hydration free energies estimated from the GBSW/MS2 model show less
agreement with explicit solvent calculations with unsigned and signed differences of 2.1 and
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-1.7 kcal/mol respectively and R2=0.79. For this size of dataset, R2 differences of ~0.03 are
statistically significant at the 95% confidence interval level as evaluated by the Fisher
transformation.

These overall results are comparable to what has been reported by Rizzo et al.27 and Mobley
et al.28 for implicit solvent simulations for GAFF/AM1-BCC parameterization of these
compounds. Hydration free energies computed for some individual compounds are
significantly different than those reported in Mobley et al.28; however, these differences are
primarily due to the AM1-BCC partial charge assignments. In the implicit solvent study, the
Antechamber50 pre-processor was used to assign the charges whereas in the later explicit
solvent study (from which the parameter files were taken for our analysis) the Merck-Frosst
implementation was used. Finally, given the trends for the GB models that were reported in
Mobley et al.,28 it is anticipated that the recent GB model, GBn,18 would have comparable
or slightly degraded performance relative to the TC and OBC2 models.

Similarities among solvent models
Hydration free energy estimates for individual molecules in the database are highly
correlated for different subsets of implicit solvent models. Figure 1 shows the correlations
between each pair of implicit solvent models and their correlation with experimental values
as well as results from explicit solvent simulations reported by Mobley et al.2 The strongest
correlations are observed between the OBC and OBC2 models with R2=0.996, the GBSW/
MS1 and GBSW/MS2 models with R2=0.995 and between the GBMV and GBMV2 models
with R2=0.991. The unsigned difference between the GBMV models averaged over all 499
compounds was 0.25 kcal/mol and the differences were localized primarily in the hydration
free energy estimates for the acids and alcohols. The unsigned difference between the OBC
and OBC2 models was 0.30 kcal/mol and individual differences were dominated by
compounds containing hypervalent sulfur atoms, phosphate groups and alkyl chains. The
magnitude of the differences between the GBSW/MS and GBSW/MS2 models were
significantly larger with average unsigned and RMS differences of 0.66 and 0.90 kcal/mol
respectively; with these models, the differences were dominated by hydration free energy
estimates for alcohols, acids, esters, and amines. These correlations are not surprising since
the models share basic assumptions in their strategies for efficiently calculating the Born
radii. For example, OBC and OBC2 use the same set of intrinsic radii (mbondi2) and use the
same functional forms (Eq. 6 and 7) to calculate the Born radii, albeit with slightly different
parameters {δ,β,χ}; the GBMV2 model is an analytical representation of the grid-based
GBMV model with the same definitions of the dielectric boundary and same set of intrinsic
radii (van der Waals radii) as each other. The differences in the individual hydration free
energies observed the highly correlated GBSW/MS and GBSW/MS2 models presumably
arises from the differences in the functional forms of Eq. 12 and 17 that were used to obtain
the numerical parameters in the respective models.

Targeting chemical classes for further parameter optimization across all solvent models
The reliability of hydration free energies calculated for individual compounds is strongly
dependent on the functional groups that are represented in the molecule. The quality is
related to the ligand parameters, especially the atomic partial charge assignments, as well as
the numerical and physical parameters associated with the implicit solvent model. Here, we
are primarily interested in identifying those classes of compounds that are not modeled
reliably and in trying to decipher the underlying cause of the poor quality estimates. The
AUEs for different chemical classes of compounds for the implicit solvent models are
depicted in Figures 2 and 3 and the list of compounds that were assigned to each class are
included in Supplemental Material Table S1. Given the small differences in hydration free
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energies estimated using either the GBMV or GBMV2 model and either the OBC or OBC2
model, GBMV and OBC models were omitted from Figures 2 and 3 for clarity.

