
Calculation of Wave-functions with Frozen Orbitals in
Mixed Quantum Mechanics/Molecular Mechanics

methods. II. Application of the Local Basis Equation.

György G. Ferenczy
MTA-SE Molecular Biophysics Research Group

Semmelweis University Budapest
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Abstract

The application of the local basis equation1 in mixed quantum mechanics/molecular
mechanics (QM/MM) and quantum mechanics/quantum mechanics (QM/QM) meth-
ods is investigated. This equation is suitable to derive local basis nonorthogonal orbitals
that minimize the energy of the system and it exhibits good convergence properties
in a self-consistent field solution. These features make the equation appropriate to
be used in mixed QM/MM and QM/QM methods to optimize orbitals in the field of
frozen localized orbitals connecting the subsystems. Calculations performed for several
properties in divers systems show that the method is robust with various choices of the
frozen orbitals and frontier atom properties. With appropriate basis set assignment it
gives results equivalent with those of a related approach2 using the Huzinaga equation.
Thus the local basis equation can be used in mixed QM/MM methods with small size
quantum subsystems to calculate properties in good agreement with reference Hartree-
Fock-Roothaan results. It is shown that bond charges are not necessary when the
local basis equation is applied, although they are required for the self-consistent field
solution of the Huzinaga equation based method. On the other hand, the deformation
of the wave-function near to the boundary is observed without bond charges and this
has a significant effect on deprotonation energies but a less pronounced effect when the
total charge of the system is conserved. The local basis equation can also be used to
define a two layer quantum system with nonorthogonal localized orbitals surrounding
the central delocalized quantum subsystem.

Keywords: mixed QM/MM, QM/QM, frozen localized orbitals, local basis
equation, nonorthogonal orbitals
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INTRODUCTION

Mixed QM/QM and QM/MM methods allow a potentially accurate treatment

of extended systems with an affordable computational work. The basic idea is

to perform higher quality calculations for a central part of the system where a

chemical or physical event takes place, while a more approximate method is ap-

plied to the environment whose effect onto the central part is taken into account.

Methods to separate the system into subsystems are discussed in ref.2. Here we

note that the separation requires special considerations when the two subsystems

are covalently bound. Covalently bound subsystems are typical in calculations for

systems built from chemically bound monomers like proteins, DNA, zeolites,...

A possible way of separation is to assign localized or strictly localized orbitals to

bonds at the boundary of the subsystems3–10. Their advantage is that they allow

to keep apart the electrons of the two subsystems thus making possible to treat

them at different levels of approximations. Atoms participating in a (strictly)

localized orbital of a subsystem may have other bonds belonging to the other

subsystem. Owing to the artificial environment of the localized orbitals at the

boundary, typically they are not optimized, rather their coefficients are taken

from model systems and are kept frozen when other orbitals are optimized.

The usual approach to the optimization of orbitals in the field of frozen or-

bitals includes the explicit orthogonalization of the basis functions to the frozen

orbitals. This is necessary in computational schemes that, on one hand, assume

orthogonality among the orbitals, but, on the other hand, do not guaranty or-

thogonality to frozen orbitals not included in the optimization.

In a previous paper2 it was shown that the Huzinaga equation11, with an

appropriate basis set assignment, makes it possible to optimize orbitals of a

central subsystem in the field of frozen localized orbitals at the boundary of

the subsystems. The application of the Huzinaga equation results in orbitals

orthogonal to the frozen orbitals without basis set orthogonalization. In the

present contribution an alternative to the Huzinaga equation, the local basis
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equation1 and its application to optimize the orbitals is investigated. While the

Huzinaga equation keeps the frozen and optimized orbitals orthogonal and this

has to be respected in the basis set assignment, the local basis equation allows

nonorthogonality and thus its application allows more flexibility in the basis

set assignment. Moreover, while the self-consistent solution of the Huzinaga

equation is possible only with an appropriately chosen system Hamiltonian and

frozen orbitals, the application of the local basis equation is more flexible in

this respect, as well (see later). The local basis equation is not only suitable

to optimize orbitals in the field of frozen orbitals at the boundary, but it also

allows to define a layer of a priori localized orbitals with local basis sets in mixed

QM/QM or QM/QM/MM schemes.

