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Abstract

Internal coordinate molecular dynamics (ICMD) methods provide a more natural description of a
protein by using bond, angle and torsional coordinates instead of a Cartesian coordinate
representation. Freezing high frequency bonds and angles in the ICMD model gives rise to
constrained ICMD (CICMD) models. There are several theoretical aspects that need to be
developed in order to make the CICMD method robust and widely usable. In this paper we have
designed a new framework for 1) initializing velocities for non-independent CICMD coordinates,
2) efficient computation of center of mass velocity during CICMD simulations, 3) using advanced
integrators such as Runge-Kutta, Lobatto and adaptive CVODE for CICMD simulations, and 4)
cancelling out the “flying ice cube effect” that sometimes arises in Nosé-Hoover dynamics.

The Generalized Newton-Euler Inverse Mass Operator (GNEIMO) method is an implementation
of a CICMD method that we have developed to study protein dynamics. GNEIMO allows for a
hierarchy of coarse-grained simulation models based on the ability to rigidly constrain any group
of atoms. In this paper, we perform tests on the Lobatto and Runge-Kutta integrators to determine
optimal simulation parameters. We also implement an adaptive coarse graining tool using the
GNEIMO Python interface. This tool enables the secondary structure-guided “freezing and
thawing” of degrees of freedom in the molecule on the fly during MD simulations, and is shown to
fold four proteins to their native topologies. With these advancements we envision the use of the
GNEIMO method in protein structure prediction, structure refinement, and in studying domain
motion.
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INTRODUCTION

The desire to use larger integration time steps has motivated the use of constraints in
molecular dynamics simulations to eliminate high-frequency degrees of freedom.1 The
molecular dynamics (MD) techniques that impose such bond length constraints include the
SHAKE0 and RATTLE!! algorithms. Both of these algorithms solve the all-atom (referred
to as Cartesian hereafter) equations of motion, followed by an iterative solution of the
constraint equations to enforce the bond length constraints. These algorithms are available in
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widely used software packages such as CHARMM, AMBER, and NAMD. Internal
coordinate molecular dynamics (ICMD) on the other hand use bond/angle/torsional (BAT)
coordinates which more naturally reflect the large- and small-scale motion degrees of
freedom within the molecule. The well known “torsional molecular dynamics” technique is
a special case of constrained ICMD (CICMD) models which freeze bond lengths and
angles.1:34.6.8.9.12 |n CICMD models, the molecule is modeled as a collection of rigid
clusters connected by hinges. Each cluster is a rigid collection of atoms, within which all
bond lengths and bond angles are frozen.

An issue that has received considerable attention from researchers has been the increased
complexity of the equations of motion for CICMD models. While the number of degrees of
freedom is smaller, the mass matrix is dense and configuration dependent. The
computational cost for some of the original approaches to solving the constrained equations
of motion scale as the cube of the number of degrees of freedom.1:2> We developed a
Spatial Operator Algebra (SOA)13:14 based Generalized Newton-Euler Inverse Mass
Operator (GNEIMO) method for CICMD? that solves the same equations of motion exactly
with O(N) computational cost, where A/ denotes the number of degrees of freedom. The
SOA algorithm and its variants have also been used by other groups for CICMD
simulations.*8912.15

In our recent work we have demonstrated the application of CICMD models and trajectories
for the folding of proteins®, the refinement of protein structurel’, and the simulation of
protein domain motion.18 We have observed that CICMD models are able to fold small
proteins faster and more reliably than using Cartesian models.18 Further, we found that
CICMD maodels are able to refine protein homology models to higher accuracy consistently
and enrich the population of refined structure.1’ Finally, CICMD simulations of proteins
known to undergo large-scale domain motion have managed to reproduce the expected
conformational changes, while Cartesian simulations do not.18 These applications exploit
the qualitatively different nature of CICMD maodels to obtain performance improvements
over traditional Cartesian models beyond just increased integration timestep size. One
reason for the different behavior of CICMD models is that the number of degrees of freedom
in CICMD models is approximately one order of magnitude smaller than that in traditional
Cartesian MD models. We believe that the use of the more natural BAT coordinate models,
and the retention of the essential degrees of freedom play a significant role in the superior
performance of CICMD models. We are continuing to work on extending and applying the
ICMD and CICMD methodology to a broader range of MD applications.

The added complexity of the equations of motion resulting from the use of BAT coordinates
and holonomic constraints is just one of several aspects where the CICMD models differ
from unconstrained Cartesian MD models. There remain several outstanding technical issues
with CICMD that need to be addressed to make the method a robust and stable dynamics
simulation tool for use with the wider variety of molecular systems. In this paper we have
addressed some of these key issues by developing the theoretical framework and associated
computational algorithms for implementation.