Only the chemical class of compounds that contain hypervalent sulfur atoms has AUEs > 2
kcal/mol, regardless of which implicit solvent model is used. The uniformly poor results in
which the AUEs range from 2.8 to 8.4 kcal/mol and average errors range from -9.1 to -2.8
kcal/mol suggest a problem with the ligand force field parameters used to model the
hypervalent sulfurs. While Mobley et al.2 report improved hydration free energies for the
four molecules that are assigned to this chemical group based on explicit solvent simulations
(AUE=2.0 kcal/mol)), in another study for a series of drug-like molecules with the AM1-
BCC force field modeled in explicit solvent, the average errors for compounds that
contained hypervalent sulfurs were reported to be -8.1 kcal/mol.51 Therefore, it is likely that
the errors for the hypervalent sulfur compounds are predominantly due to limitations in
force field parameters and, as Mobley et al. suggest, specifically in the GAFF approximation
that all sulfur atoms have the same Lennard-Jones parameters.51 This approximation may be
further exacerbated in implicit solvent simulations in which the same intrinsic radii are
applied to all sulfur atoms regardless of their chemical environment.

Four additional classes of compounds, the aldehydes, carboxylic acid esters, nitrogens and
fluorine-containing compounds, each have AUE > 2 kcal/mol for at least 4 implicit solvent
models. In each case, the explicit solvent simulations are reported to have AUEs just over 1
kcal/mol. Therefore, these functional groups appear to be good candidates for re-
parameterization of the “physical parameters” associated with how they are treated within
the implicit solvent models. One of the primary physical parameters is the set of intrinsic
radii that are used to define the dielectric boundary for computing the Born radii, the degree
of burial, of each atom. The hydration free energies for these compounds are systematically
overestimated relative to experiment suggesting that the current intrinsic radii are too small
and, thus, have charges that are closer to the surface. These atoms are essentially more
exposed than they should be and consequently have excessively large contributions of the
electrostatic component to the free energy.

For four classes of compounds the hydration free energies estimated from implicit solvent
simulations are of better quality than the corresponding reported explicit solvent
simulations. In two cases, the discrepancy is associated with a change in parameters in the
implicit solvent simulations. Improved results from implicit solvent simulations for the
alkynes and, to a lesser extent, the carbonitriles arises from the use of the improved van der
Waals parameters suggested by Mobley et al. for triple-bonded carbon atoms where the
well-depth parameter, ε, was augmented from 0.086 to 0.21 kcal/mol. In fact, for TIP3P
simulations with the augmented well-depth parameters, the AUEs improved from 1.9 to 0.5
kcal/mol for the alkynes2 and so are in good agreement with the current implicit solvent
calculations. The reported explicit solvent simulation results used the original well-depth
parameters. For the thioethers and bromide-containing compounds, the discrepancy between
results from implicit and explicit solvent simulations suggests that there may be a fortuitous
cancellation of error with the implicit solvent calculations for these groups, or alternatively a
mismatch between the interaction energy terms between the TIP3P water model and the
small molecules. Therefore, these latter two functional groups need further investigation,
which is beyond the scope of this paper.

Targeting chemical classes for further optimization in specific implicit solvent models
Within a given class of compounds, most of the implicit solvent models exhibit a level of
quality that is comparable to at least one other solvent model. For example, for all classes of
compounds except the nitrogen and thiol compounds, the quality of the hydration free
energies that are estimated using the GBMV2 formalism is within 0.2 kcal/mol of that
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estimated from at least one other implicit solvent model. By contrast, hydration free energies
estimated using TC, FACTS and GBSW/MS2 models show more variability than the other
solvent models. TC models have higher quality results for the alkanes (with an AUE that is
0.3 kcal/mol lower than the next best implicit solvent model result), but significantly poorer
results for the sulfurs, phenols, ether alkyls, acetals and thioethers (with AUEs that are
0.4-1.3 kcal/mol higher than the next poorer implicit solvent model result). One of the
limitations of the TC model compared with the OBC and OBC2 models is the presence of
spurious high dielectric regions within a molecule associated with interstitial spaces between
atom spheres. These spaces, which would be physically inaccessible to solvent, lead to
inappropriately small Born radii and, thus, to systematically larger electrostatic contributions
to the hydration free energy. While, in general, this would be a less serious issue for small
molecules with proportionally less burial than for large macromolecular systems, it may be
contributing to the poorer quality observed across these classes of compounds.

