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Abstract
Spatial stochastic simulation is a valuable technique for studying reactions in biological systems.
With the availability of high-performance computing, the method is poised to allow integration of
data from structural, single-molecule, and biochemical studies into coherent computational models
of cells. Here we introduce the Lattice Microbes software package for simulating such cell models
on high-performance computing systems. The software performs either well-stirred or spatially
resolved stochastic simulations with approximated cytoplasmic crowding in a fast and efficient
manner. Our new algorithm efficiently samples the reaction-diffusion master equation using
NVIDIA GPUs and is shown to be two orders of magnitude faster than exact sampling for large
systems while maintaining an accuracy of ∼0.1%. Display of cell models and animation of
reaction trajectories involving millions of molecules is facilitated using a plug-in to the popular
VMD visualization platform. The Lattice Microbes software is open source and available for
download at http://www.scs.illinois.edu/schulten/lm.
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1 Introduction
Many cellular processes involve low copy number proteins and/or nucleic acids and
consequently exhibit stochastic effects, which has been demonstrated by a series of
pioneering experiments as reviewed in [1, 2, 3, 4]. The spatially homogenous chemical
master equation (CME) and its inhomogeneous counterpart, the reaction-diffusion master
equation (RDME), are frequently used to model such stochastic biochemical systems, e.g.,
by McAdams and Arkin for gene expression [5]. Since the CME and RDME are analytically
intractable for systems of significant complexity, biological stochastic systems are generally
studied using large ensembles of computationally generated trajectories (realizations) of the
underlying equations' time evolution [6].

The CME, while accounting for stochasticity, assumes the system is well-stirred such that
reactions are equally likely between any molecules of reactants in the entire volume. For in
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vitro biochemical systems the well-stirred approximation proves reasonable, but spatial
organization and molecular crowding inside the cell bring this assumption into question for
in vivo systems [7]. The RDME extends the master equation formalism of the CME to
account for spatial degrees of freedom by dividing the system volume into discrete
subvolumes with molecules diffusing between the subvolumes and reacting only with other
molecules in the local subvolume. RDME theory [8, 9, 10, 11, 12] and numerics [13, 14, 15,
16, 17, 18, 19] have been the subject of much recent research. Our multiparticle diffusion
(MPD) method allowed us to parallelize the diffusion operator of the RDME for efficient
calculation of in vivo diffusion on graphics processing units (GPUs) [20].

In addition to the spatial degrees of freedom accounted for by the RDME, reactions
occurring in a living cell are also subject to in vivo crowding. Cryoelectron tomography
studies of single cells have revealed a crowded cytoplasm with decidedly non-uniform
distributions of macromolecules [7, 21, 22, 23, 24, 25]. Molecular crowding and non-
specific interactions have been theoretically predicted to give rise to anomalous subdiffusion
in the cytoplasm [26, 27, 28, 7] and to have an effect on reaction kinetics [7]. The full extent
to which these two effects impact the function of the cell is the subject of active
investigation.

Here we introduce the “Lattice Microbes” software package for efficiently sampling
trajectories from the CME and RDME on high performance computing (HPC) infrastructure
using both exact and approximate methods. Particularly, the software takes advantage of any
attached GPUs or other many-core processors to increase performance. The focus of the
software is on the simulation of cell models with approximated in vivo crowding, such as
shown in Figure 1. We also present a new approximate method for sampling the RDME
using our GPU-optimized multiparticle diffusion operator (MPD-RDME), as first applied in
simula-tions of lac genetic switch at the whole cell level [7]. Models and trajectories can be
loaded and visualized using VMD [29], which allows for easy simulation setup and analysis.

2 Methods
2.1 Master equations for modeling stochastic chemical systems

To probabilistically study chemico-physical processes, one often uses a master equation
formalism, which describes the time evolution of the probability for the system to be in a
given state [30, 31]. Specifically, the CME [32] is widely used to stochastically model
reactions in a well-stirred volume. Under the well-stirred assumption, each reaction occurs
with a probability per unit time (propensity) proportional to its rate constant and the number
of reacting molecules. The time derivative of the probability distribution P for the system to
be in a given state x is then:

(1)

Here, x is a vector containing the number of molecules for each of the N species in the
system and ar(x) is the reaction propensity for reaction r of R given a state vector. For a first
order reaction involving species α: a(x) = kxα (with k in units of s−1), for a second order

reaction involving species α and β:  (with k in units of M−1 s−1 and V in L), and
so forth. S is the N × R stoichiometric matrix describing the net change in molecule number
when a reaction occurs.
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The RDME is a less well-known method for modeling chemical reactions under conditions
of slow diffusion [8, 9, 10]. In the formalism of the RDME, the system's volume is divided
into a set of uniform subvolumes with spacing λ and with the molecules in the system being
distributed amongst the subvolumes. Reactions occur only between molecules within a
subvolume and each subvolume is considered to be well-stirred such that reactions within it
follow standard kinetic theory and can be described by the CME. Diffusion is accounted for
by random transitions of species between neighboring subvolumes, also with constant
probability per unit time.