These are summarized below.

e The equipartition principle is used as the basis for the initialization of atom
velocities in accordance with Boltzmann distributions in Cartesian MD. However,
the traditional equipartition principle does not hold for CICMD maodels. This is
apparent by observing that the velocities of atoms within the same cluster are
completely correlated. In a companion work we have derived a rigorous new
equipartition principle for CICMD models that makes use of new moadal velocity
coordinates.1® In the Methods section, we describe a low-cost computational

J Comput Chem. Author manuscript; available in PMC 2014 April 30.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Wagner et al.

Page 3

procedure for carrying out velocity initialization based on the CICMD equipartition
principle and the modal coordinates.

While MD simulations are typically initialized with zero overall system linear and
rotational momentum, there is inevitable drift in practice, and periodic nulling of
linear and angular motion is needed. We have developed a composite body inertia
based technique for efficiently carrying out such momentum nulling for CICMD
models, with the mathematical details included in the Methods section.

We observed the emergence of a flying ice-cube behavior during CICMD
simulations that results in a bleeding of thermal energy from the configuration
degrees of freedom. In the Methods section, we describe a mathematical
explanation for this behavior and techniques for avoiding this phenomenon.

The simplicity of Cartesian models has facilitated the use of energy conserving
integration techniques such as Verlet integrators for Cartesian MD. On the other
hand, the presence of holonomic constraints in CICMD results in a non-separable
Hamiltonian (i.e., the kinetic energy depends on the configuration coordinates) and
as a consequence, the need for alternative integration techniques. We have analyzed
the performance of the Runge-Kutta 4 (RK4) and Lobatto integrators for long-term
stable CICMD simulations in the Integrator Performance section.

We have developed the GNEIMO simulation platform in which the user can freeze
and thaw any degree(s) of freedom of the protein model to perform all-atom MD,
all-torsion MD, or any other form of coarse-grained MD by placing rigid
constraints on the appropriate degrees of freedom. Thus the GNEIMO method
provides an inherent coarse-graining feature that is valuable for enriching
conformational sampling during MD simulations. We have demonstrated the use of
the freeze and thaw coarse graining method in studying protein dynamics.1® In our
previous work, however, the coarse graining model was prescribed in the beginning
of the simulation and remained fixed. In this paper, we have utilized an adaptive
on-the-fly technique that allows changes in the level of coarse-graining during the
simulation. In the Methods section, we describe three levels of coarse-graining
techniques for CICMD simulations that range from clustering strategies, to run-
time manual freeze and thaw techniques, to automated dynamic-clustering
strategies. In the Results section, we demonstrate the use of the dynamic clustering
algorithm for the folding of four proteins starting from their extended structures to
their respective native states by treating the helical and fstrand regions of the
proteins as clusters.

We have implemented all the techniques described here in the GNEIMO CICMD simulation
package. GNEIMO applies user-defined holonomic constraints onto a Cartesian model of
the system in order to produce a set of generalized coordinates for simulation. We include an
architectural description of GNEIMO, including the addition of important MD capabilities
such as NVT Nose-Hoover dynamics, solvent models and Replica Exchange (REXMD)
strategies. The supplementary material includes an overview of the GNEIMO software
design, as well as summary mathematical derivations of some of the algorithmic techniques
used in GNEIMO.

Method Development

The GNEIMO method for performing CICMD simulations includes several standard
capabilities required for MD simulations such as:
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e The NVE and Nosé-Hoover NVT ensembles in the GNEIMO framework are
described in a previous work.8 For convenience, a summary of this method is
included in the supplementary material.

« Animplementation of the Generalized Born Solvation Method (GBSA) for implicit
solvation.20

»  Support for multiple molecules of any type, including explicit solvent.
«  Implementation of the Fixman correction potential 21

« A temperature-based Replica-Exchange (REXMD) method,22 in which
temperatures may be switched randomly or probabilistically using the Metropolis
algorithm.23

«  Support for periodic boundary conditions.

«  Architectural integration with the LAMMPS?24 tool. These include the generation of
ICMD coordinate files to complement LAMMPS checkpoint files and allow for the
restarting of simulations, utilization of MPI for parallelized force field calculations,
and support for standard Cartesian simulation.

« A GPU-accelerated OpenMM force field implementation, 2 as well as a general set
of expected interface functions that could allow GNEIMO to interact with any
atomistic force calculator.

»  Soft constraints between atom pairs for applying user defined restraints during
simulations.

In the following sections we describe new techniques and CICMD extensions that have been
implemented within the GNEIMO method.

Initialization of Velocities in Modal Coordinates

In this paper, we focus on torsional MD for systems with tree topology and internal hinges
with one degree of freedom. At the start of a simulation, initial velocities need to be
assigned to the generalized velocity coordinates. Unlike the Cartesian dynamics case, the
degrees of freedom in the constrained dynamics models are coupled. Hence the Boltzmann
distribution cannot be used to directly assign velocities for the constrained dynamics model.