The FACTS model also shows more extreme behavior among the implicit solvent models in
that, for several classes of compounds, FACTS has substantially better or poorer quality than
any other model. Specifically, the aldehydes, carboxylic acid esters, ketones, thiols and
iodine-containing compounds are all modeled with FACTS with AUEs that are 0.3-1.1 kcal/
mol lower than the next best implicit solvent model whereas the AUE associated with the
FACTS model for the carbonitriles are 0.6 kcal/mol poorer than any other implicit solvent
model. FACTS is one of the most recently developed implicit solvent models in CHARMM
and has only been parameterized for protein atoms in the param19 and param22 topology
files. Currently, the optimized parameters for intrinsic radii for which parameters do not
exist are extrapolated from those that do exist. Therefore, specifically parameterizations
based on Eq. 18 and 19 for this database of small molecules or a subset of these compounds,
which would reflect greater chemical diversity than is observed in the param22 topology
files, would likely further increase the quality of the hydration free energy estimates. Given
that FACTS is also one of the fastest methods currently available for estimating solvation
free energies, we believe this would be a very promising avenue to pursue.

Finally, the GBSW/MS2 model exhibits significantly poorer results than the other implicit
solvent models for the hypervalent sulfurs, acids, aldehydes, nitrogens, chloroalkyls and
chloroaryls as well as the bromine-containing compounds with AUEs 0.4-4.3 kcal/mol
higher than the next poorer implicit solvent model. The recent parameterization of the
GBSW/MS2 model was specifically targeting small Born radii, that is atoms that are on the
surface of the molecule, since they will contribute more substantially to the electrostatic
energy than their buried counterparts. Since there is relatively little “burial” of atoms to
consider in this database of small molecules, this study is likely not effectively probing the
strength of this implicit solvent model. Furthermore, efforts for optimizing the physical
parameters for the GBMSW/MS2 models were focused on reproducing the strengths of
pairwise and three-body interactions among polar and nonpolar side-chain analogues and
compounds in explicit solvent simulations and did not include the chemical diversity that is
observed in this database of compounds. Therefore, more specific parameterization targeting
this database or a subset of this database would likely extend the transferability of this
implicit solvent model to a larger chemical palette and likely improve the quality across
more chemical classes.

Effect of nonpolar contributions to quality of overall hydration free energies
As has been demonstrated in other work, inclusion of a nonpolar contribution is crucial for
obtaining accurate estimates of absolute hydration free energies using implicit solvent
models.22,52 With no nonpolar contribution to the total hydration free energy, all models in
this study have average signed errors (ΔGcalc–ΔGexpt) between -3.7 and -1.1 kcal/mol; this
systematic error represents a tendency for molecules to be overstabilized in the implicit
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solvent environment relative to experiment. Furthermore, a comparison of the electrostatic
contributions to the total hydration free energies modeled with implicit solvent models in
this study and explicit water simulations reported by Mobley et al.2 reveals the tendencies
for molecules to be overstabilized in each implicit solvent model except FACTS relative to
the TIP3P results. The comparison is summarized in Table 4 and indicates that the GB
component of the GBMV, GBMV2, GBSW, GBSW/MS and FACTS models have the best
agreement with the TIP3P electrostatic contributions with average and unsigned average
differences of 0.5-1.1 kcal/mol and R2 values greater than 0.825.