The paper is organized as follows. First, the main features of the local ba-

sis equation are recapitulated and are compared to related schemes including

the Huzinaga equation. Then calculations are presented in which the local ba-

sis equation is used to optimize orbitals in the field of frozen orbitals and of

surrounding atoms represented by point charges. Other calculations apply two

QM regions, one with full QM treatment, and another with a priori localized

orbitals. Calculated properties as obtained with various approximate schemes

are compared to reference results.

THE LOCAL BASIS EQUATION

The starting point for the derivation of the local basis equation is the separation

of the electrons into groups and to optimize the orbitals of a selected group in the

field of other groups that are kept frozen. A principal feature of the equation is

that optimized orbitals are not required to be orthogonal to the frozen orbitals.

This makes possible to use group specific (local) basis sets. The local basis

equation was derived in ref.1 and is written in a slightly modified notation as

(Ia· − Sa·R
a)F(I·a −RaS·a)CaA = (Ia· − Sa·R

a)S·aCaAEAA. (1)
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where I is a unit matrix, S is the basis overlap matrix, Ra projects to all orbitals

not in group a, C is the coefficient matrix and E is the diagonal matrix of

eigenvalues. Lower indices refer to the dimensions of the matrices. The first

index specifies the number of rows and the second index specifies the number

of columns. ’a’ and ’A’ as indices refer to dimensions equal to the number of

basis functions and to the number of occupied molecular orbitals in group a,

respectively. A dot or a missing lower index indicate full dimension (e.g. all basis

functions) of a matrix. Owing to the possible nonorthogonality of the orbitals

Ra = Ca(σa)−1(Ca)† with σa being the overlap matrix of molecular orbitals.

Both σa and Ca refers to all orbitals not in group a.

Equations to calculate nonorthogonal orbitals with local basis sets have been

derived previously. Stoll et al.12 presented an equation for the orbitals that make

the energy stationary without requiring the orthogonality of the orbitals. They

also derived an eigenvalue equation to determine these orbitals. Their eigenvalue

equation in the present notation reads as

(Ia· − Sa·R + SaaR̃
a†
a· )F(I·a −RS·a + R̃a

·aSaa)CaA = SaaCaAEAA. (2)

where

R̃a
·a = Cσ−1·A C†Aa (3)

and thus it is different from the local basis equation (1). Note that C and E in

Eq. (2) are in general different from those in Eq. (1). Nevertheless, the solutions

of both equations span the same space and satisfy the equation of stationary

energy1,12.

It was reported that the iterative solution of Eq. (2) is impractical owing to

its extremely slow convergence12. A proposed reason for the slow convergence

is that the matrix to be diagonalized according to Eq. (2) contains the orbital

coefficients up to six order. The local basis equation, Eq. (1), on the other hand,

includes the orbital coefficients to be optimized only in the Fock matrix and thus

up to second order similarly to the standard Hartree-Fock-Roothaan equation.

Indeed, we have not observed convergence difficulties in the solution of the local
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basis equation.

A set of eigenvalue equations equivalent to Eq. (1) was derived13 for subsys-

tems with mutually exclusive basis sets to exclude BSSE from molecular interac-

tion calculations. Later the equations were modified to allow group of electrons

with shared basis functions14,15. These latter equations are similar to Eq. (2) in

that they contain the coefficients to be optimized up to six order, and conver-

gence difficulties were reported. The method was applied15,16 to derive strictly

localized orbitals to use as frozen orbitals in the LSCF method4,5,17. It was also

used15 in a QM/MM type calculation, similar to those presented in the current

contribution, but instead of a self-consistent field iteration, a computationally

less efficient gradient optimization was applied to calculate the orbitals. The use

of first, and occasionally second, derivatives with respect to the coefficients to

calculate nonorthogonal orbitals was also proposed in refs.12,18,19. Such schemes

aim at overcoming self-consistent field convergence difficulties. Owing to the ad-

vantageous convergence properties of Eq. (1) the self-consistent field solution was

exclusively applied in the present contribution.

Equations for nonorthogonal group functions that do not minimize the energy

of the system have also been proposed20–22. These equations offer computation-

ally economical approximations to Eq. (1).