One option is to ignore the cluster model, and to assign the atom velocities using the
Cartesian approach and use an ad hoc approximation/projection step to obtain internal
coordinate velocities that best approximate the assigned atom velocities.28 We describe
below an alternate method that avoids such ad hoc steps, and instead identifies independent
modal velocity degrees of freedom for the constrained dynamics model that can be used to
assign velocities according to the Boltzmann distribution.19

For a desired temperature, T, the overall thermal energy in the system with A/ degrees of
freedom is defined as

Ke:%(N _6kT ()

Here Kk is the Boltzmann constant and Kj is the kinetic energy. Using the expression for the
mass matrix M derived in the supplementary material, the kinetic energy K in the system
can be expressed as
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1. FE .
Kezie*M@:§0 [I+H¢K|D[I+H¢K]*0 (2)

Now define a new set of velocity coordinates, v RV as
v & DI[I+HOK]'0 (3

The above equation represents a velocity coordinate transformation. This transformation is
reversible and we can recover #from v using the expression

6=[I — HYK|"D 21 (4)

Using this in Eq. (2) results in the new kinetic energy expression:

K _—1 * _—1 NE (kv (k)
—v'v==>» v v
) 2k:1 ©)

This kinetic energy expression is simply the sum of the kinetic energy contributions of the
new UKA) velocity coordinates. We refer to these independent velocity coordinates as the
modal velocity coordinates for the constrained dynamics model. It has been shown that the
equipartition principle for CICMD models holds for these modal velocity coordinates.19 We
assign random velocities according to the Boltzmann distribution in this canonical velocity
coordinates, and then recover the dvalue using Eq. (4). The algorithm proceeds as follows:

1. Foraninitial desired temperature T, use Eq. (1) to obtain a desired K, target value
for the system.

2. Use a zero-mean, unit variance, normal distribution to randomly assign initial
values to the vvelocity coordinates (except for the six degrees of freedom for the
base clusters).

3. Compute #from the vvalues using Eq. (4). This can be done via a O(N) recursive
base-to-tips scatter computational algorithm.

4. Reset any non-zero center of mass velocity resulting from this velocity assignment
using the method described below. This step will initialize the velocity of the base
cluster’s six degree of freedom hinge.

5. Compute the overall kinetic energy in the system, and scale all the velocities so that
kinetic energy in the system matches the desired temperature.

Resetting the center of mass velocity in spatial coordinates

In this section we derive the expressions and algorithms for resetting the center of mass
velocity. The notation here borrows heavily from that in Jain 27,

Simulations are initialized so that the center of mass (CM) of the system has zero
translational and rotational velocity. However, due to numerical errors, the system trajectory
can accumulate non-zero linear and angular CM velocities. We describe here an efficient
procedure developed to reset such non-zero CM velocities (both linear and angular). This
method is used during initialization at the start of the simulation, as well as periodically
during long simulation runs to remove any accumulated CM energy.
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Computing the CM spatial velocity, Vs requires computing the overall spatial inertia of
the system, Msand the overall spatial momentum, hg, of the system. Both of these quantities
depend upon the atomic position coordinates, while the momentum also depends on the
velocity coordinates. Once these quantities are available, V-, can be computed by solving
the following linear matrix equation:

M,

S

Veu=hg (6)

Multiple chains are treated as a single system when computing the overall system spatial
inertia and spatial momentum. Eq. 6 allows us to compute the linear and angular velocity of
a frame at the CM. The CM velocity can be nulled out by removing its contribution to the
spatial velocity of the base clusters for each of the chains. We have tested this method to
null the CM velocity for a single chain system and will be performing the tests for multiple
chain systems in the future.

Computing system spatial inertia, Mg—The overall 6 x 6 spatial inertia matrix for the
system, referenced to the base-cluster, is given by

n ¢*(n,1)

My = 3 ¢(n k)M (k)¢* (n,k)=[¢(n,1), - ¢(n,n)|M :
k=1

¢*(n,m)

E6Mo*E*=FE [R+¢~>R+Rq~5*] E*=ERE*=R(n)

We have used the following facts in the above derivation:
E 20,06, Is) € R, E¢=[¢(n,1),---¢(n,n)] and SRE*=0 (1)

Here ¢(/; k) denotes the 6 x 6 rigid-body transformation matrix between the /7 and A"
cluster, M(K) is the spatial inertia of the A% cluster, R((K)) is the 6 x 6 composite rigid body
spatial inertia of the &7 cluster and all its children, and ¢ = ¢ — I, where | denotes the
identity matrix. £is also referred to as the base pick-off operator. The first moment vector of
the R(n) spatial inertia specifies the instantaneous location of the system’s center of mass
with respect to the base-cluster’s reference frame.