In this work, we have used a simplified model, a solvent-accessible surface area (SASA)
term scaled by a surface tension parameter, γ, to estimate the nonpolar contribution to the
hydration free energy. A linear scan of the surface tension parameter for each implicit
solvent model identified the “optimal” value for γ, that is, the value that minimized the AUE
for a test set of compounds. Figure 4 illustrates the overall quality of the hydration free
energy estimates as a function of nonpolar surface tension coefficient and demonstrates that
similar optimal values are obtained when using either the test set of compounds (Fig 2;
dashed line, circles) or the full dataset (Fig 2; solid line, squares).

In all models, accounting for a nonpolar contribution with this simplified model significantly
improves the average signed errors with respect to experimental hydration free energies,
minimizes the differences with respect to explicit solvent simulations and increases the
percentage of compounds that are correctly predicted. For all models, except for FACTS, the
average errors decreased to between -1.0 to -0.2 kcal/mol, but still demonstrate the
systematic overstabilization of compounds in solvent relative to experiment. Table 5
summarizes the results for only the electrostatic contribution and for two other common sets
of nonpolar parameters: γ=0.00542 kcal/(mol·Å2) with β=0.92 kcal/mol; and γ=0.005 kcal/
(mol·Å2) with β=0 kcal/mol.

The “optimal” value of γ for each model differed between the models. GBMV, GBMV2 and
FACTS models had relatively small optimal γ values of 0.005 kcal/(mol·Å2); TC, OBC,
OBC2 and GBSW models had slightly larger values between 0.0075 and 0.01 kcal/(mol·Å2)
while GBSW/MS and GBSW/MS2 had relatively large γ values of 0.03 and 0.04 kcal/
(mol·Å2) respectively. The optimal value depends on two factors: the magnitude of the
SASA term calculated for the given implicit solvent model as well as the magnitude of the
AUE calculated from the electrostatic contribution alone. The first factor has a physical
meaning while the second can be viewed as a “fudge factor” that compensates for
inadequacies in the electrostatic contribution of the solvent models themselves. The average
SASA term across all molecules in the database was smallest for the GBSW, GBSW/MS
and GBSW/MS2 models (<SASA> ≈ 68 Å2), systematically larger for the AMBER-based
models (<SASA> ≈ 253 Å2) and FACTS (<SASA> ≈ 262 Å2) and largest for the GBMV,
GBMV2 models (<SASA> ≈ 321 Å2). From these trends, it is apparent that the relatively
small values of γ for GBMV, GBMV2, TC, OBC and OBC2 are due to their comparably
large SASA calculations. By contrast, the small values of γ for the GBSW and FACTS
models are due to their relatively small AUEs for the electrostatic contribution alone. The
larger values for γ for the GBSW/MS and GBSW/MS2 models are related to both the
smaller SASA terms combined with larger errors when only the electrostatic contribution is
considered.

Limitations of this simplified model based linear scaling of the SASA have been
demonstrated previously. Mobley et al.'s study found that while the repulsive and attractive
components of the nonpolar contribution obtained from TIP3P simulations were correlated
with solute surface area or volume the total nonpolar contribution which is a small
difference between the two large components showed no correlation with the solute surface

Knight and Brooks Page 13

J Comput Chem. Author manuscript; available in PMC 2012 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



area or volume.2 Further improvements in the agreement between the calculated and
experimental hydration free energies for small molecules could likely be achieved by
adopting atom-specific surface tension parameters as proposed by Eisenberg and
McLachlan25 and Scheraga and coworkers23 such that:

(20)