The time evolution of the probability for the system to be in a specific state x (where xν
contains the number of molecules of each species in the ν ∈ V subvolume) is then the sum
of the rates of change due to reaction and diffusion, as described by the operators  and ,
respectively:

The reaction operator is simply the CME applied to each subvolume independently. The
diffusion operator describes the rate of change of the probability due to the molecules'
propensity to diffuse between the subvolumes.  is the number of molecules of species α ∈
N in subvolume ν and dα is the diffusive propensity for a molecule of species α to jump
from subvolume ν to neighboring subvolume ν + ξ, which is related to its macroscopic

diffusion coefficient by . The first part of the diffusion operator then is probability flux
out of the current state due to molecules diffusing from subvolume ν to subvolume ν + ξ,
where ξ is a neighboring subvolume in the ±x, ±y, or ±z direction as indicated by the î, ĵ and
k̂ units vectors. The second part of the diffusion operator describes probability flux into the
current state due to molecules diffusing into the current subvolume from a neighboring
subvolume. The  syntax represents a single molecule of type α in subvolume ν.

The RDME has been shown to asymptotically approximate the Smoluchowski diffusion-
limited reaction model when the reaction radius of the molecules is small compared to the
length of the subvolume [9, 10, 11, 13]. This condition is satisfied when the average time
until the next reaction event in a subvolume is much longer than the average time until the
next diffusion event, τR » τD. For example, the reaction of a single molecule of A with a

single molecule of B according to  requires (if k is in units of M−1 s−1 and

assuming pseudo-first-order kinetics such that ):

where D = DA + DB is the relative diffusion coefficient between molecules of A and B, NA
is the Avogadro constant, and the factor of 1000 converts from L to m3.
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The CME and RDME are difficult to analytically study for even simple systems, and instead
are most often sampled using a Monte Carlo approach. Many independent realizations of the
system's path through the probability space are computationally calculated and then
combined to reconstruct the system's time-dependent probability density function (PDF).
Typically, approaches for exactly sampling the CME are variants of Gillespie's stochastic
simulation algorithm (SSA) [33]. Gillespie's direct method involves straightforward
generation of a trajectory by sampling an exponentially distributed time until a reaction
occurs and then choosing from the possible reactions based on the weighting of their
propensities. Gibson and Bruck developed the more efficient next-reaction method [34] for
generating trajectories for systems with many reactions by using a priority queue to track
upcoming reaction times. Several approximate sampling methods, such as τ-leaping [35, 36]
and R-leaping [37], have also been developed that can decrease simulation time under
certain simulation conditions.

The next-subvolume method for exactly sampling the RDME was introduced by Elf and
Ehrenberg [13, 14]. This method uses a next-reaction-like priority queue for organizing the
list of subvolumes by the time of their next diffusion or reaction event. Once a subvolume
has been selected for an event, the standard Gillespie direct method is used to determine the
specific reaction or diffusion event that occurred in the subvolume. Marquez-Lago and
Burrage devised the binomial τ-leaping variant of the next-subvolume method to speed up
RDME calculations in a manner analogous to the τ-leaping algorithm for the CME [38].
Similarly, Lampoudi, Gillespie, and Petzold published the multinomial simulation algorithm
to speed up the diffusion operator by efficiently calculating only the net flux between
subvolumes [17]. An alternate approach was taken in development of the Gillespie multi-
particle (GMP) method by Rodríguez et al. [15]. This approach is the most similar to our
algorithm, as discussed below, and uses operator splitting to calculate the reaction and
diffusion operations separately. Diffusion is accounted for by a jump process [39] in which
molecules jump to a neighboring subvolume at a predetermined time according to their
macroscopic diffusion coefficient. In between diffusion jumps, reactions are processed in
continuous time using the standard Gillespie method on a per subvolume basis. Drawert and
colleagues have recently taken a different route and used the finite state projection method
during the calculation the diffusion operator [18]. Instead of jumping molecules from
subvolume to subvolume, they instead calculate the probability distribution of the diffusion
operator using the finite state projection method and then randomly update the lattice each
time step using the statistics of the distribution. There are numerous other variations on these
algorithms including methods that intermix deterministic and stochastic solutions according
to molecule concentration [19, 40], methods that use direct compilation of models into code
[41], and methods that use the GPU to accelerate, e.g., the GMP algorithm in two
dimensions [42] or large reaction networks [43].

2.2 Exact master equation sampling using GPUs
Lattice Microbes provides both the direct [33] and next-reaction [34] methods for exact
sampling of the CME along with the next-subvolume method [13] for exact sampling of the
RDME. These algorithms are not generally parallelizable, except for the generation of large
quantities of independent pseudorandom numbers. Lattice Microbes will use any attached
GPUs to generate pseudorandom numbers in parallel with sampling, which can boost the
speed of the exact methods. Generation of uniformly, exponentially, and normally
distributed pseudorandom numbers on the GPU is done using the XORWOW algorithm [44]
with the appropriate transform.
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2.3 Accelerated sampling of the RDME using the MPD-RDME method
Taking full advantage of GPUs for RDME sampling requires an algorithm with fine-grained
parallelism. In a typical RDME simulation, diffusion is the most frequent event, with many
independent diffusion events occurring across the volume in a short time window. To take
advantage of this independence we developed the MPD-RDME method, which relaxes the
constraint of exact time evolution and instead takes an approximate time-stepping approach.
Unlike τ-leaping methods, our time steps are chosen to be very short such that the
probability of any individual molecule being involved in a diffusion or reaction event is
small. The short time step duration leads to many extra calculations, but the subvolumes are
rendered independent and can be calculated in parallel on the GPU.

