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Accurate Dynamical Structure Factors from Ab initio Lattice Dynamics: The Case of

Crystalline Silicon.

A. Erba,1 M. Ferrabone,1 R. Orlando,1 and R. Dovesi1

1Dipartimento di Chimica IFM and Centre of Excellence NIS (Nanostructured Interfaces and Surfaces),
Università di Torino, via P. Giuria 5, I-10125 Torino (Italy)

(Dated: September 4, 2012)

A fully ab initio technique is discussed for the determination of dynamical X-ray structure factors
of crystalline materials which is based on a standard Debye-Waller harmonic lattice dynamical
approach with all-electron atom-centered basis sets, periodic boundary conditions and one-electron
Hamiltonians. This technique requires an accurate description of the lattice dynamics and the
electron charge distribution of the system. The main theoretical parameters involved and final
accuracy of the technique are discussed with respect to the experimental determinations of the X-
ray structure factors at 298 K of crystalline silicon. An overall agreement factor of 0.47 % between
the ab initio predicted values and the experimental determinations is found. The best theoretical
determination of the anisotropic displacement parameter, ADP, of silicon is here 60.55 ×10−4 Å2,
corresponding to a Debye-Waller factor B = 0.4781 Å2.

I. INTRODUCTION

Nowadays, a variety of solid state ab initio quantum
chemical methods is available for the study of many prop-
erties of the ground state of crystals at zero temperature
and, for any feature to be simulated, particular prescrip-
tions can be found in the literature which guarantee given
accuracies for the computed values.1–4 However, the ex-
perimental determination of many solid state properties
such as the equilibrium structure, vibrational spectrum,
electron charge and momentum density, structure factors
and the directional Compton profiles is rarely obtained
at very low temperature. It follows that, in order to com-
pare the outcomes of an experiment to those of a simu-
lation, the inclusion of temperature effects on computed
quantities would be desirable.

The most performing technique for the inclusion of
temperature in the computed properties of crystals would
be ab initio molecular dynamics;5–7 however, for the time
being, it is costly and cannot be used routinely without
large computational resources. The interest in develop-
ing sufficiently accurate, though approximated, models
for the inclusion of temperature in standard ab initio

quantum chemical methods, at least for some properties,
follows quite naturally.

We have recently presented elsewhere8 an ab initio

Monte Carlo technique for the determination of the ther-
mally averaged electronic first-order density matrix (DM)
of crystals, in a harmonic approximation. All the above
mentioned one-electron properties can be computed at
any temperature within such a scheme in a general and
homogeneous way.

In this paper we restrict our attention to dynami-

cal X-ray structure factors (XSF) of crystalline mate-
rials and we present the results of accurate, fully ab ini-

tio, calculations within the harmonic approximation to
the lattice potential. If a harmonic lattice potential is
considered then the probability density functions of the
nuclear displacements with respect to the equilibrium

configuration of the atoms turns out to be a Gaussian
function.9 In general, the Gaussian approximation is not
always fully justified10,11 so that one would need an an-
harmonic treatment of the lattice potential which, how-
ever, is beyond the aim of this study (when there are
no light atoms and temperatures close to the melting
point are avoided the harmonic approximation usually
provides a reliable description of the lattice dynamics of
a crystal). The most common way nuclear motion ef-
fects are dealt with when X-ray diffraction is considered
is by means of Debye-Waller (DW) atomic factors which
damp the diffraction intensities with respect to increasing
wave number and temperature. Atomic DW factors are
usually computed from atomic anisotropic displacement
parameters (ADP) fitted to the experiment via sophisti-
cated spherical models that, beside temperature, are sup-
posed to take into account a variety of aspects such as
anharmonicity, atomic asphericity, thermal diffuse scat-
tering, etc.9,12,13 Besides, it has recently been suggested
that ADPs are scarcely affected by anharmonicity so that
harmonic mean-square displacements already provide a
good description even of strongly anharmonic nuclear
potentials.14

We present here a fully ab initio approach for the com-
putation of ADPs, DW factors and dynamical XSFs in
the frame of one-electron Hamiltonians (Hartree-Fock,
HF, any kind of functional within the density functional
theory, DFT, or hybrids like the popular B3LYP) all-
electron basis sets and periodic boundary conditions.
This scheme, that has been implemented in the Crystal

program for quantum chemistry of the solid state,15,16 is
affected by the somehow general rigid-atom approxima-

tion that requires an arbitrary partition of the total static
electron charge density (ECD) ρ(r) of the system into
subvolumes associated with each atom that is implicitly
retained also when nuclear motions are considered.17

Few implementations of ab initio atomic DW ther-
mal factors in a plane-wave basis representation (where
atomic cores are treated with pseudo-potentials or PAWs,



2

projected augmented waves) have appeared in the litera-
ture that are expressed in terms of “generalized” den-
sity of states18,19 or the cumulant expansion.20,21 We
present here an implementation that is based on an atom-
centered orbital basis representation which is expected
to be maximally compatible with the atomic partition of
the ECD required by the rigid-atom approximation. All-
electron basis sets are considered with which core and va-
lence electrons are treated at the same level of accuracy.
The effect of the computational parameters involved in
such an approach is investigated into details.