The local basis equation results in nonorthogonal orbitals in general. However,

the total wave-function may be equivalent with that of the Huzinaga equation,

the latter can be written as

[
F− SRaF− FRaS

]
Ca = SCaEa (4)

Note that the dimensions of the matrices are typically equal to the total number

of basis functions or molecular orbitals as it is discussed below. This is the

reason why matrix dimensions are not indicated in Eq. (4) and the group index

appears as a superscript. As it is discussed in refs.1,2 orthogonality is implicit

in the derivation of the Huzinaga equation and this has to be respected in the

assignment of basis sets to groups. The inclusion of all basis functions of the
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frozen groups into the basis set of the group(s) to be optimized is a valid choice.

One can easily see that when basis set assignment allows orthogonality then the

solutions of Eq. (4) are also solutions of Eq. (1). However, the molecular orbitals

obtained by Eq. (1) are not necessarily orthogonal, even when basis sets make

orthogonality possible.

It is discussed in ref.2 that if orbitals in the frozen space are not good approxi-

mations to occupied orbitals then negative eigenvalue solutions of Eq. (4) appear

in the frozen space and the self-consistent solution that includes the selection of

lowest eigenvalue orbitals fails. Indeed, it was observed that certain combinations

of core charges and frozen orbitals at the QM/MM boundary prevent the self-

consistent solution of Eq. (4). By contrast, Eq. (1) is less sensitive in this respect

as orbitals in the frozen space always appear as 0 eigenvalue solutions. Examples

are presented in the subsequent sections where Eq. (1) is used to calculate the

wave-function of a QM subsystem, and the solution of Eq. (4) fails.

SAMPLE CALCULATIONS

QM/MM type calculations were performed with a model described in ref.2. The

principal features of the model include the division of the system into a central

QM part and an environment, the latter is represented by multipole derived

point charges23,24. The two subsystems are connected by one or several strictly

localized bonds (SLMO). These SLMOs connect two atoms: A is the frontier

atom, whose other bonds are directed towards the MM region, while bonds of B

belong to the QM region. Bond charges are placed at the midpoints of the bonds

of atom A in the MM region (Figure 1).

The objective of the calculations presented below is to explore what advan-

tages are offered by the increased flexibility first, in the selection of core charges

and frozen localized orbitals and second, in basis set assignments.

Calculations to solve Eq. (1) were performed with a locally modified version
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of GAMESS-US25. Multipole derived charges were obtained from a distributed

multipole analysis with the program GDMA26 followed by a charge fitting with

the program Mulfit27. Frozen orbitals were obtained with model molecules con-

taining the relevant chemical motifs. The procedures agree with those applied in

ref.2.

Efficient geometry optimization with wave-functions obtained from the local

basis equation requires the calculation of forces. Formulas for forces are presented

in the Appendix. Most terms agree with those commonly used for canonical

orbitals and existing codes can easily be adapted for geometry optimizations

with local basis equation orbitals.

All calculations applied the 6-31G* basis set28. Standard Hartree-Fock-Roothaan

(HFR) calculations were used as reference.

As it was discussed above, the local basis equation gives a wave-function

equivalent to that obtained with the Huzinaga equation, Eq. (4), when a basis

set assignment compatible with the latter is used. Therefore, results presented

in ref.2 can also be obtained with the local basis equation, Eq. (1). The calcula-

tions were indeed repeated with the local basis equation in order to collect more

experience concerning its convergence properties. Calculations were performed

for the deprotonation energy of C5H11COOH, for the conformational energy of

the same molecule as a function of the rotation of the -COOH group, for the

conformational energy of the Gly-His-Gly peptide as a function of the imidazole

rotation and for the proton transfer energy curve between sidechains of Asp and

His residues. The systems are described in more detail in ref.2 and also in the sub-

sequent sections where calculations with varying parameters are presented. Here

we note that with identical system setup (charges and basis set assignments) the

results obtained in ref.2 were perfectly reproduced and no convergence difficul-

ties were observed. Accordingly, a QM/MM boundary separated by 2-3 bonds

from a protonation site allows a good reproduction of the deprotonation energy.

Geometrical parameters obtained from gradient optimizations are in excellent
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agreement with reference results. It was also found that conformational energy

curves are well reproduced with a 2-3 bond separation of the boundary from the

rotating bond. A similarly small quantum system is able to well reproduce the

proton transfer energy curve between aspartate and histidine residues.