The basic principle behind our approach starts with the discretization of space into a three-
dimensional cubic lattice with spacing λ and time into time steps of length τ. Then, starting
from an initial state at t0, the state of the system at times tτ, t2τ, t3τ,… is sequentially
calculated. The calculation involves integrating the propensity for reaction and diffusion
events to occur over the time step in each subvolume and then updating the subvolume using
random firings of the events according to the calculated probabilities. Compared to the
standard Gillespie algorithm, which jumps from event to event along a systems' history, the
MPD-RDME can be viewed as a brute force method of marching through the history step by
step (see Figure 2). In the limit of infinitesimal τ(τ = dt), the history generated by pure time
stepping would correspond exactly to that generated by the standard Gillespie algorithm. In
practice, the finite size of the time steps introduces error into the generated history. In the
Results section we discuss how to chose a time step and its effect on the error.

For efficiency of calculation, the MPD-RDME algorithm takes an operator splitting
approach such that the reaction and diffusion operators are sequentially applied at each time
step. Algorithm 1 shows the MPD-RDME algorithm. The diffusion operator calculates any
diffusion events of the molecules to and from neighboring subvolumes over the time step.
Due to the nature of the GPU architecture, the optimal implementation of the diffusion
operator uses dimensional splitting to further split the diffusion operator into three
suboperators, one each for the x, y, and z dimensions [20]. Within each suboperator each
subvolume is processed in parallel and each molecule in a subvolume is considered to have
two possible diffusion events, one for diffusion to the subvolume in the plus direction and
one for diffusion to the subvolume in the minus direction. The propensity for either of these

events is  and the probability that the molecule will diffuse away during the time step is

then , where for efficiency we have only kept the first two terms
of the Taylor expansion of the exponential. Note that P(D+) = P(D−) =

. We generate a uniformly distributed random number from (0, 1]
and determine which of the ranges (0, P(D+)], (P(D+), P(D−)], or (P(D+), 1] the value falls
into to decide whether the molecule diffuses in the plus direction, diffuses in the minus
direction, or stays in the subvolume, respectively.

During calculation of the diffusion operator, the probability that a molecule moves should

never exceed 1, which limits . In the case that the molecule jumps every time step

(P(D±) = 1) the time steps have duration , and we recover the diffusion operator of
Chopard and Droz [39] as used in the GMP method [15]. In the MPD-RDME method, τ is
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usually significantly shorterthan this limit. (Especially, one should always limit 
to avoid an issue where molecules initially in even and odd subvolumes can never interact
for P(D±) = 1 [39].) The advantage of the MPD-RDME diffusion operator is that molecules
do not move deterministically at their mean characteristic diffusion time as in GMP, but
rather move probabilistically in time in a manner more similarto exact stochastic sampling
of the RDME.

After the application of the diffusion operator during a time step, the reaction operator is
applied to calculate any changes in the chemical species present in each subvolume. First,
the total propensity atot of all possible reactions given the state of the subvolume is
calculated using the standard procedure [33]. The probability that at least one reaction

occurs during the time step is then calculated as . Here we do not use a
Taylor approximation but compute the probability directly as  using the GPU's
native transcendental function. A uniformly distributed random number is drawn from (0,1]
and if the value is ≤ P(R), a reaction is assumed to occur. In this case, a second uniformly
distributed random number is drawn to determine the reaction that occurred according to
their relative propensities following the standard procedure [33]. A limitation of the
algorithm is that only a single reaction can occur in each subvolume during a time step. To
limit the error that arises from missed reaction events, we typically limit the time step such
that there is a low probability (typically ≤2%) for any particular reaction to occur in a
subvolume during a given time step.

2.4 Using the RDME with in vivo Models
To model cellular systems, including approximated cytoplasmic crowding, we introduce a
subvolume type and make the reaction and diffusion propensities of the RDME dependent
on the subvolume type(s). Addition of the subvolume type allows reactions to occur only in
subvolumes of a specific type and diffusion of molecules to be limited to, or different in,
specific subvolumes. The site dependent diffusion and reaction propensities can then be
configured in such a way as to approximate the spatial organization of a cell (see Figure 1).

To construct a lattice representation of a cell, one first builds a three-dimensional cell model
in continuous space using geometric primitives, such as cylinders, spheres, etc. Space is
partitioned into regions were diffusion coefficients and reaction rates are uniform. Users are
free to build any desired geometries. For example, a simple model for Escherichia coli can
be constructed using two coincident capsule shapes with radii r1 and r2, where r2 > r1 and r2
− r1 is the thickness of the cytoplasmic membrane. The inner volume is used to model the
cytoplasm, the boundary volume models the membrane, and the volume outside of the
capsules is the extracellular space. Within the cytoplasm, proteins and metabolites diffuse
with their in vivo diffusion coefficients. Within the membrane region, membrane proteins
diffuse more slowly with the appropriate two-dimensional diffusion coefficient, with no
probability to transition into either the cytoplasmic or extracellular volume. In the
extracellular space, metabolites and signaling molecules diffuse with their in vitro diffusion
coefficients. Small molecules that are membrane permeable have the appropriate transition
rates between the three volume types such that they can diffuse from the extracellular space
across membrane into the cytoplasm. The system volume is most often bounded with a
constant concentration boundary such that molecules are created and destroyed to maintain
the extracellular concentration, but the boundary may also be periodic, reflective, or
absorbing depending on the simulation requirements.
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All boundary conditions are implemented by controlling the behavior of molecules in a
virtual apron of subvolumes that surround the simulation space. This apron is reloaded at
each time step and then used in the diffusion operator to process molecules diffusing into
and out of the edge subvolumes. For periodic boundary conditions, each apron subvolume is
loaded with the state of its periodic partner. For reflective boundary conditions the apron is
loaded as a subvolume into which diffusion is not allowed by any molecule. For absorbing
boundary conditions the apron is loaded as a subvolume that molecules can diffuse into but
not out of. Finally, for constant concentration boundary conditions the apron is loaded with a
random statistical sample of molecules at the desired concentration. Molecules can diffuse
into and out of the apron during the time step, but the apron is destroyed and randomly
loaded again at the next time step maintaining the concentration.