A direct comparison between computed data and pri-
mary experimental data, such as the dynamical structure
factors, is also relevant for the assessment of merits and
limits of different solid state quantum chemical meth-
ods, that are usually discussed with respect to energy
or energy-related properties (equilibrium structure, vi-
brational spectra, thermodynamical properties, etc.). In
recent years, for instance, availability of high-resolution
Compton profiles (primary observables in momentum
space) from synchrotron radiation sources has allowed for
a critical discussion of the intrinsic limitations of Kohn-
Sham22 DFT in describing the distribution of electron
velocities in crystals.23–30

On the other hand, in general, experimental diffrac-
tion intensities and charge densities are less accurate than
energy-related properties.31 Crystalline silicon represents
an exception because of the high level of purity of its sin-
gle crystals and availability of a very accurate technique
for the measurement of dynamical structure factors (Pen-
dellösung fringes method)32–35 which are known by an
order of magnitude more accurately than for any other
crystal.17

In this paper we apply the above-mentioned scheme
to crystalline silicon. This technique relies on a proper
description of both the lattice dynamics and the electron

charge density of the system. When use is made of an
approximated Hamiltonian (a common practice in solid
state quantum chemistry) the determination of different
properties may be affected in different ways: poor vibra-
tional frequencies and good charge density, for instance,
or viceversa. In the present scheme the simulation of
these two contributions is factorized into separable steps
so that different methods can be combined together. One
of the aims of this work is to critically discuss the delicate
effect of the computational setup of ab initio schemes
when applied to the simulation of dynamical structure
factors.

The structure of the paper is as follows: In Section II
we report the fundamental equations of quantum lattice
dynamics and derive a simple analytical expression for
the atomic anisotropic displacement parameters of crys-
tals within the harmonic approximation; atomic Debye-
Waller thermal factors are then defined that are com-
monly adopted for the inclusion of nuclear motion effects
on computed X-ray structure factors. Section III reports
the computational parameters used in the simulations
to be presented in Section IV as concerns the ab initio

prediction of dynamical structure factors of crystalline
silicon. Conclusions are drawn in Section V.

II. FROM PHONONS TO DEBYE-WALLER

FACTORS

In this section we briefly recall some basic equations
of standard quantum lattice dynamics used to obtain a
simple expression for the atomic anisotropic displacement
parameters (ADP) of crystals within the harmonic ap-
proximation. The connection between ADPs and Debye-
Waller atomic thermal factors that usually account for
the nuclear motion when computing X-rays structure fac-
tors is then illustrated. Even if the formalism used is well
known, we believe that it is worth being recalled here ex-
plicitly for two reasons: i) it is expedient to introduce all
the parameters in the theory whose effect shall be dis-
cussed in the following sections; ii) the rigorous defini-
tion of ADPs and related quantities is not unique in the
literature (see for instance the IUCr report about this,
Ref. 13).

A. Elements of Lattice Dynamics

A three-dimensional crystal can be regarded as a pe-
riodic array of atoms interacting with one another; in
the presence of interatomic interactions the static (non-
vibrating) crystal assumes an equilibrium configuration
R0 ≡ {. . . , [(R0)a + g] , . . . } that is unambiguously
defined by the equilibrium positions {(R0)a} of the N
atoms of the cell (a = 1, . . . , N); the lattice vector

g =
∑3

m=1 lgm am identifies the general crystal cell where
am are the direct lattice basis vectors: in a cyclic crystal
model (i.e. within Born von Kármán periodic boundary
conditions) the integers lgm run from 0 to Lm − 1. In
cubic crystals, as in the present case, all Lm’s are set
to a common value L. Parameter L defines the size of
a supercell (SC).When nuclear motion (due to Heisen-
berg principle, finite temperature or other external per-
turbations) is considered, the atomic equilibrium posi-
tions become the static average positions of the atoms
displaced by xg

a which define the general configuration
R ≡ {. . . , [(R0)a + g + xg

a ] , . . . }. In what follows,
matrix notation is used extensively; uppercase letters in
bold and lowercase letters in bold with over-line represent
3N×3N matrices and 3N vectors, respectively. Thus,
the Cartesian coordinates of the displacements are rep-
resented by vectors xg. By working within the Born-
Oppenheimer approximation, expanding in a Taylor se-
ries the lattice potential V (R) (i.e. potential energy per
cell) with respect to these coordinates about the equi-
librium R0 configuration, after setting V (R0) = 0, and
exploiting translational invariance, the usual expression
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is obtained:

V (R) =
L3

2

∑

g

(
x0

)T
Vgxg + O3({xg}) . (1)