Frozen orbitals and bond charges

It was reported in ref.2 that the application of Eq. (4) requires the introduction

of bond charges in order to achieve proper convergence in the self-consistent field

solution. These bond charges are placed at the midpoints of those bonds of the

frontier atom that are directed towards the MM subsystem (Figure 1). This

allows the use of an increased core charge for the frontier atom that ensures

the proper behavior of Eq. (4) in the self-consistent field solution, and the good

reproduction of reference results.

The local basis equation exhibit good convergence even without bond charges

and with a small core charge of the frontier atom. Thus the deprotonation energy

calculation for molecule C5H11COOH was repeated without bond charges. The

C17-atom of the terminal CH3 group was selected as the frontier atom and the

C14-C17 bond as the frozen bond (Figure 2). (This separation corresponds to

’cut1’ in ref.2.) Thus the 3 terminal H-atoms were not part of the quantum

system. A core charge of +2.861 was assigned to the frontier atom (C17). This

value was obtained as the difference between +3 (number of explicit electrons)

and -0.139, the multipole derived charge for the atom. Multipole derived charges

were also assigned to the MM atoms. Charges were calculated for the neutral

molecule and were also applied for the charged one. The calculated deprotonation

energy differs from the reference value by 6.1 kcal/mol. (We recall that the error

is 0.2 kcal/mol with appropriately chosen bond charges.) It was also observed

that the Mulliken atomic charges29 increased on atom C14 (-0.075) and decreased

on atoms connecting to C14 (C11 -0.326, H-atoms connecting to C14 0.074) relative

to the HFR reference (C14 -0.304, C11 -0.307, H-atom connecting to C14 0.158.
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By contrast, Mulliken charges are close to the HFR Mulliken charges when bond

charges are present. This suggests that the frozen orbital itself is unable to fully

compensate for the unphysical environment near to the subsystem boundary and

this causes a significant error in calculated deprotonation energies. On the other

hand, the frozen orbital together with appropriately chosen frontier atom core

charge and bond charges are able to restore the correct polarity of the wave-

function near to the boundary.

The combined effect of the frozen orbital and bond charges was further an-

alyzed in calculations with varying basis functions for the active orbitals. (The

term active orbital refers to those orbitals whose coefficients are optimized in

contrast to the frozen orbitals whose coefficients are kept fixed.) While the ap-

plication of the Huzinaga equation requires the inclusion of the frozen orbital

basis into the active basis set this is not necessary when the local basis equation

is used. The frozen SLMO uses the basis orbitals of the atoms connected, namely

the frontier atom whose other bonds are directed towards the MM region and

the connected atom in the QM region. The fixed core orbital on the frontier

atom also uses the basis functions of this atom. On the other hand, the active

orbitals do not necessarily use the basis functions on the frontier atom. The com-

putational saving one may realize with the exclusion of frontier atom functions

from the active basis set is minor, but it affects the wave-function and potentially

the deprotonation energy. However, no significant variation of the deprotonation

energy is observed using the reduced basis set either with (0.2 kcal/mol error) or

without (6 kcal/mol error) bond charges.

These calculations were repeated with a more extended frozen orbital at the

boundary (Figure 3). The frozen localized orbital includes the basis functions

centered on the terminal C11-C14-C17 moiety including the two H-atoms connect-

ing to C14. By contrast, the active basis set does not include functions on the

terminal C14-C17 moiety and its H-atoms. In this way, the perturbation caused

by the QM/MM boundary is expected to be better modulated by the frozen or-

bital as the active orbitals do not extend to the terminal -C14-C17 group. We
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found, however, that the deprotonation energy without bond charges is still in

an error of about 5 kcal/mol. An analysis of the Mulliken charges reveals that

the C14 methylene group (C14 -0.389, connecting H-atoms 0.163) is more similar

to the reference (C14 -0.304, connecting H-atoms 0.158) than before (C14 -0.075,

connecting H-atoms 0.074) as a consequence of keeping the orbitals using the

C14 basis functions frozen. On the other hand, the connecting C11-atom (-0.078),

closer to the carboxyl end, exhibits larger deviation from the reference (-0.307)

than before (-0.326).