where the atomic solvent-accessible surface areas, SASAi, are scaled by atom-specific
surface tension parameters, γi. In their study, Rizzo et al.27 demonstrate that PB/SA and GB/
SA calculations with atomtype-specific optimized surface tension parameters generally
showed improved agreement with experimental hydration free energies over implicit solvent
calculations with the optimal linear alkane parameters of γ=0.00542 kcal/(mol·Å2) and
β=0.92 kcal/mol. Interestingly, the attractive and repulsive components individually
correlate strongly with surface area. However, it is also likely that fundamentally more
sophisticated nonpolar models will be required to effectively represent the underlying
physics of solvation and significantly improve the quality of hydration free energies
estimates.6,22,53 Levy and coworkers have shown promising results by further decomposing
the nonpolar contribution to the total free energy into a component accounting for the cost of
cavity formation within the solvent and a component reflecting the solute-solvent van der
Waals dispersion interactions.13,24 This strategy likely contributes to the low reported
average unsigned errors of 0.6 kcal/mol reported by Gallicchio et al.13,24 and Jorgensen et
al.17 for hydration free energies for series of neutral molecules modeled with the OPLS-AA
force field. Levy and coworkers have also recently implemented an additional component to
the total energy that models first-solvation shell effects around a solute that would account,
for example, for solute-solvent hydrogen bonding that is not accurately modeled within a
continuum approximation.14 Fennel et al. have proposed an alternative strategy in which
explicit solvent simulations are used to precompute the properties of water molecules around
a series of nonpolar solute spheres that exhibit diverse radii and attractive dispersion
interactions and information from the precalculated table are assembled to approximate the
hydration of an arbitrary solute molecule.54 This Semi-Explicit Assembly model seems to
provide a better description of attractive interactions and alleviates problems of
nonadditivity that is inherent in traditional SASA-based approaches. Finally, due to the
challenge of representing charge distributions in small molecules in media with significantly
different dielectric properties—for example, free in aqueous solution and buried within a
hydrophobic binding pocket—polarizable or fluctuating charge models55 may also be
required to significantly advance the quality of hydration free energy estimates across
diverse chemical space.

V. CONCLUSION
We have presented a comparison of absolute hydration free energies that have been
calculated for an extensive database of small neutral molecules using a variety of implicit
solvent models. Given GAFF parameters and AM1-BCC partial charge assignments for the
solutes and using a simplified SASA model for the nonpolar contribution in the implicit
solvent models, most of the common AMBER and CHARMM-implemented implicit solvent
models agree reasonably well with extensive explicit solvent simulations (average difference
1.0-1.7 kcal/mol and R2=0.812-0.911) and with experimental hydration free energies
(AUE=1.1-1.4 kcal/mol and R2=0.663-0.809). Uniformly poor performance of compounds
containing hypervalent sulfurs suggests a need for further optimization of the corresponding
sulfur parameters in the GAFF force field. Other chemical classes, specifically, aldehydes,
carboxylic acid esters, thioethers, fluorine and bromine-containing compounds, showed poor
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quality across many of the implicit solvent models, yet had favorable hydration free energy
estimates using explicit solvent simulations. Thus, these latter functional groups are
proposed as targets for more refined optimization of their associated physical parameters in
the implicit solvent models, most likely the intrinsic radii that are used to calculate the
effective Born radii. Inclusion of the nonpolar estimator significantly improves the quality of
the results, but more sophisticated nonpolar models will also be necessary to effectively
represent the underlying physics of solvation and take the quality of hydration free energies
estimated from implicit solvent models up to the next level. Given their computational
efficiency, implicit solvent models offer a significant practical advantage over explicit
solvent models in simulating macromolecular systems. Therefore, further studies that focus
on protein-ligand binding affinities will be critical to evaluating the quality of the implicit
solvent models in the context of all-atom macromolecular force fields and to ensuring an
appropriate balance between the effective desolvation cost for a small molecule and the cost
associated with desolvating the binding pocket of the macromolecule that the small
molecule targets in vitro.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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APPENDIX

A1: Validation of conversion from AMBER to CHARMM formats
Using snapshots of conformations of each compound in the database we demonstrate the
excellent agreement between the total energies calculated in vacuum in SANDER using the
MMTSB utilities and those calculated in CHARMM. Figure 5 shows the correlation
between the total energies computed in SANDER and CHARMM as well as the distribution
of energy differences. The largest energy differences are less than 0.12 kcal/mol and arise
from compounds containing CN triple bonds, where the energy difference is localized to the
bond angle component involving the triple bond. This energy contribution will be present in
each snapshot of the vacuum and solvent calculations and so will cancel out when the
energies are subtracted from one another in the BAR analysis; therefore, we have not
adjusted the implementation of either program.