In the following we shall extensively use the harmonic ap-

proximation which neglects all O3 terms in equation (1)
where we have introduced the Hessian matrices {Vg} to
be used below whose elements are the second derivatives
of the total energy per cell with respect to the atomic
displacements.36

Each of the L3 independent equations originated from
the harmonic Schrödinger equation for the nuclear mo-
tion is associated with a wavevector k =

∑3
n=1 (κn/L)bn

where bn are the reciprocal lattice vectors and the inte-
gers κn run from 0 to L− 1.37 For each k, the dynamical

matrix Wk is defined as Fourier transform (FT) of the
Hessian matrices {Vg}:

Wk =
L3
∑

g=1

M− 1
2 VgM− 1

2 exp(ık · g) , (2)

where M is the diagonal matrix of the nuclear masses.
The solution is then obtained through diagonalization of
the L3 matrices

{
Wk

}
by the following unitary transfor-

mation:

(Uk)† Wk Uk = Λk with (Uk)†Uk = I . (3)

The eigenvalues are related to the vibrational frequencies

νk
i =

√

λk
i (here and in the following atomic units are

adopted), while the columns of the Uk matrix describe
the normal modes:

qk = M
1
2 (Uk)†xk with xk =

1√
L3

L3
∑

g=1

xg exp(ık·g) .

To each k-point in the first Brillouin zone, 3N oscil-
lators (i.e. phonons) are associated which are labeled
by a phonon band index i (i = 1, . . . ,3N). It proves
useful to introduce at this stage a new set of coordi-

nates (frequency scaled coordinates) ξ
k

= (Λk)
1
4 qk in

unity of the classical elongation. The correspondence
R ←→ {xg

i } ←→ {qk
i } ←→ {ξk

i } is implicit here
and in the following.

In principle, equation (2) can be used to compute, and
then diagonalize according to equation (3), the dynamical
matrices of just the L3 k-points defined above. However,
if long-range electrostatic contributions to the energy sec-
ond derivatives {Vg} vanish within the portion of the
crystal spanned by the sum over direct lattice vectors g

in equation (2), then, from the definition of discrete FT,
such an expression can be used to construct the dynam-
ical matrices of a denser set of k-points represented by
a parameter L′ ≥ L. Such an interpolation technique, to
be used in Section IV, can be quite effective in the case
of a fully covalent crystal as crystalline silicon without
long-range electrostatic contribution to the total energy.

On the contrary, when such electrostatic contributions
become relevant (as in ionic crystals), they have to be ex-
plicitly accounted for with appropriate corrections.38–40

The complete harmonic Hamiltonian for the nuclear
motion, as a function of the ξ coordinates, is splitted as

Ĥ =
∑

i,k

Ĥk
i with Ĥk

i =

√

λk
i

2

[

− ∂2

∂(ξk
i )2

+ (ξk
i )2

]

.

The solutions, in terms of eigenvectors and eigenvalues, of
the harmonic oscillator Schrödinger equation, Ĥk

i Hmk

i
=

εmk

i
Hmk

i
, are well known:

εmk

i
=

(

mk
i +

1

2

) √

λk
i

2π
and Hmk

i
= Nmk

i
e−

(ξk
i
)2

2 Hmk

i
,

where Nmk

i
is a normalization factor and Hmk

i
is the

m-order Hermite polynomial. Let us introduce here the
following property of the eigenfunctions of the quantum
harmonic oscillator that will be used below:

∫

dξk
i (ξk

i )2
∣
∣
∣Hmk

i

∣
∣
∣

2

=
2mk

i + 1

2
. (4)

The general eigenfunction and the corresponding eigen-
value of Ĥ are identified by the vector of non-negative
integers M = {. . . , mk

1 , . . . , mk
3N , . . . }, which assigns the

level of excitation of all vibrational modes:

ΨM (R) =
∏

i,k

Hmk

i
and EM =

∑

i,k

εmk

i
. (5)

According to standard statistical mechanics, the Boltz-
mann probability distribution function (PDF) for the nu-
clei at a temperature T can be expressed as follows:

PT (R) =
1

Z(T )

∑

M

e
−

EM
kB T |ΨM (R)|2 ;

Z(T ) =
∑

M

e
−

EM
kB T , (6)

where kB is Boltzmann’s constant and Z(T ) is the par-

tition function:

Z(T ) =
∏

i,k

Zk
i (T ) with Zk

i (T ) =
∞∑

mk

i
=0

e
−

ε
mk

i
kB T . (7)

Substitution of equation (7) into equation (6) and use of
the simple dependence of EM on the excitation levels,
leads to the following compact expression of the prob-
ability distribution for the nuclei in the harmonic [(h)]
approximation:

P
(h)
T (R) =

∏

i,k

′

p
(h)
T (ξk

i ) ; (8)

p
(h)
T (ξk

i ) =

(

1− e
−

νk
i

2πkB T

) ∞∑

mk

i
=0

e
−

mk
i

νk
i

2πkB T

∣
∣
∣Hmk

i

∣
∣
∣

2

.
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The product
∏′

excludes the three zero-frequency modes
which correspond to pure translations. From the above
expression, it is seen that the harmonic approximation

implies all the PDFs, p
(h)
T (ξk

i ), to be Gaussian functions:

p
(h)
T (ξk

i ) ≡ GT (ξk
i ; σk

i,T ) where the variance is defined in
the standard way and then leads to:

(
σk

i,T

)2 ≡
∫

dξk
i

(
ξk
i

)2
[

p
(h)
T (ξk

i )
]

=

(

1− e
−

νk
i

2πkB T

) ∞∑

mk

i
=0

e
−

mk
i

νk
i

2πkB T

∫

dξk
i

(
ξk
i

)2
∣
∣
∣Hmk

i

∣
∣
∣

2

=

(

1− e
−

νk
i

2πkB T

) ∞∑

mk

i
=0

[(

mk
i e

−
mk

i
νk

i
2πkB T

)

+
1

2
e
−

mk
i

νk
i

2πkB T

]

=




1

e
νk

i
2πkB T − 1

+
1

2



 . (9)

Here, in the second step we took advantage of property
(4) while in the third we considered the convergence of a
well-known series.41 Let us come back to the expression
of the harmonic probability distribution for the nuclei in
equation (8) and work it out as follows:

P
(h)
T (R) =

∏

i,k

′
GT (ξk

i ; σk
i,T )

∝
∏

i,k

′

exp
[

−
(
ξk
i

)2
/2

(
σk

i,T

)2
]

∝ exp



−1/2

L3
∑

k=1

(

ξ
k
)† (

Ξk
)−1

ξ
k



 , (10)

where we have introduced the diagonal matrix Ξk whose
elements are the 3N variances of equation (9) for i =
1, . . . , 3N . Now, by considering the definition of the fre-
quency scaled coordinate, relationships (4) and focusing
on the atoms in the reference cell (g = 0), we obtain:

P
(h)
T (R) ∝ exp

[

−1/2
(
x0

)T (
X0

)−1
x0

]

, (11)

where the X0 matrix is expressed as

X0 =
1

L3

L3
∑

k=1

M− 1
2 Uk(Λk)−

1
4 Ξk(Λk)−

1
4

(
Uk

)†
M− 1

2 .

As will be discussed in the next section, the above ma-
trix turns out to be the mean squared displacement
tensor whose diagonal 3×3 blocks define the so-called
anisotropic atomic displacement tensors.

B. Atomic Anisotropic Displacement Parameters

In the previous section we anticipated that the X0 ma-
trix can be interpreted as the mean squared displacement
tensor. This can be seen on the grounds of the classical

approach to quadratic forms: when a Gaussian proba-
bility density function is considered in the form of equa-
tion (11), then, X0 is the second-moment or covariance

matrix with elements 〈x0
i x0

j 〉
(h)
T , where 〈· · · 〉(h) denotes

the expectation with respect to the Gaussian (harmonic)
probability density of the displacements at a tempera-
ture T . Even if the harmonic approximation is known
to provide an accurate description of many crystals, its
deficiencies are well-known: for instance, a crystal with
harmonic interatomic forces does not undergo any lat-
tice thermal expansion.12 Usually, only the N 3×3 diag-
onal blocks X0

a of X0 are considered that are the atomic
anisotropic displacement tensors which are used, in differ-
ent forms, in the expression of the atomic Debye-Waller
factors for the description of dynamical X-rays structure
factors (as described in the next section); off-diagonal
blocks bring information about the coupling of the mo-
tions of different atoms. It has recently been shown that
diagonal ADPs already provide a good description of the
thermal nuclear motion of a delicate class of materials as
molecular crystals.42

If X0
a is positive definite then the surfaces of constant

probability defined by equation
(
x0

a

)T (
X0

a

)−1
x0

a = constant , (12)

are ellipsoids enclosing some finite probability for atomic
displacement.9 The length of the principal semi-axes of
the ellipsoid and their orientation are given by the eigen-
values and eigenvectors of X0

a, respectively. The eigenval-
ues, usually expressed in units of 10−4 Å, are commonly
referred to as atomic displacement parameters (ADP).
The symmetry of crystalline silicon imposes the X0

Si ten-
sors to be diagonal and isotropic. In this case, the com-
monly considered Debye-Waller parameter B is simply:
B = 8π2× ADP.