To model cytoplasmic crowding, a series of immobile obstacles are placed in the cytoplasm.
Such obstacles are modeled as reflective volumes that molecules cannot diffuse into. We use
the size distribution of in vivo crowders from Ridgway et al. [27] based on proteomics data.
For simulations incorporating structural data, such as from cryoelectron tomography
experiments, exact locations for known obstacles are used directly. The remaining obstacles
are then placed randomly from largest to smallest filling the cytoplasmic volume to a
specific fraction of its total volume.

Once the continuous-space model is constructed, it is discretized onto a lattice (see Figure 3)
using a coarse-graining procedure. First, each subvolume is mapped to a simulation region
by finding the geometric primitive that contains the subvolume. Care must be taken when
assigning subvolume contained in multiple primitives to ensure the connectivity of the
subvolumes reproduces that of the original primitive, e.g., the subvolumes representing the
cytoplasmic membrane must be freely traversable using a series of nondiagonal jumps. The
type of each subvolume is assigned based on the simulation regions to which it is assigned.
Second, a list tracking the total occupied volume for each individual subvolume is created.
The geometric volume of each continuous-space obstacle is divided amongst all the
subvolumes with which it overlaps. The subvolume list is then sorted in order of decreasing
occupancy. The subvolumes are marked as reflective in sorted order until the total volume of
reflective subvolumes equals the original occupancy fraction. Third, molecules are randomly
placed into the appropriate subvolume. The full process may be repeated with different
subvolume spacings to obtain discretizations of the same simulation system with differing
spatial resolution.

2.5 Simulation execution, output, and analysis
To accurately sample the statistics of a CME or RDME model, one needs to generate many
independent trajectories. To facilitate this process on large compute clusters, Lattice
Microbes can be executed as a parallel program using MPI. In this mode, Lattice Microbes
assigns trajectories to CPU cores and GPUs, starting new trajectories as those running finish.
One MPI controller process is launched per computer node and is responsible for launching
simulation threads for the trajectories using the assigned resources. At present, only
assignment of a single CPU core and GPU is supported per trajectory. In a future work we
plan to extend Lattice Microbes to allow multiple CPU cores and GPUs, both intra- and
inter-node, to cooperate in order to decrease the wall time required to calculate an individual
trajectory.

When sampling the CME and RDME, complete individual trajectories are often needed to
reconstruct the full distribution of the system's time evolution or to compare with
experimentally observed behavior; the first few moments of the distribution may not be
sufficient. When generating 10,000-100,000+ trajectories in parallel on a large cluster,
though, organizing them as individual files could overload a network file system and thus
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data output would become a bottleneck. Instead, Lattice Microbes streams each trajectory's
state along with other statistical data over low-latency interconnects (if available) and
outputs them into a single HDF5 formatted file using a dedicated output thread. The HDF5
format supports efficient, independent storage of many large data sets in a single file.

Lattice Microbes allows trajectory state to be output at either every reaction event or at a
specified time interval. For both CME and RDME trajectories the total count of each species
is saved in one data set and for RDME trajectories the complete lattice state is saved in
another (optionally using a different output interval). The first passage time for a species to
reach a given count can also be exactly tracked to facilitate analysis of rare events. The
HDF5 files can be directly read by Matlab, Python, and other tools for later numerical
analysis. Furthermore, a single-process scripted version of Lattice Microbes allows Python
scripts to be written using application primitives to programmatically construct and analyze
the simulation files. Reaction models contained in SBML [45] files can also be imported for
initial setup of simulations. COPASI [46] and Virtual Cell [47] are two popular biochemical
modeling programs that provide GUI tools for constructing SBML files that are suitable for
use with Lattice Microbes.

2.6 Visualization
Lattice Microbes includes a plug-in for VMD [29] that enables VMD to read simulation
trajectories for visualization and analysis. Contemporary with development of the Lattice
Microbes software, we have modified and in some cases redesigned the data structures and
visualization algorithms in VMD so that it can visualize cellular models and animate cellular
simulation trajectories (see Figure 3) using its built-in graphical representations. The
combination of Lattice Microbes with VMD provides a powerful system for model
preparation and verification, simulation, visualization, and analysis. VMD can display both
the continuous-space cellular model and its coarse-grained lattice representation.
Superimposing both of the models allows direct comparison of the two to ensure that a
coarse-grained model captures the essential features of the full model prior to beginning a
simulation with the Lattice Microbes software.