The importance of the deformation of the wave-function near to the boundary

without bond charges is expected to depend on the property studied. While

deprotonation energies are significantly influenced, a less pronounced effect is

expected when the charge of the systems to be compared is unaltered. In order

to test this hypothesis calculations for conformational energies and for a proton

transfer energy curve previously performed with bond charges2 were repeated

without bond charges. In these calculations the core charge of the frontier atom

was set to the sum of +3 (the number of explicit electrons) and the multipole

derived charge for this atom.

The energy as a function of the rotation of the carboxyl group in the C5H11COOH

molecule around the C5-C3 bond was calculated with two subsystem separations.

One (cut1) that corresponds to that in Figure 2 and another (cut2) with a smaller

QM subsystem, where the frozen SLMO bounds atoms C11 and C14 were selected.

These separations were previously found to yield a good reproduction of the en-

ergy curve when bond charges were used (Figure 2 in ref.2). Figure 4 shows

that the energy curve obtained without bond charges well follows the reference

curve with both system separations. The energy difference with respect to the

reference is larger without bond charges than with bond charges but does not

exceed 0.5 kcal/mol.

The energy of the rotation of the imidazol group in the Gly-His-Gly tripeptide

as obtained with and without bond charges together with the reference results are
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shown in Figure 5. The shape of the curve is again well described by the QM/MM

calculations. Results without bond charges show again a larger deviation from

the reference values. The largest difference with bond charges is within 1 kcal/mol

and it amounts to nearly 2 kcal/mol without bond charges.

The energy variation in the proton transfer between aspartate and histidine

was calculated as a function of the position of the proton. Results obtained with

and without bond charges together with the reference is shown in Figure 6. The

shape of the curves are very similar for all three calculations. The deviation

from the reference is smaller with bond charges than without bond charges. The

curves are superimposed at their minimum energy value that corresponds to

the protonated aspartate. The other minimum corresponds to the protonated

histidine. The difference between the two minima is reproduced with an error of

1.3 kcal/mol with bond charges and with an error of 3.5 kcal/mol without bond

charges.

These results show that bond charges applied together with an increased core

charge contribute to a better reproduction of reference results. It has to be noted

that the magnitude of charges were not carefully optimized, rather they were se-

lected by a trial an error procedure to well describe the deprotonation energy of

C5H11COOH at a particular QM-MM subsystem separation2, and were used in

all calculations performed for various systems and subsystem separations. Thus

the application of bond charges with increased core charge is beneficial for ac-

curacy. Moreover, our results suggests that the core charge is fairly transferable

as the same core charge together with bond charges adjusted to the total mul-

tipole derived charge of the atom could be effectively used in different chemical

environments. On the other hand, calculations without bond charges have the

advantage of having less parameters. The price one has to pay for it is the lower

accuracy. It is likely that accuracy can be improved by increasing the size of the

quantum subsystem, thus increasing the separation between the chemical event

and the perturbed electron density near to the subsystem boundary.
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Nonorthogonal localized orbitals in multilayer QM

systems

The local basis equation was shown to be able to calculate a priori localized

orbitals1. These orbitals can use local basis sets and they are nonorthogonal.

Their advantage is that they require the solution of reduced dimension equations

than the standard, full basis Hartee-Fock-Roothaan equations. This can be ex-

ploited in the framework of mixed methods by defining a QM/QM system built

from a central subsystem with the usual delocalized orbitals and a localized sub-

system that includes several localized molecular orbitals. The orbitals of both

subsystems of this QM/QM system are optimized. Eq. 1 is solved for each group,

namely for the central part, and for each group of localized orbitals, except for

the frozen one. These equations are coupled through Ra that is built from the

coefficients of other groups, therefore the equations are solved in an iterative way.

A more detailed description of the solution for orbitals in several groups is given

in ref.1.

An alternative to the above approach is to use fixed localized orbitals in the

outer QM subsystem. This option was not tested but we note that models using

a QM environment with constrained or fixed electron density interacting with the

central QM subsystem were proposed within the framework of the density func-

tional theory. A variant of the divide-and conquer method30 uses a preoptimized

density that is not changed when the geometry of the central QM subsystem

is optimized. The constrained31 and frozen DFT32 approaches calculate the in-

teractions between the subsystems quantum mechanically and those within the

outer subsystem classically. These methods, within the framework of DFT, pro-

vide an alternative way of solving the nonorthogonality problem between the

central subsystem and its environment.