C. Static and Dynamical Structure Factors

In determination of the X-ray structure factors, the
rigid-atom approximation is commonly adopted which
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implies a linear partitioning of the continuous static elec-
tron charge density (ECD) ρcell(r) into subvolumes asso-
ciated with scattering centers that usually coincide with
the N atoms per cell:17 ρcell(r) =

∑

a ρa(r−(R0)a). Note
that this partitioning is rather arbitrary: real space43,44

as well as basis set45 partitioning can be adopted; in this
study a Mulliken partition is used. We can associate
with each atom an atomic scattering factor fa(p) defined
as the FT of the corresponding atomic electron density
ρa(r) (we consider the atom in the origin). A strong ap-
proximation comes into the picture when we consider the
dynamics of the atoms as it is assumed that the electronic
density ρa(r) follows the motion of the atom rigidly and
instantaneously. We introduce the probability pa(r) of
finding atom a at position r and the static electronic den-
sity at r when the atomic center is at r′: ρa(r− r′). Now
we can write the atomic dynamical electronic density as
the following convolution:

ρ̃a(r) =

∫

dr′ρa(r− r′)pa(r′) ≡ ρa(r) ∗ pa(r) . (13)

The dynamic atomic scattering factor f̃a(p) can be cal-
culated from Fourier transforming equation (13):

f̃a(p) = fa(p)× qa(p) , (14)

where qa(p) is the FT of pa(r). This term is also known
as the Debye-Waller (DW) atomic thermal factor. As
shown above, if we consider the harmonic lattice poten-
tial then the atomic probability density function pa(r)
has the form of a Gaussian function:

pa(r) = (2π)−
3
2 × (detXa)−

1
2 × e−

1
2 rT X−1

a r , (15)

and the corresponding DW factor takes the form:

qa(p) = e−
1
2pT Xap . (16)

The scattering factor F̃∞(p) of the whole crystal (i.e. the
amplitude of the scattered wave) can be expressed as:

F̃∞(p) =
∑

a∈cell

fa(p)
∑

K

qa(p)eip·(R0)aδ(K− p)

=







0 if p 6= K

F̃hkl if p = K Bragg’s condition ,
(17)

where K = hb1 + kb2 + lb3 is a reciprocal lattice vector
(hkl are Miller’s indexes) and the dynamical structure

factors {F̃hkl} of a crystal within harmonic approxima-
tion are then defined as

F̃hkl =
∑

a∈cell

fa(K)× ei2πK·(R0)a × e−
1
2KT X0

aK

︸ ︷︷ ︸

DW factor

.(18)

III. COMPUTATIONAL DETAILS

All calculations were performed using the “periodic”
ab initio Crystal program.15,16 All quantities of inter-

est in the program are expressed in terms of atomic or-
bitals, AO, wave-functions, each one being a linear com-
bination of Gaussian “primitive” functions centered in
high-symmetry positions: these AOs constitute the so-
called basis set (BS). As concerns the structure, within
the harmonic approximation, here extensively used, no
lattice expansion can be predicted so that the experimen-
tal equilibrium lattice parameter at 298 K (a = 5.4307 Å)
was used. In principle, however, linear thermal expansion
coefficients could be computed within the so-called quasi-
harmonic approximation46,47 by minimizing Helmholtz’s
free energy (computed from the whole phonon dispersion
of the crystal) at a given temperature, as a function of the
cell volume or, alternatively, from the knowledge of the
isothermal bulk modulus, the mode Grüneisen parame-
ters and the mode contributions to the specific heat.48

Four one-electron Hamiltonians are considered: the
classical HF, two typical DFT (a local LDA49 and the
generalized-gradient PBE50) and a hybrid (B3LYP)51

one. The accurate calibration of the basis set is perhaps
the most delicate step in defining the optimal computa-
tional setup and is discussed in details below.In Crys-

tal, the truncation of infinite lattice sums is controlled
by five thresholds, which are here set to 8,8,8,8,16. The
DFT exchange-correlation contribution is evaluated by
numerical integration over the cell volume: radial and
angular points of the atomic grid are generated through
Gauss-Legendre and Lebedev quadrature schemes, using
a (75,974) pruned grid. Reciprocal space is sampled in
a regular sublattice with a shrinking factor equal to 8
corresponding to 29 k-points in the irreducible Brillouin
zone.

In a recent study concerning the ab initio simulation
of the density matrix of crystalline solids,52 we have an-
alyzed the performance of different AO-BSs in the com-
putation of two quantities related to the ECD of silicon:
the value of ρ(r) at the bond midpoint, and the F222

structure factor (whose non-zero value is a measure of
the asphericity of the ECD about the individual atoms).
For comparison, calculations were performed with the
Quantum-Espresso code,53 where a plane-wave (PW)
BS was used for the valence electrons, while the core con-
tribution was described with the PAW (Projector Aug-
mented Waves) technique. In both cases the PBE Hamil-
tonian was adopted. A clear convergence of AO-BSs to
PW-BS was reported.

In the present work, we adopt the 6-21G∗ split-valence
plus polarization basis set used in that work and explic-
itly reported in Ref. 54, to be indicated as BS1 in the
following. A second much reacher BS is considered, that
is BS1 enriched by three sets of single-primitive polariza-

tion functions, one of d and two of f type with exponents
of 0.3, 0.8, 0.2 a.u., respectively: this BS will be referred
to as BS2.
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FIG. 1: Phonon dispersion branches of crystalline silicon
along two high-symmetry path within the first Brillouin zone
(Γ - X and Γ - L) as computed with four different Hamilto-
nians with the BS1 basis set and compared to experimental
data (black dots) from Ref. 55.