Cellular models typically contain tens-to-hundreds of millions of particles, and cellular
simulation trajectories often store thousands of frames, collectively requiring hundreds of
gigabytes to several terabytes of storage. As an example, a previously published simulation
of an E. coli cell [7], involved 20,000 active particles and 600,000 obstacles and required
500 simulation runs, each containing roughly 5000 timesteps. The total storage required for
each simulation trajectory was roughly 1.5 GB, for a total of 750 GB in all.

In order to allow large models to be loaded into the limited amount of host and GPU
memory for simulation, visualization, and analysis, the Lattice Microbes and VMD software
packages use highly compact memory representations that currently support up to 256
particle types. A larger number of particle types can be represented with a commensurate
increase in per-particle memory use by changing the internal particle data structures in
Lattice Microbes and VMD to use larger word sizes. Increasing the data structures to use a
two-byte word size size would allow 65,536 particle types to be represented, but it would
reduce simulation performance significantly and decrease the maximum cell size that could
be simulated with a single-GPU algorithm. Future multi-GPU implementations of Lattice
Microbes will make it feasible to increase these limits since the simulations will no longer
be constrained to the memory capacity and performance of a single GPU. When animating
trajectories that are larger than the available host memory in a graphics workstation, VMD
allows the user to load a subset of trajectory frames, by selecting starting and ending frames,
and by optionally skipping frames. Recently, VMD has been adapted to allow interactive
trajectory animations using out-of-core data access in concert with solid state disks (SSDs),
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which allows the user to view arbitrarily long trajectories, limited only by SSD storage
capacity [48].

VMD allows particles or subvolumes to be selected for display with an easy-to-use text-
based selection language that is used within its graphical interfaces and in user-written
analysis scripts or plug-ins. The selection language allows particles to be selected through
combinations of criteria such as particle names, types, various physical properties, and by
their location or their spatial relationship with other particles. For example, in a simulation
of a dividing E. coli cell one might select all of the FtsZ molecules within a certain distance
of the septum, which would facilitate potential analysis of any ring-like structures. Once
selected for display, the individual particles or subvolumes can be represented using glyphs
such as points, discs, or space filling spheres.

In systems with tens-to-hundreds of millions of particles aggregated representations will be
an absolute necessity. It is clear that viewing of such large models as discrete particles has
limited value given that the particles would outnumber the pixels on a typical display by a
factor of one hundred or more. VMD allows groups of selected particles to be collectively
visualized using a fast Gaussian density isosurface representation that encloses selected
particles within smooth surfaces [49]. Such surfaces can be used to represent cellular
structures with a level of structural detail that is both appropriate for interactive visual
exploration, and reduces the graphics workload, thereby increasing the interactive display
performance. Cellular boundaries are represented with interior and exterior triangle meshes,
and are typically rendered with a high degree of transparency so that the interior of the cell
can be seen clearly.

VMD supports a wide array of 3-D display and input technologies [50], and uses
programmable shading and GPU computing [48] to allow the user to interactively explore
Lattice Microbes models containing tens-to-hundreds of millions of particles with
stereoscopic 3-D displays. Lattice Microbes models can also be rendered (non-interactively)
using photorealistic lighting and shading techniques. The images shown in Figure 3
demonstrate the use of ambient occlusion lighting and shadowing [51] to improve
perception of channels and pockets, and were rendered using the Tachyon parallel ray
tracing engine built-into VMD [52]. VMD also allows Lattice Microbes models to be
exported to many different geometric file formats used by professional rendering and
animation packages, 3-D solid model printers, and web-based 3-D model viewers.

3 Results and Discussion
3.1 Accuracy of the MPD-RDME method

To study the accuracy of our MPD-RDME method, we compared the results of sampling the
RDME using the approximate MPD-RDME against 100,000 trajectories sampled using the

exact next-subvolume method. The reversible bimolecular reaction  is a simple
reaction system with deviations from the well-stirred approximation of the CME and served
as a test case for our comparison. The simulation parameters used were arbitrarily chosen to
be biologically representative and to maintain consistency with the results presented in the
Supporting Information. Using a lattice of size  = 32 × 32 × 32, a lattice spacing of λ =
31.25 × 10−9m, and a diffusion coefficient for all molecules of D = 8.15 × 10−14m2s−1, one
can calculate the mean time until a molecule experiences a diffusion event to any

neighboring subvolume as . Likewise, using k1 = 1.07 × 105 M−1 s−1

and k 2 = 0.351 s−1, one can calculate the mean time until an A + B → C reaction (assuming
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one A and one B in a subvolume) as  and the mean

time for a C → A + B reaction (assuming one C molecule in a subvolume) as .
So the condition τD«min(τR1, τR2) is satisfied.

As described above, the MPD-RDME algorithm requires time steps to be chosen such that
there is a low probability of the fastest reaction happening during each time step. For the
reaction rate constants used, the fastest reaction is the bimolecular reaction with a rate in a

single subvolume (assuming one A and B pair) of . The probability

of a reaction occurring in a time step of duration τ is then given by . Using
2% as the threshold for a reaction to occur, one obtains the maximum acceptable time step

. Similarly, the MPD-RDME method imposes restrictions on the
maximum time step according to the diffusion coefficient of the fastest diffusing species:

. We choose the lower of the two values and set our maximum time
step to be 3.0 × 10−3s. To study the effect of the time step on the error we also tested the
shorter time steps 1.5 × 10−3 s, 6.0 × 10−4 s, and 3.0 × 10−4 s.