Computing the system spatial momentum, hg—The base-cluster frame referenced
spatial momentum of the system is given by

hszigb(n, k)M (k)V (k)=E¢MV=E¢M¢* H*6=E [R+¢~>R+R$*} H*0=E¢RH*0
k=1

For the base cluster, i.e. one whose " hinge is a full 6 degree of freedom hinge, A#*(r7) = |
and &n) = Un), and hence hgcan be rewritten as

n—1

hy=R(n) V (n) + 3 6(n, k) R(K)H" (k)6 (k)
k=1
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Computing Vom CM spatial velocity—The spatial momentum hg, and the system level
spatial inertia Msand the center of mass velocity V-, are (referenced about the base cluster
frame) are related together by

h,=M,V,,=R(n)V,, @®

cM T

Hence for an isolated molecular system we have

Vo, = R7(n) R(n)V(n)—F:Z::lgb(n,k)R(k)H*(k)é(k)
n—1 = . (9)
= V(n)+R™! (n) X2 ¢(n, k) R(k)H* (k)6 (k)

From and Eq. (9) it follows that adding d,,to the W(r) base-cluster spatial velocity will
result in an additional A(7)d, of spatial angular momentum to the system. For the spatial
momentum to be zero, we must have

0=h,+R(n)s, = 6,=— R (n)h,=—-V_,

Thus an additional spatial velocity of d,,for the base-cluster adds A1)y, of base-cluster
frame referenced spatial momentum for an isolated molecule. Hence an additional spatial
velocity of — Vs at the base-cluster is applied to nullify and reset the system’s spatial
momentum.

Flying ice cube effect in Nosé-Hoover dynamics

In MD simulations, an artifact of numerical integration known as the flying ice cube effect is
a phenomenon where the energy from high-frequency modes is drained into zero-
(translational and rotational) and low-frequency modes?8. As a result of this, the molecule
gradually loses internal kinetic energy until the point at which the molecule drifts in space as
arigid body in a frozen conformation. The flying ice cube effect is known to arise in
velocity rescaling thermostats such as the Berendsen thermostat?8 due to repeated scaling of
the Kkinetic energy of the molecule in order to maintain the temperature of the simulation.

Here we report a similar effect that arises in Nosé-Hoover thermostats. For simplicity, we
present the derivations in Cartesian coordinates. The velocity equation for the Nosé-Hoover
thermostat multiplied by the mass of the #7 particle is given as

dmi Vi

dt

=F; —(m;v; (10)

where {is friction coefficient associated with the bath, F;, m;and v,are the internal force,
mass and velocities associated with the /7 particle respectively. Summing Eq. (10) over /
yields

dMV,,,

== MV,

where M=% ; mjis the total mass of the system, and Vs the center of mass velocity of
the system. Note that we make use of the fact that the sum of internal force acting on a
system is zero, i.e. £;F;=0. Solving Eq. (11) yields
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Vi )=V, (t=0)exp[— [L¢()dt] = V,, (t=0)exp[—In(s;)], (12)

where In s;is the bath variable in Nosé formulation that is proportional to the bath potential
energy. ldeally if the center of mass velocity at the start of simulation is zero and if In s;
remains positive, the center of mass velocity of the system will remain damped at all times.
But the expression for the center of mass velocity in Eq. (12) points to the fact that negative
In s;values can lead to growth in center of mass velocity leading to a flying ice cube effect
in Nosé-Hoover thermostats.

The center of mass kinetic energy can be written using Eq. (12) as

KE,, =cexp(—2lns;), (13)

where ¢is a constant proportional to initial center of mass kinetic energy.

The center of mass kinetic energy from Eq. (13) is compared for cluster model and all-atom
model with and without GB/SA solvation in Figures 1(a,b). The constant cin Eq. (13) is
determined as a fitting parameter from the simulations. From Figure 1 we observe that the
rate of growth of center of mass kinetic energy is lower in the presence of GB/SA solvation
compared with vacuum simulations. We also observe that the rate of growth of center of
mass kinetic energy is far greater in the cluster model than in all-atom Cartesian simulations.
A potential cause for the larger error could be the larger integration step size (dt=20fs) used
with cluster model simulations compared with the 1 or 2fs step size all atom Cartesian runs.
In Figure 2, the value of KEy,at the end of 90ps is shown for different integration step
sizes of the cluster model with and without GB/SA solvation. We see that value of KEy,
for 20fs time-step has grown by a factor of 10 compared with 1fs time-step. This shows that
the flying ice cube effect is a problem that can occur in constrained dynamical simulations
with higher integration time-steps. To overcome this issue, we reset the center of mass
velocity at periodic intervals using the method discussed above.