IV. RESULTS AND DISCUSSION

The technique that we are discussing for the ab initio

simulation of dynamical X-ray structure factors relies on
a correct description of two aspects of crystalline materi-
als: lattice vibrations and electron charge density which
correspond to two distinct steps in our scheme. These
properties are computationally related to different quan-
tities, energy derivatives and density matrix, respectively,
so that different computational approaches can behave
differently on these respects. The following two subsec-
tions are devoted to the discussion of the effects of the
adopted Hamiltonian and basis set on lattice dynamics
and static charge density of crystalline silicon in order to
define an optimal computational setup.

A. Vibrational frequencies and ADPs

The accuracy of a given method in describing lattice
dynamics is usually checked in terms of vibration fre-
quencies (eigenvalues Λk of the dynamical matrices in
equation 3) in the form of dispersion branches (like those
reported in Figure 1) which are accessible to neutron in-
elastic scattering experiments55 or of thermodynamical
properties, such as the entropy or the Gibbs free energy,
which in turn depend on the vibration frequencies alone.
Such a validation, however, is not completely satisfactory
in this case because in our scheme we consider not only
the eigenvalues but also the eigenvectors Uk (equation
3) which are used to construct ADPs in equation (12).

TABLE I: ADP (in 10−4 Å2) of crystalline silicon as com-
puted at T = 298.15 K with the BS1 and BS2 basis sets on
a conventional supercell as a function of the adopted Hamil-
tonian with (first column) L ≡ L′ = 2 and (second column)
L = 2 and L′ = 48 where L = 2 corresponds to 32 k-points
and L′ = 48 to 442368 k-points where the dynamical matrices
of equations (2 - 3) are diagonalized (see the description of
the Hessian interpolation technique in Section IIA). For the
PBE functional, results are also shown for intermediate basis
sets to highlight convergence.

Ĥ L → L′

2→2 2→48

BS1

HF 34.09 40.89

B3LYP 40.35 48.75

PBE 45.97 55.41

LDA 46.69 56.20

BS1+d PBE 49.48 58.17

BS1+df PBE 51.73 60.96

BS2

HF 35.46 42.74

B3LYP 41.21 49.43

PBE 51.95 61.11

LDA 56.64 67.87

The effect of the Hamiltonian is shown in Figure 1
and Table I as concerns vibrational frequencies and nor-
mal modes, respectively. Figure 1 reports dispersion
branches of crystalline silicon along two high-symmetry
paths within the first Brillouin zone (Γ - X and Γ - L)
as computed with four different Hamiltonians (represen-
tatives of different classes of one-electron methods: HF,
B3LYP, PBE and LDA) with the BS1 basis set at the
experimental geometry. The effect of the Hamiltonian
is dramatic: they all describe the shape of the branches
reasonably well but they are blue-shifted in the energy
axis with respect to the experiment in the order HF >
B3LYP > PBE ≈ LDA. The large blue-shift in HF and
B3LYP is probably due to the fact that these methods
describe very rigid covalent bonds (see, for instance, the
ECD at the bond midpoint in Section IVB). The PBE
functional of the DFT is found to provide the best agree-
ment with the experimental frequencies of Ref. 55 (black
points in the figure).

In Figure 1 we do not report the effect of BS on the
computed vibrational frequencies explicitly for reasons of
clarity. BS2 results in relatively small variations with re-
spect to BS1, as compared to different Hamiltonians. For
instance, the optical frequency at Γ, computed with the
PBE functional, passes from 15.52 to 15.53 THz which
would not be visible on that scale.
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TABLE II: ADP of crystalline silicon (in 10−4 Å2) as com-
puted at T = 298.15 K with the PBE functional of the DFT
and the BS2 basis set as a function of the adopted supercell
(SC). The supercell used is a conventional one (4 times larger
than the primitive); the size of the SC is defined by the pa-
rameter L while the number of k-points used for the Hessian
interpolation is related to L′ (see text in Section IIA). Here
L′ = 48, corresponding to 442368 k-points where the dynami-
cal matrices of equations (2 - 3) are diagonalized. The number
N of atoms in the SC is also reported.