Figure 4(a+b) shows the accuracy of the time-dependent PDF reconstructed by sampling
using the MPD-RDME with the different time steps. For the longest time step, the error in

the expected value  is always below 2 × 10−3. As the
time step decreases, the error in E{A(t)} also decreases. For the shortest time step, the error
in E{A(t)} falls to ∼1 × 10−4. Figure 4(d+e) shows that the error in the variance is ∼1 × 10−2

for all of the time steps, suggesting that time stepping in the algorithm is not the primary
source of error for Var{A(t)}.

Since we are reconstructing the PDF using a number of trajectories, there is also error due to
the finite sample size. To study this effect, we calculated the mean error in E{A(t)} and
Var{A(t)} as a function of the number of trajectories used (see Figure 4[c+f]). For fewer
than ∼250 trajectories the sample size error dominates the error in E{A(t)} and all of the
time steps show equivalent error as, in fact, does the next-subvolume method. At ≥500
trajectories the time step error begins to dominate in the longest time step simulations.
Similarly, for each time of the next two time steps the error levels off at a finite value once
the number of trajectories reaches a certain threshold. The shortest time step, however, is
indistinguishable from the next-subvolume method through the range of sampling
performed. For Var{A(t)} the sample size error dominates the time step error through
100,000 trajectories.

Overall, the approximate MPD-RDME method, with careful selection of an appropriate time
step, compares favorably with the next-subvolume method in terms of accuracy. When using
more than a few hundred trajectories to reconstruct the PDF a shorter time step must be
chosen, with the ensuing performance slowdown, to ensure that the error introduced by the
time stepping algorithm is not greater than the error due to finite sampling. Further studies
on the accuracy of both the CME and RDME sampling methods implemented in the Lattice
Microbes software are detailed in the Supporting Information.
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3.2 Simulation performance
To asses the performance of our implementations of the various CME and RDME sampling
methods in Lattice Microbes, we constructed three test cases. The first case was the low-
complexity reversible bimolecular reaction systems described earlier. There were 2 reactions
and 3 species with approximately 1700 total molecules. For the RDME simulations the
volume was divided into a lattice of size 32 × 32 × 32 with λ = 31.25 × 10−9 m. For the
MPD-RDME simulations τ = 3 × 10−3 s.

The second test case was the lac genetic switch in a modeled E. coli cell, as described in [7].
For this test case the external inducer concentration was 5 μM and the system was in the
uninduced state. There were 23 reactions and 12 species with ∼5,000 active molecules and
∼600,000 fixed obstacles representing molecular crowding. RDME simulation were
performed on a lattice of size 64 × 64 × 128 with λ= 16 × 10−9 m containing a cell of length
2 μm and diameter 0.8 μm. For the MPD-RDME simulations τ = 50 × 10−6 s.

The third test case was the lac genetic switch with an external inducer concentration of 40
μM, which switched the system to the induced state. The reaction scheme was the same as
in test case two, but there were 1.1 million active molecules in the system. To accommodate
the increased molecule count, the RDME simulations were run on a lattice of size 128 × 128
× 256 and λ = 8 × 10−9 m. For the MPD-RDME simulations τ = 12.5 × 10−6 s.

For each test case, we collected performance data and determined both the average rate at
which reactions were being processed by the system and the total simulation time that could
be computed by a single CPU core (and a single GPU for MPD-RDME simulations) in one
hour of wall time. Simulations were performed on a local cluster consisting of four nodes,
each containing 2 × 6-core 2.66 GHz Xeon X5650 CPUs and 4 Tesla C2050 GPUs. During
Lattice Microbes performance tests, 48 simultaneous trajectories were started for the exact
sampling methods and 16 simultaneous trajectories were started for the MPD-RDME
method to fully occupy the cluster. Since each trajectory is calculated independently in the
current version, essentially perfect scaling is achieved and we therefore only report the
performance per core. The other software tested has varying support for parallel execution
so performance tests for these packages were run on only a single core of the cluster. Each
test was performed ten times and here the mean execution time is reported.

The upper half of Table 1 shows the performance data for our CME sampling
implementations as well as a comparison with two other simulation packages capable of
performing Gillespie simulations. For the low complexity reversible bimolecular
simulations, a 2.5× speedup in the direct method was achieved by using the GPU for random
number generation. This speedup implies that more than half of the calculation time in the
CPU-only code is spent generating random numbers. The remaining code for processing the
reaction events and updating the propensities takes ∼110 clock cycles per reaction event. For
the high complexity lac simulations, using the GPU gives a smaller 1.5× speedup, as each
reaction event requires more updates to the propensity tables with less relative time spent
generating random numbers. Interestingly, even for the lac system with 23 reactions the
next-reaction method (which is more efficient at updating propensities) is not able to
outpace the direct method. For our implementation the cross-over point appears to be
somewhat greater than 23 reactions.