Coarse Graining Methods

GNEIMO allows for coarse graining of the dynamic model by freezing any desired
degree(s) of freedom. The choice of degrees of freedom to be frozen depends on the nature
of the simulation being performed. We have implemented the following three methods to
define various scenarios of freezing or thawing chosen degrees of freedom:

Automated Clustering Model—GNEIMO requires a definition of the degrees of
freedom to be fixed in the form of a basic cluster model file. This file is used to construct the
protein model and define the generalized coordinates to be used in the simulation. It may
contain a completely unconstrained system for all-atom dynamics, frozen bonds and angles
for torsional dynamics, or any other level of constraints for specific applications. As a
default option, we have developed an automated clustering scheme in which all terminal
atoms are added into a rigid cluster with their non-terminal neighbor atom, leading to
dynamics using all the torsional angles in the protein. Figure 3 shows the automated default
clustering scheme in GNEIMO. Omega angles are not rigidly constrained in this scheme,
and sidechains have all torsions free (with the exception of closed rings).

Manual Freeze and Thaw Method—The “freeze and thaw” method allows the user to
freeze or thaw degrees of freedom during the run beyond those defined in the basic cluster
model file. The user may make these constraints take effect at any point during the
simulation using the Python interface for GNEIMO. For example, this model may be used to
treat alpha helical regions as rigid clusters connected to the loops with flexible torsions.
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Dynamic Coarse Graining—In addition to the manual “freeze and thaw” user interface,
we have developed an automated toolkit referred to as “Dynamic Clustering” within the
GNEIMO framework. It can be used to automatically apply hierarchical clustering schemes
on proteins during the MD simulations. The generic all-torsion cluster model of a protein is
not always adequate for studying large-scale conformational changes in proteins, and
manual control is often impractical. In simulations of the long timescale processes which are
governed by low frequency modes of a protein, one needs to allow for changes in the
clustering model to observe meaningful motion. There are several strategies that can be used
when applying constraints during the course of the simulations. Poursina et al have
discussed an adaptive clustering strategy for RNA simulations2°. Here we have developed a
dynamic clustering scheme wherein the secondary structure elements of the protein (as
detected by STRIDE3) may be clustered into larger rigid bodies as they are formed, or
released to a finer level of dynamical detail during the simulation depending on a number of
criteria. This “freeze and thaw” clustering scheme is applied on the fly during the dynamics
simulations.

As the default clustering model in GNEIMO leaves all non-ring torsions free, we are able to
lock the torsional hinges between these clusters in order to rigidify desired sections of a
molecule. Our locking approach is taken from methods described in a previous work3®. At a
user-defined frequency, a STRIDESC scan is run on the current state of the protein
simulation. This scan generates a list of residues involved in secondary structure. The
Dynamic Clustering software then maps the residue numbers of these detected motifs to the
specific clusters that define their backbone torsion angles and locks them in the simulation.
This software is tied to the GNEIMO REXMD implementation and the REXMD
temperature may be used as a threshold, so that secondary structure will only be locked at
high temperature. The user may choose to impose a upper threshold for angular velocity
during locking as well, to ensure that no torsion which is undergoing significant motion is
locked. Further, the build up of stress forces at frozen hinges can be monitored and used to
unlock them.

Our goal is to develop constrained dynamics techniques in GNEIMO that would allow
simulations ranging from constraint-free all-atom to large numbers of constraints that give
rise to rigid body clusters for the study of domain motion in proteins. We envision using
these tools for long timescale MD simulations to study protein dynamics,'8 protein structure
prediction and refinement,17 folding of simple proteins,1 and protein-protein complexes.
Towards this effort we have validated the GNEIMO method with dynamic clustering for ab-
initio prediction of protein structures. We have also performed long-time dynamics
simulations starting from crystal structures for different choices of integrators and
integration timesteps.

Protein Structure Prediction using the Dynamic Clustering Algorithm

In this section we discuss the utility of the dynamic clustering scheme for the folding of four
proteins starting from an extended structure. We first predict the secondary structure region
using the “PSIPRED” tool32 and build the predicted helical regions of the sequence. We
then start the GNEIMO-REXMD simulations using this sequence in a linear conformation
(for example, the extended structure shown in the top right corner of Figure 4(a) with the
helical regions treated as clusters. We used 12 replicas with temperatures ranging from
300K to 1050K. Temperatures switch randomly within this range at 7.5ps intervals. Helices
and Bstrands that are detected by STRIDESC during temperature exchange events have their
backbone torsions frozen if the REXMD temperature chosen is greater than 400K. The
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temperature range was chosen to cover high temperature for improving topological sampling
and low temperature to encourage the growth of low energy native like structures. The
protein folds to the molten globule state in this process.

The adaptive time step CVODE33 integrator employing the Adams-Moulton method was
used in simulations for dynamic clustering. The adaptive time step allows for rapid, stable
sampling of topological space by large clustered bodies, while taking smaller steps to allow
for more precise dynamics as the protein collapses toward a possible fold. In order to
produce meaningful and comparable results, we use a test set of proteins similar to a
previous study on structure prediction.3* We tested the dynamic clustering scheme on the
experimentally resolved portions of four proteins with PDB I1Ds: 1BDD (res 11-56), 1EON
(res 7-31), 1PRB (res 11-53), and 1UBQ (res 1-35). The experimental crystal structures of
these proteins are shown in figures 5(d-g). The starting structure for each dynamic clustering
simulation contained only predicted secondary structure32 and was in the extended
conformation otherwise.