A QM/QM system built from delocalized and localized orbitals can be com-

plemented with a MM subsystem. Such a multilayer system as defined for the

C5H11COOH molecule is shown in Figure 7. The deprotonation energy calculated
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for this QM/QM/MM system reproduces the standard Hartree-Fock-Roothaan

result within 1 kcal/mol.

The energy curve of the rotation of the carboxyl group in the C5H11COOH

was also investigated with a 3 layer model shown in Figure 8. The localized QM

system is smaller and the MM system is larger than in the previous deprotonation

study. This separation was selected, since a 2 layer system with the same MM

subsystem was shown to describe the energy curve very well2. This latter curve

was calculated with the Huzinaga equation but it can be obtained also from the

local basis equation (with a single QM region and with basis functions of all

atoms including the frozen orbitals). Figure 9 shows the standard QM energy

curve together with the 2 layer and 3 layer QM/MM results. The energy curve of

the 3 layer model is practically indistinguishable from the 2 layer curve showing

that the use of localized orbitals introduces no error into the model. This is

remarkable taking into account the small extension of the localized orbitals and

also their vicinity to the rotating bond.

CONCLUSION

The local basis equation, Eq. (1)1, is proposed for use in mixed QM/MM and

QM/QM calculations as it is appropriate to calculate the QM wave-function

interacting with frozen orbitals5–10,17. The equation results in orbitals that make

the energy stationary and it proved to be well suited for an iterative self-consistent

field solution. The resulting wave-function is equivalent with that obtained with

the Huzinaga equation, Eq. (4)2,11, when a basis set consistent with the latter

is used. It well reproduced deprotonation energy, conformational energy curves

and a proton transfer energy curve when the QM/MM boundary separated by 2-3

bonds from a protonation site or from the rotating bond. Under these conditions,

geometrical parameters obtained from gradient optimizations are in excellent

agreement with reference results.

The local basis equation is more flexible than the Huzinaga equation for use
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in mixed methods for two reasons. First, it is compatible with the assignment of

local basis sets owing to its ability to calculate nonorthogonal orbitals. Second,

orbitals in the frozen space that are not good approximations to the occupied

orbitals prevent the self-consistent solution for active orbitals with the Huzinaga

equation but they are compatible with the local basis equation.

Calculations were performed to study the possibility to omit bond charges

and an increased core charge at the QM/MM boundary found to be necessary in

calculations applying the Huzinaga equation. It was shown that the artificial en-

vironment near to the boundary is only partially compensated by the frozen bond

and an increased core charge with bond charges is necessary for a more complete

compensation. The use of bond charges is required when energies of systems with

different charges are to be compared like in deprotonation energy calculations.

The beneficial effect of bond charges was found to be less pronounced but still

significant in conformational energy calculations and in the description of a pro-

ton transfer energy curve. Thus, although the omission of bond charges allows

the use of a decreased number of system specific parameters, it results in lower

accuracy that possibly can be compensated by a larger size QM system.

The local basis equation can be used to derive a priori localized nonorthogonal

orbitals at a reduced computational effort. This feature combined with its ability

to optimize orbitals interacting with frozen orbitals can be used to define a two

layer QM system with a delocalized inner and a localized outer layer and they can

be complemented with an MM layer resulting in a QM/QM/MM system. Such

systems were realized in studies of deprotonation and conformational energies.

Results were found to agree very well with that of the two layer QM/MM model.

The molecular orbitals obtained with the local basis equation are in general

nonorthogonal even if a basis set compatible with orthogonal orbitals is used and

this is in contrast to the solutions of the Huzinaga equation. The nonorthogonal

orbitals can be orthogonalized a posteriori that may be advantageous e.g. when

they are used in post-Hartree-Fock methods.
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APPENDIX

Derivatives of the One-determinant Wave-function of Nonorthogonal

Orbitals

The energy of a closed shell system is written as

E =
1

2

∑
αβ

Pαβ(hβα + Fβα) (5)

where Pαβ, hβα and Fβα are elements of the density matrix, the core Hamiltonian

matrix and the Fock matrix, respectively, and the summations extend over the

basis set.