The performance data for our RDME sampling implementations are shown in the lower half
of Table 1. In the next-subvolume method, compared to exact CME samplers, much less
time is spent generating random numbers; using the GPU for random number generation
provides only a 1.1× speedup. In the next-subvolume simulations there are many diffusion
events per reaction event. For the reversible bimolecular reaction scheme there are ∼4500
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diffusion events for each reaction event. The overall rate of processing events is then 1.7 ×
106 events/sec, corresponding to ∼1500 clock cycles per event or more than 13× longer than
the direct CME sampling method. There is likely still room for performance improvement in
the next-subvolume solver, but random number generation is much less constraining for the
RDME.

For low-molecule-count simulations, the MPD-RDME method provides a 4.5×–7.5×
performance improvement compared to exact next-subvolume method. For high-molecule-
count simulations the speedup provided by exploiting the GPU and the fine-grained
parallelism in the MPD-RDME method increase this performance advantage to 300×.
Unlike the simulation method using the GPU only for random number generation, the MPD-
RDME runs the entire simulation algorithm on the GPU and is therefore able to achieve a
dramatic speedup. However, the number of trajectories that can be simultaneously generated
is limited by the number of GPUs.

Lattice Microbes is a high-performance code for sampling the CME and RDME using both
exact and approximate methods and provides a significant performance advantage compared
to other simulation packages tested. Configuration and SBML files and basic instructions to
run the performance tests on all tested software are located in the Supporting Information
and the User's Guide (http://www.scs.illinois.edu/schulten/lm).

3.3 Rebinding of transcription factors under in vivo conditions
As an illustration of a biochemical research problem for which the Lattice Microbes
software is intended, we present a problem in modeling stochastic gene expression. A
transcription factor acting as a repressor generally inhibits expression of a target gene by
binding to a DNA sequence upstream of the gene's promoter thus blocking RNA polymerase
(RNAP) from binding. Each time the repressor unbinds from its DNA binding site one or
more RNAP molecules are able to bind to the promoter creating a burst of mRNA and
consequent proteins. The duration of the unbinding event determines the size of the burst. In
well-stirred models of repressor unbinding and binding, the burst duration is determined
solely by the first time for any free repressor to bind from bulk and is therefore
exponentially distributed with a mean determined by the binding rate constant and number
of free repressors. In models accounting for diffusion, however, there is a short term
memory due to the localization of the newly unbound repressor until it diffuses into the
bulk. This memory enhances the probability of quick rebinding events and modifies the
overall distribution of binding times [53].

An additional memory effect immediately following repressor unbinding is caused by in
vivo crowding, which introduces local trapping of the repressor on short timescales. This
trapping introduces an anomalous component in the repressor's diffusion at a certain
timescale dictated by the size of the crowders [7]. If this timescale coincides with the
timescale of the binding kinetics, the rebinding statistics can be further modified from those
expected from a well-stirred model. Here we studied the effect of crowding on rebinding by
simulating escape to bulk versus rebinding of a repressor following unbinding from its DNA
binding site.

The simulated system consisted of a spherical reaction volume 200 nm in radius with an
absorbing boundary condition and a DNA binding site located at the center (see Figure 5[a]).
The DNA binding site was considered to be a single point such that we ignored the role of
1D sliding in transcription factor dynamics. The reaction volume was filled to a variable
packing fraction (fraction of the total volume occupied) with stationary obstacles distributed
according to an in vivo approximation described previously [20, 27].
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At the beginning of a simulation, a single repressor was located in the same subvolume as
the DNA binding site as if it had unbound at t = 0. The simulation was then run until the
repressor either rebound with the DNA or escaped into the bulk (reached the absorbing
boundary). The repressor diffusion coefficient was D = 1 × 10−11 m2s−1 and the binding rate
for the repressor was K = 2.43 × 106 M−1s−1. 52,500 RDME trajectories were generated for
each packing fraction using the next-subvolume solver with a 2 nm subvolume length. As
discussed earlier, the RDME is valid under the condition that each subvolume can be

considered well-stirred, i.e., τD « τR. For this system,  and

, which satisfies the condition.

Results from the simulations indicate that in vivo crowding affects both the rebinding
probability and the rebinding time distribution. As shown in Figure 5(b), as the packing
fraction increases so too does the probability that a newly unbound repressor will rebind to
the DNA before escaping to the bulk. As binding from the bulk generally takes much longer
than rebinding, systems with in vivo crowding will have more extremely short bursts and
proportionately fewer long bursts. At the same time, the short bursts due to rebinding
become longer in duration (see Figure 5[c]). Without packing, virtually all of the rebinding
events occur by 1 μs while at 60% packing, rebinding events can last up to 100 μs. Whether
the elongated burst duration has a noticeable effect on bursts statistics would depend on the
rate of RNAP binding, which is system dependent. But the loss of some fraction of long
binding events certainly modifies the burst frequency statistics.

Additional insight into the memory induced by in vivo crowding can be obtained by
measuring how far a repressor must diffuse before the memory effects are lost. In the
simulations with no packing, the timescale for rebinding is 1 μs, which means that once the
repressor has diffused ∼8 nm away (using 〈r2〉 = 6Dt) there is little probability that it will
rebind. At 60% packing the effective D becomes 3.7 × 10−12 m2s−1 and the corresponding
distance before correlation is lost ∼50 nm. In vivo packing thus introduces correlations
across a much larger volume of reaction space than in freely diffusing systems.