Figure 4 shows the population density histogram for the four proteins, taken from the
GNEIMO-REXMD trajectory that led to the best folded structure. The quantity on the x-axis
is the root mean square deviation in Cartesian coordinates of the backbone atoms to the
corresponding crystal structures (henceforth denoted as CRMSD). It is seen that maximum
population of the conformations falls between 5 to 7A for 1BDD, between 6 to 10A for
1UBQ, between 7 to 8 A for 1IEON and between 8 to 10A for 1PRB. The closest structure to
the crystal structure in each case has a backbone CRMSD of 4.007 A (1BDD), 4.198 A
(1EON), 3.726A (1PRB) and 4.325A (1UBQ).

Twelve randomly-switched replicas for each protein were simulated. Each replica of 1PRB
and 1UBQ was run for 3ns (total sim time = 36ns). Since velocity reinitialization is required
at each replica exchange when the freezing or thawing of clusters occurs, the protein has a
chance of losing some secondary structure before equilibration is reached. It was found that
most of the starting secondary structure was lost early in these simulations, leading to poor
refinement after 1ns. For this reason, each replica of 1BDD and 1EON was run for just 0.3ns
(total sim time = 3.6ns). Similar folding results were observed for these proteins. Since less
overall processor time is required for the shorter simulations, more replicas can be run using
the same resources.

Figure 4(a) shows representative structures of one of the 1BDD replicas that folded. The
protein begins at an extended structure containing only predicted helices, then begins to
sample small numbers of inter-helical contacts at backbone CRMSDs in a broad range from
12t0 16 A. At 8to 11 A, the protein samples incorrect packings of all three helices. Below 7
A, the helices are sampling the proper native topology. This demonstrates that the dynamic
clustering approach samples the correct three dimensional topology within 40ns of total
simulation time. It should be noted that while GNEIMO-REXMD can be used for structure
prediction, the dynamics are not reflective of the pathway of folding since REXMD
enhanced sampling techniques have been used and the effect of the dynamic clustering
method on the folding pathway has yet to be studied. However, dynamic clustering can be
used in other applications such as studying conformational transitions in proteins, a task for
which the standard GNEIMO clustering scheme has been shown to outperform
unconstrained Cartesian simulations8. While using dynamic clustering or treating full
helices as rigid bodies we suggest the use of the CVODE33 integrator for stable dynamics.

MD Simulations of Crystal Structures of Proteins

Here we discuss the results of GNEIMO torsional dynamics simulations of three proteins of
various sizes with high resolution crystal structures. The three proteins are Crambin (PDB
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ID: 1CRN and resolution 1.50 A), Defensin (PDB 1D: 1DFN and resolution 1.9 A) and
Bovine Pancreatic Trypsin Inhibitor (BPTI, PDB ID:4PTI and resolution 1.50 A), shown in
figures 5 a-c. GNEIMO NVT all torsion dynamics simulation for 5ns at room temperature
(310K) was performed for all the three proteins starting from their respective crystal
structures after 500ps of simulated equilibration. A Hoover thermostat bath relaxation
constant of 250fs was used. We tested various time step sizes (1fs to 30fs) and two
integrators (RK4 and Lobatto) to evaluate the integrator performance for room temperature
all torsion dynamics. These simulations were performed to analyze the performance of
GNEIMO in temperature equilibration and maintaining structural stability.

Integrator Performance—Here we discuss the accuracy of the fixed-step Lobatto and
RK4 integrators for the simulations. The Lobatto integrator is the implicit Lobatto I1la-b
partitioned RK method which is an adaptation of the explicit Stormer-Verlet symplectic
method for Cartesian MD®, The fixed step-size RK4 method is an instance of a standard
high-order explicit method. Their accuracies have been assessed by monitoring the standard
deviation in simulation temperature for the NVT canonical ensemble and deviations of the
structure from the starting crystal structures as detailed below. Figure 6 shows the standard
deviation in temperature for 5ns simulations employing various time step sizes for the
Lobatto and RK4 integrators. We have also shown the results for all-atom Cartesian
simulations in the same figure. While multiple-chain thermostats are commonly used for
improving the ergodicity of simulations3®, all simulations in this paper used the single-chain
Nosé-Hoover thermostat with a relaxation time of 250 fs.