L N L → L L → L′

1 8 45.35 101.91

2 64 51.95 61.11

3 216 54.78 60.71

4 512 57.13 60.55

EXP. (Ref. 56) 59.41 ± 0.21

In Table I we report the computed ADP as obtained
with the above-mentioned Hamiltonians and with the two
basis sets at T = 298.15 K. The following remarks can
be inferred from that table:

(i) a strong dependence on the Hamiltonian is ob-
served also for ADP which follows the order HF
< B3LYP < PBE < LDA that is opposite to the
order in the vibrational frequencies. The ADP is a
measure of the mean squared displacement of every
silicon atom from its equilibrium position; the more
rigid the covalent bonds, the higher the vibration
frequencies and the smaller the ADP;

(ii) effects due to the basis set (from BS1 to BS2) are
apparent and more pronounced for the pure DFT
Hamiltonians (PBE and LDA) with respect to HF
and B3LYP because they describe a more diffuse
electron distribution. From the data of the ta-
ble, one could wonder whether BS2 represents or
not a converged basis set as concerns the ADPs.
Having this purpose in mind, PBE data are also
reported for two intermediate basis sets (BS1+d
and BS1+df) which are obtained by progressively
adding the polarization functions of BS2 to BS1.
BS2 results vary by only 0.2 % with respect to
BS1+df ;

(iii) at variance with vibration frequencies, the ADPs
are not direct observables; however, they can be ex-
tracted from experimental data by fitting to some
theoretical model. The most accurate determina-
tion of the ADP of crystalline silicon is 59.41± 0.21
10−4 Å2 as obtained by fitting phonon dispersion

FIG. 2: Electron charge density profile along a Si-Si bond, in
the vicinity of its midpoint, in crystalline silicon as computed
with different Hamiltonians with the BS2 basis set. The tri-
angle represents the “experimental” value of the static charge
density at the midpoint of the bond from Ref. 17.

curves from inelastic neutron data to a harmonic
model.56 Several other “experimental” determina-
tions are available in the literature as derived from
X-ray diffraction experiments and they all lie in the
range 57 ≤ ADP ≤ 59 (values in 10−4 Å2).35,57–60

Thus, the PBE functional is again found to provide
the best agreement with experiment when our best
BS2 basis set is used;

(iv) the last column in Table I reports the ADP as ob-
tained with a Hessian interpolation (discussed in
Section II A) from L = 2 to L′ = 48, that is, from
32 to 442368 k-points where the dynamical matri-
ces of equations (2 - 3) are diagonalized. It is seen
that the effect of interpolation amounts to 20 %.

We have seen that the PBE functional of the DFT pro-
vides the best agreement as concerns both vibrational
frequencies and ADP values. We consider, now, the
PBE method and we discuss the effect of the “super-
cell” (SC)size (L)used in the sampling of reciprocal space
(number of k-points where the dynamical matrix is di-
agonalized). Table II reports the ADP of silicon as com-
puted with different SCs and with the BS2 basis sets.
Interpolations up to L′ = 48 (442368 k-points) are also
reported for each SC. The conventional SC with L = 2 is
the smallest one (only 64 atoms) which already provides
a good description of the ADP (61.11 10−4 Å2) while the
simple conventional SC with L = 1 is clearly insufficient.

We can see how the effect of the Hessian interpolation
described in Section II A is reduced while increasing the
size L of the starting SC: it goes from 55 % of ADP
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FIG. 3: Atomic Debye-Waller damping factors at 298 K, as
defined in equation (18), computed with four different Hamil-
tonians from their respective best determinations of the ADP
for the set of 18 structure factors of Ref. 17 for silicon. The
experimental points correspond to the ADP of Ref. 56.

for L = 1 to just 5 % for L = 4. Interpolation from
a conventional SC with L = 4 (512 atoms) gives 60.55
10−4 Å2, which is our best theoretical determination of
the ADP, to be compared with the “experimental” value
of 59.41 ± 0.21 10−4 Å2 of Ref. 56.

B. Electron charge density

The second step of the technique involves the ab initio

description of the static charge density ρ(r) of the system.
Both BS1 and BS2 basis sets correctly describe the

static ECD of crystalline silicon, BS2 being slightly bet-
ter. In order to quantify it, we consider the consolidated
set of 18 static structure factors by Lu et al.17 and we
introduce the so-called agreement factor:

RX =
1

18

∑

hkl

|FX
hkl − F exp

hkl |
F exp

hkl

× 100 (19)

where X represents the computational method. With the
PBE functional, we get RBS1 = 0.15 % and RBS2 = 0.14
%.

Again, the effect of the Hamiltonian is dramatic. In
Figure 2 we report the computed ECD of crystalline sil-
icon along a Si-Si bond, in the vicinity of its midpoint,
as computed with the four Hamiltonians with BS2 basis
set. We also report an “experimental” value of the static
charge density at the midpoint of the bond from Ref. 17
(black triangle). As expected, DFT provides a very good
description of the ECD of the system, PBE being better
than LDA. The HF method describes too rigid covalent
bonds (see also the discussion in Section IVA) with a

TABLE III: Dynamical structure factors F̃hkl as computed
with four different Hamiltonians with the BS2 basis set and
with the best determination of the ADP for each Hamiltonian.
Experimental values are form Ref. 61. In the last row, overall
agreement factors, as defined in equation (19) are reported
with respect to the experiment.

hkl LDA HF B3LYP PBE EXP.