We permit the molecular orbitals to overlap, i.e., σij = 〈φi|φj〉 is not assumed

to equal zero when i 6= j. This leads to two notable differences with respect

to the derivatives of canonical orbitals. First, the density matrix of a closed

shell system of nonorthogonal orbitals takes the form of P = 2R where R =

Cσ−1C†. Second, in contrast to the canonical case where the orthonormality of

the molecular orbitals has to be taken into account no such constraint appears

in the nonorthogonal case.

The energy derivative with respect to a nuclear coordinate (qi) can be written

as33

dE(C(q),q)

dqi
=
∂E(C(q),q)

∂qi
(6)

i.e. the dependence on the coefficients does not enter. This holds for our case,

since coefficients are either optimized or are kept fixed. (See ref.17 for taking into

account the variation of the frozen orbital coefficients with changes in atomic

positions.)

Then
dE

dqi
= A+B (7)

with

A =
∑
αβ

Pαβ
∂hαβ
∂qi

+
1

2

∑
αβγδ

PαβPγδ

(
∂〈αβ|γδ〉

∂qi
− 1

2

∂〈αβ|δγ〉
∂qi

)
(8)
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and

B =
∑
αβ

∂Pαβ
∂qi

Fαβ (9)

A appears also in the formula for canonical orbitals. On the other hand,

B includes the derivatives of the density matrix and thus it is affected by the

nonorthogonalty. σ−1 in P = 2Cσ−1C† does depend on the nuclear coordinates.

Since
∂σ−1

∂qi
= −σ−1C+ ∂S

∂qi
Cσ−1 (10)

B can be written as

B = −2
∑
αβγδ

∂Sγδ
∂qi

RδβFαβRαγ (11)

It is worth noting that if R is built from the canonical orbitals then the right

hand side of Eq. (11) is equal to −
∑

αβ
∂Sαβ
∂qi

Wαβ, where Wαβ = 2
∑

iCαiEiCβi is

an element of the energy weighted density matrix. Then Eqs. 7-11 reduce to the

derivatives of the canonial orbitals.

Computer programs available for the calculation of the derivatives with canon-

ical orbitals can be adapted easily for nonorthogonal orbitals. The energy weighted

density matrix has to be replaced by the 2RFR matrix and the projector R has

to be evaluated with the nonorthogonal formula.
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FIGURE CAPTIONS

Figure 1: Schematic representation of the separation of the system into QM and MM sub-

systems. Atom A is the frontier atom. Bond charges are represented by circles on the bonds

of A within the MM region.

Figure 2: Separation of the C5H11COOH molecule into subsystems. Subsytems are connected

with an SLMO. See text for details.

Figure 3: Separation of the C5H11COOH molecule into subsystems. Subsytems are connected

with an LMO. See text for details.

Figure 4: Energy of the C5H11COOH molecule as a function of the rotation of the -COOH

group calculated with 2 different system separations with and without bond charges. See

text for the system separations designated by ’cut1’ and ’cut2’.

Figure 5: Energy of the Gly-His-Gly molecule as a function of the rotation of the histidine

group calculated with and without bond charges.

Figure 6: Energy of the Asp - His system as a function of the separation of the proton from

the oxygen of Asp calculated with and without bond charges.

Figure 7: Separation of the C5H11COOH molecule into subsystems. The central delocalized

QM subsystem includes the C-COOH moiety with 12 doubly occupied MOs. The localized

QM subsystem includes 17 localized MOs out of which 4 are core orbitals. The frozen MOs

are a C-C bond and a core orbital at the QM/MM boundary. The H-atoms of the terminal

CH3 group are represented by point charges.

21



Figure 8: Separation of the C5H11COOH molecule into subsystems. The central delocalized

QM subsystem includes the C-COOH moiety with 12 doubly occupied MOs. The localized

QM subsystem includes 13 localized MOs out of which 3 are core orbitals. The frozen MOs

are a C-C bond and a core orbital at the QM/MM boundary. The terminal CH3 group and

the H-atoms of the connecting CH2 group are represented by point charges.

Figure 9: Energy of the C5H11COOH molecule as a function of the rotation of the -COOH

group calculated with standard QM and with a 2 layer and a 3 layer model the latter is

shown in Figure 8. See text for details.
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Figure 2
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Figure 3
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Figure 4
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Figure 5
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Figure 6
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Figure 7
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Figure 8
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Figure 9
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