We must keep in mind that the Lobatto integrator is second-order, while the RK4 is fourth-
order. Though the Lobatto integrator must compute thermostat and Coriolis forces twice per
timestep, it only requires one expensive position-dependent molecular force field calculation
per timestep. Thus, the RK4 integrator makes four atomistic force field computations each
time step compared to the Lobatto integrator’s one. In order to provide a meaningful
comparison, we plot simulation metrics against “normalized” timesteps (fs per force
computation), as this metric corresponds more closely to wall time. In the tests, the RK4
integrator was stable using simulation timesteps of up to 16 fs, compared to the Lobatto’s
10fs. When converted to normalized timesteps, however, this RK4 simulation takes a
normalized time step of 4fs compared to the Lobatto’s 10fs.

In figure 6, we see that integration error (as measured by variation in temperature) is higher
for the GNEIMO torsional dynamics model than for the Cartesian model, and that the
Cartesian model is not generally stable for timesteps larger than 2fs. It is seen that the
average standard deviation in temperature for the RK4 integrator is relatively flat for
normalized timesteps under 4fs. The Lobatto integrator error rises directly with timestep
size, and the simulations begin to fail at normalized timesteps larger than 9 or 10fs.

When using the Nosé-Hoover thermostat, we observed a slow, long-term increase in the
magnitude of the bath potential energy. We believe that this is due to the dissipative nature
of the non-conserving integrators were used for the CICMD simulations. Future work will
investigate the use of multiple Nosé-Hoover chains3®, energy conserving integrators for
CICMD simulations, and the use of Nose-Poincare38 techniques for NVT simulations.

Structural properties—The structural properties of the proteins from the simulation
trajectories were analyzed relative to their respective crystal structures. We expect that
stable dynamics of these proteins should lead to sampling of the energetically allowed
regions of torsional conformation space. We have calculated the average CRMSD of the
backbone atoms of the protein from the crystal structures for each of the trajectories. Figure
7 shows the average CRMSD from simulations run with various timestep for the three
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proteins: crambin, BPTI and defensin. Simulations which encountered a crash before the full
5ns were reached have been excluded from the plot. It is observed that the mean CRMSD is
less than 2.5 A for most torsional dynamics simulations and that, for the Lobatto and RK4
integrators, the average simulation CRMSD is not correlated with timestep size. The
Cartesian simulations of crambin and BPTI moved away from the crystal structure, while
the Cartesian simulation of 1DFN remained close to the folded state.

RMSF—Another test of simulation quality is to compare the fluctuation in various regions
of the structure to that found experimentally in the crystal structures of the proteins. We
have calculated a quantity called root mean square fluctuation (RMSF) for each residue in
the simulation. The RMSF is calculated by taking the deviation of each residue’s position
from its average position during the simulation. We compare this to the RMSF that would be

82
expected from the crystal structure using the relation B:?RMSF ? Where B is the
crystallographic B-factor for each residue.

Figure 8 shows the difference between the simulation RMSF and the RMSF derived from
the crystal structure’s B-factor for each residue, time step size, and for both the RK4 and
Lobatto integrators. Each horizontal slice of these plots represents a single simulation,
showing the protein sequence from N- to C-terminus with color indicating the difference
between the simulated and experimentally-derived RMSF. Horizontal slices that are
consistently close to O represent integrator-timestep combinations that replicate the
experimentally expected dynamics. We note again that there are few trends that correlate
consistently with timestep size. This result implies that the choice of simulation timestep and
integrator have little bearing on the results of GNEIMO simulations, supplied that the
timestep does not lead to a crash. Since all simulations appear to have similar outcome, we
see that Lobatto is the most efficient choice for performing accurate simulations.

CONCLUSIONS

There are several theoretical and computational issues unique to CICMD models that need
to be addressed for their proper use as an MD technique. Some of these issues are addressed
in this paper, including a rigorous method to initialize velocities in generalized coordinates,
an efficient algorithm for nulling the center of mass velocity, and a proposed explanation
and solution for the flying ice cube effect in CICMD methods. We have developed a
rigorous theoretical and computational framework and implemented these features in the
GNEIMO CICMD method. The GNEIMO method supports various force-fields (CHARMM
and AMBER), thermostats (Nosé-Hoover, Berendsen, and temperature rescaling
thermostats), and solvation (GB/SA and distance dependent dielectric). Long timescale
torsional dynamics simulations of proteins employing large timesteps lead to the flying ice
cube effect with the Nosé-Hoover thermostat unless CM Kinetic energies are periodically
nulled.