111 10.590 10.648 10.642 10.601 10.603

220 8.351 8.420 8.410 8.374 8.388

311 7.638 7.718 7.704 7.669 7.681

400 6.943 7.080 7.039 6.986 6.996

331 6.652 6.838 6.773 6.702 6.726

422 6.037 6.230 6.169 6.093 6.112

333 5.700 5.896 5.838 5.759 5.781

511 5.717 5.919 5.858 5.775 5.791

440 5.250 5.470 5.402 5.313 5.332

444 4.028 4.272 4.202 4.100 4.124

551 3.841 4.088 4.017 3.914 3.935

642 3.557 3.807 3.736 3.631 3.656

800 3.155 3.408 3.336 3.229 3.249

660 2.818 3.072 3.000 2.892 2.914

555 2.703 2.956 2.885 2.777 2.801

844 2.063 2.312 2.242 2.134 2.151

880 1.449 1.685 1.617 1.515 1.533

R 2.06 % 3.40 % 1.83 % 0.47 %

very high charge density in the bond region; the hybrid
B3LYP schemes obviously lies in between.

C. Dynamical structure factors from ADPs

The scheme presented here for the computation of dy-
namical structure factors relies on the accurate deter-
mination of the ADPs of equation (12) from which the
Debye-Waller atomic factors of equation (18) are com-
puted which damp the static structure factors. In Figure
3 we report the DW damping factors computed with four
different Hamiltonians from their respective best deter-
minations of the ADPs for the set of 18 structure factors
Fhkl of Ref. 17. The experimental points correspond to
the ADP of Ref. 56. It is seen that the HF and B3LYP
underestimation of the ADP leads to a too small damp-
ing, the LDA overestimation leads to an exceedingly large
damping while PBE is in very good agreement with ex-
periment.

Finally, we can compare the ab initio computed val-



9

FIG. 4: Percentage differences of dynamical structure fac-
tors F̃hkl of silicon at 298 K as computed with four different
Hamiltonians with the BS2 basis set for both the ADPs and
the ECD.

ues of dynamical structure factors to their experimental
counterparts (see Table III where we report the computed
values and compare them to experiment). Let us intro-

duce the index RX
hkl = (F̃X

hkl − F̃ exp
hkl )/F̃ exp

hkl × 100 which
measures the percentage difference of each structure fac-
tor F̃X

hkl, computed with method X , with respect to the
experimental value.61 In Figure 4 we report such data for
17 structure factors (the anomalous 222 reflection is omit-
ted) as computed with four different Hamiltonians with
the BS2 basis set for both the ADPs and the ECD that is,
with the best computational setup for each Hamiltonian.
As a general remark, it is seen that the percentage devia-
tions increase at increasing Miller’s indices, as expected.
HF and B3LYP tend to overestimate the experimental
dynamical structure factors by 3.40 % and 1.83 %, re-
spectively; LDA underestimates the experimental data
by 2.06 % while PBE, that is the best Hamiltonian for
both lattice dynamics and ECD, gives an overall agree-
ment of 0.47 % (on the underestimation side). If we bear
in mind that such an agreement is obtained completely ab

initio, without any fitting to experimental data, the pre-
dicting power of this technique can be considered fairly
impressive. This excellent agreement, however, might be

due to the high symmetry of cubic crystalline silicon; a
less satisfactory agreement is expected for low-symmetry
multi-atomic crystals.

V. CONCLUSIONS

A fully ab initio technique (in the frame of one-electron
Hamiltonians and periodic boundary conditions) is here
formally presented and discussed for the theoretical de-
scription of the effect of temperature on X-ray dynamical
structure factors of crystalline materials, which relies on
the computation of the atomic anisotropic displacement
parameters (ADP) and the Debye-Waller atomic factors
within the harmonic approximation. The technique is
applied to the simulation of dynamical structure factors
of crystalline silicon for which very accurate experimental
determinations exist because of the high level of purity
of its single crystals and availability of a very accurate
technique for measuring the dynamical structure factors
(Pendellösung fringes method).

Possibility of including effects of temperature, in a rig-
orous ab initio fashion, in the computed structure factors
is appealing since it would reduce the data processing on
the experimental side and allow for a direct comparison
with the outcomes of X-ray diffraction experiments.

The technique used relies on the accurate description
of the lattice dynamics and of the electron charge distri-
bution of the system. The description of both aspects is
dramatically affected by the adopted quantum chemical
method. In the present case (crystalline silicon), we find
that the PBE functional of the DFT provides the best
values for both properties.

An overall agreement factor of 0.47 % between the
ab initio predicted values and the experimental deter-
minations is found, in the best case. This extremely
good agreement is probably due to the fact that a simple
model based on ADPs is fairly accurate for a simple cu-
bic crystal like silicon. We expect that for multi-atomic
low-symmetry compounds, where the somehow arbitrary
rigid atom approximation severely comes into play, such
a simple scheme would prove to be less satisfactory.
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