A2: Sensitivity of results to trajectory Hamiltonian
To assess the sensitivity of the hydration free energy estimates for the different implicit
solvent models to the GBMV-based Hamiltonian that was used to generate the trajectories,
we generated new trajectories using the OBC2 implicit solvent model and re-evaluated the
corresponding OBC2 and GBMV2 hydration free energies. In this case, mbondi intrinsic
radii were used in conjunction with the OBC2 model. Figure 6 demonstrates the excellent
agreement between the calculated hydration free energies regardless of what Hamiltonian
was used to generate the trajectory. CHARMM/GBMV2-generated and SANDER/OBC2-
generated trajectories give absolute hydration free energies within 0.1 kcal/mol of one
another for all but 23 compounds when evaluated with GBMV2. The average unsigned
difference is 0.02 kcal/mol and R2=0.9995. Similarly, CHARMM/GBMV2-generated and
SANDER/OBC2-generated trajectories give absolute hydration free energies within 0.1
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kcal/mol of one another for all but 41 compounds when evaluated with OBC2. The average
unsigned difference is 0.04 kcal/mol and R2=0.9990. In both cases, the largest deviations
were for propanoic acid with a difference of 0.97 and 1.2 kcal/mol for the GBMV2 and
OBC2 hydration free energy estimates respectively. The most common functional groups
exhibiting sensitivity to the Hamiltonian used to generate the trajectory were alcohols and
acids. Given this substantial agreement between the results based on trajectories generated
from different implicit solvent models, we used the GBMV2-generated trajectories for all
subsequent analyses.
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Figure 1.
Correlation between calculated absolute hydration free energies for the 499 compounds in
the database for all pairs of implicit solvent models.
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Figure 2.
Average unsigned errors for subsets of the database classified by functional groups present
for select implicit solvent models. Chemical classes are sorted by increasing error in the
GBSW/MS2 model. TIP3P values were taken from Mobley et al. Supplementary
Information.2
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Figure 3.
Differences between hydration free energies estimated from implicit solvent models and
explicit solvent simulations. Chemical classes are sorted by increasing differences in the
OBC2 model. TIP3P values were taken from Mobley et al. Supplementary Information.
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Figure 4.
Sensitivity of estimated hydration free energies on the surface tension coefficient for each of
the implicit solvent models for the test set (dashed line; circles) and full database (solid line;
squares). The test set was comprised of every 10th compound in the database sorted by
experimental hydration free energy.
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Figure 5.
Comparison between SANDER-calculated energies using the MMTSB utility
enerAMBER.pl and energies calculated using CHARMM for the 499 small molecules in
vacuum. (a) Correlation between SANDER and CHARMM energies (R2=1.00). (b)
Distribution of total differences between CHARMM- and SANDER-calculated energies.
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Figure 6.
Correlation between absolute hydration free energies evaluated by (a) GBMV2 or (b) OBC2
from trajectories generated from CHARMM/GBMV2 and SANDER/OBC2 implicit solvent
models.
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Table 2

Functional groups designated by Checkmol43 and their frequency of representation in the database of 499
compounds. (ca=carboxylic acid)

Group No. Group No.

acetal 2 ether_alkyl 25

acid 6 ether_aryl 10

alcohol 38 fluoro 10

aldehyde 19 halogen 22

alkane 27 heterocyclic 48

alkene 35 hypervalents 4

alkyne 6 iodo 11

amine 44 ketone 25

aromatic 169 nitro 17

bromo 21 nitrogen 2

ca_amide 10 orthoester 8

ca_ester 47 other 8

ca_ortho 10 phenol 33

carbonitrile 11 sulfur 4

chloro_alkyl 31 thioether 6

chloro_aryl 20 thiol 5

cyclohydrocarbon 9
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