We have implemented and tested advanced integrators such as RK4, Lobatto and adaptive
timestep CVODE33. Simulations of three crystal structures were performed with various
timestep sizes for 5ns using the Lobatto and RK4 integrators. Both integrators were found to
be stable and replicated crystal flexibility for normalized (fs per force field computation)
timesteps as large as 10fs for Lobatto and 4fs for RK4. Within this range, the measured
stability metrics from both types of integrator appeared to be largely independent of timestep
size used. We conclude that the first-order Lobatto integrator allows for the largest
normalized timestep and is thus the more efficient integration method for GNEIMO
simulations.
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We have also developed a toolkit to apply various clustering strategies which provides the
user with several levels of coarse graining for the dynamic model of the protein. We have
implemented the automated clustering of secondary structure elements as they are formed
during the folding of proteins. This dynamic clustering tool is an adaptive scheme for coarse
graining. Using the dynamic clustering tool we have folded four different proteins starting
from their extended structure to molten globule-like native structures within 4 to 5A of the
crystal. In the GNEIMO software, we have created a framework for CICMD simulations
that can be used in applications such as protein structure refinement, the study of domain
motions in proteins, and ab initio structure prediction.

Some of the advancements required for robust CICMD simulations have been developed
and implemented in the GNEIMO code but have yet to be tested numerically. These are: 1)
dynamics of multiple chains including explicit solvent molecules and 2) use of the Fixman
correction potential?1:37 to eliminate the systematic bias that stems from the holonomic
constraints placed on the models in the calculation of thermodynamic properties from
CICMD simulations.>38 We have derived a computational framework for calculating the
Fixman compensating potential using the SOA techniques.3 The numerical testing of the
effect of this correction potential and comparison of its performance to force fields that have
been tailored for CICMD simulations*49 are planned for future work.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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SUMMARY

We present a number of theoretical and computational methodological improvements
necessary for the development of robust constrained internal coordinate molecular
dynamics simulation techniques. To validate these improvements, we run simulations of
three protein structures using different integration techniques and time steps, and find
that the results of these simulations agree with experimental data. We also evaluate a
higher level application of these techniques, called “Dynamic Clustering”, for the
purpose of ab-initio protein folding and find that it samples the molten globule state for
all four proteins tested.
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Figure 1.

Plot of center of mass(CM) kinetic energy as a function of time for a) cluster model(CI)
using integration time-step 20fs and b) all atom(AA) Cartesian simulations using integration
time-step 1fs. The kinetic energy of CM from simulations with GB/SA solvation (red line)
and vacuum simulation (blue dashed line) for both cluster and all-atom models have been
shown here. The formula cexp(=2 In s for a fitted value of ¢ is shown as squares and
triangles for cases with and without GB/SA solvation respectively. All runs shown here use
RK4 integrator.
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Figure2.

Plot of KE £y at the end of 90ps for different integration time-steps with GB/SA solvation
(red full lines) and in vacuum (dashed blue curve). Nosé-Hoover thermostat at a bath
temperature of 300K and bath relaxation constant 500fs was used with RK4 integrator.
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(a) Treatment of main and side chains (b) Treatment of ring systems

Figure 3.

Colored representation of the automated GNEIMO clustering scheme. Each group of same-
colored atoms represents a rigid “cluster” which is connected to its neighbors via torsional
hinges.
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Figure 4.

(a): Backbone CRMSD histogram of a “Dynamic Clustering” replica-exchange simulation
of 1BDD, beginning from an extended conformation containing only predicted secondary

structure elements. Helices that are treated as rigid bodies are shown as broad ribbons. (b),
(c), and (d): Backbone CRMSD histograms of dynamic clustering simulations of proteins

from predicted helical structure.
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Figure5.

(a-c) The crystal structures of the three proteins of various sizes used for equilibrium
dynamics simulations and (d-g) the crystal structures of the four proteins (captioned with the
experimentally-resolved residue subrange used in simulations) used for ab-initio structure
prediction.
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St. Dev of Temperature vs. Normalized Timestep
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Standard deviation of temperature vs. timestep size over a 5ns simulation for various

molecule-integrator combinations.
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Av. Simulation RMSD vs. Normalized Timestep
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Average CRMSD in coordinates vs. timestep size over a 5ns simulation for various

molecule-integrator combinations.

J Comput Chem. Author manuscript; available in PMC 2014 April 30.



Wagner et al.

Page 23

(SF - B factar darived RMSF for RKA simulations of 10FN

RMSF - 8 factor derived RMSF for LOBATTO simulations of 10FN
w ™ F

(a) IDFN Lohatto (b) 1IDFN RK4

RMSF - B factor derived RMSF for LOBATTO simulations of crambin RMSF - B factor derived RMSF for RK4 simulations of crambi
Boren = L =

Hl

(d) Crambin RK4

RMSF - B factor derived RMSF for RKA simulations of BATI

(e) BPTI Lobatto (f) BPTI RK4

Figure8.
Simulation RMSF - B factor derived RMSF for various proteins, integrators, and timesteps.

RMSFs are calculated from the entire trajectory of each 5ns simulation. A value of 0
indicates that the RMSF of the residue on the x-axis observed in a simulation using the
timestep on the y-axis matches the RMSF derived from the crystallographic B-factor. All
distances in A.

J Comput Chem. Author manuscript; available in PMC 2014 April 30.