4 Conclusions
The Lattice Microbes software package enables efficient sampling of the CME and RDME
on HPC plat-forms. Using GPU accelerators, it is from 1.75×-4× faster than other tested
codes for exact sampling of the CME. Using GPU acceleration one can perform longer CME
simulations in the same wall clock compared to non-GPU accelerated code. Importantly, one
CPU core does not saturate a single GPU and multiple CPU cores can therefore share a GPU
for random number generation with no performance impact. This represent a different way
to use GPUs to accelerate CME sampling than has been presented previously [54] and is
optimized for accelerating individual trajectories to sample rare events ratherthan for
increasing the number of trajectories generated.

The Lattice Microbes package provides high performance exact and approximate methods
for sampling the RDME. Both the exact and approximate methods are significantly faster
than other tested software. Our MPD-RDME method can take advantage of attached GPUs
or other many-core processors to accelerate calculation of in vivo cell models. Although the
MPD-RDME algorithm was implemented in the NVIDIA CUDA programming language
and targets the current generation of GPU devices, it leverages features of GPU hardware
architecture that are common to devices made by several hardware vendors. Due to GPUs'
performance and energy efficiency advantages for many scientific applications [55], they are
now being incorporated into state-of-the-art supercomputers. We expect that the key
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attributes of today's massively parallel GPU hardware architecture will continue in future
designs, and that over the next ten years, some of these features will be incorporated into
CPUs and into other many-core processors, such as the Intel MIC architecture, and other
microprocessors targeting high performance computing workloads. The fine-grained
parallelism provided by the MPD-RDME method will continue to make it ideally suited to
GPUs and next-generation many-core microprocessor designs.

Code and binaries for Linux and Mac OS X are available at the project web page http://
www.scs.illinois.edu/schulten/lm. Sample submission scripts are available for national
supercomputing resources and local compute clusters. Virtual machine builds are also
available for deployment on the Amazon EC2 compute cloud under the name
“LatticeMicrobes”.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
(a) Model of a crowded E. coli cell with in vivo packing. (b) Schematic diagram of the in
vivo RDME method.
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Figure 2.
Example history of a single subvolume from an RDME simulation with molecule types A,
B, and C and the reversible bimolecular reaction A + B ⇋ C. Shown are (a) a Gillespie
sampling of the RDME and (b) an MPD-RDME sampling. Diffusion events are annotated as
DN and reaction events as RN.
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Figure 3.
Visualization of a slice through an E. coli cell model with in vivo crowding occupying 40%
of the total volume. (a) Continuous-space model using spheres to represent the obstacles.
Orange spheres represent ribosomes and green spheres represent proteins and protein
complexes. (b) Coarse-grained model of the same slice shown in (a) using 4nm subvolumes.
Occupied subvolumes are shown in yellow using a surface representation. (c+d) As in (b)
for 8nm and 16 nm, respectively. Per-pixel shading, depth cueing, shadows, and ambient
occlusion lighting techniques are used to enhance spatial perception in these crowded
renderings.
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Figure 4.
Accuracy of the MPD-RDME method for sampling the RDME. (a) Expectation value of
A(t) calculated from 100,000 MPD-RDME trajectories using time steps of (red Δ) 3.0 ×
10−3 s, (orange ▸) 1.5 × 10−3 s,(yellow ▽) 6.0 × 10−4 s, and (green ◂) 3 × 10−4 s compared
to the expected value obtained from (blue ○) 100,000 next-subvolume trajectories. (b) The
relative error in E{A(t)} as calculated from the MPD-RDME trajectories. Errors were
calculated relative to the distribution from 100,000 next-subvolume trajectories. (c) The
mean relative error in E{A(t)} versus the number of trajectories used to reconstruct the
probability distribution. (d,e,f) As in (a,b,c) for the variance of A(t). Reaction parameters are
A0 = 1000, B0 = 1000, C0 = 0, k1 = 1.07 × 105 M−1 s−1 and k2 = 0.351 s−1. Diffusion
parameters are , = 32 × 32 × 32, λ = 31.25 × 10−9 m, and D = 8.15 × 10−14 m2 s−1.
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Figure 5.
Results of in vivo transcription factor rebinding simulations. (a) Diagram of the simulation
system. (b) Fraction of repressors that rebind versus escape to bulk as a function of the
reaction volume occupied by in vivo obstacles. (c) The cumulative fraction of particles that
rebind by a given time.
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Algorithm 1
the MPD-RDME algorithm

1 while t < tend do

2  # Diffusion operator.

3  for dim ∈ {x, y, z} do

4   parfor ν ∈ V do

5    for particle ∈ xν do

6     n = uniformRand()

7     if n ≤ P(particle, D+dim) then

8      move particle from subvolume xν to neighboring subvolume in the +dim direction

9     else if(n — P(particle, D+dim)) ≤ P(particle, D−dim) then

10      move particle from subvolume xν to neighboring subvolume in the −dim direction

11     end

12    end

13   end

14  end

15  # Reaction operator.

16  parfor ν ∈ V do

17   for r ∈ R do

18    atot = atot + ar(xν)

19   end

20   n1 = uniformRand()

21

  If  then

22    n2 = uniformRand()

23    for r ∈ R do

24     if ar–1(xν) < n2·atot ≤ ar(xν) then

25      perform reaction r in subvolume xν

26     end

27    end

28   end

29  end

30  t = t + τ

31 end
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