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Abstract

In this study we examine the feasibility and limitations of describing the motional behavior of

three-domain proteins in which the domains are linearly connected. In addition to attempting a

determination of both the internal and overall re-orientational correlation times, we investigate the

existence of correlations in the motions between the three domains. Since in linearly arranged

three-domain proteins there are typically no experimental data that can directly report on motional

correlation between the first and third domain, we address this question by dynamics simulations.

Two limiting cases occur: 1) for weak repulsive potentials and 2) when strong repulsive potentials

are applied between sequential domains. The motions of the first and third domains become

correlated in the case of strong inter-domain repulsive potentials when these potentials do not

allow the angle between the sequential domains to be smaller than about 60°. Although various

modeling approaches are available, we chose to use the model-free and extended model-free

formalisms of Lipari and Szabo due to their widespread application in the study of protein

dynamics. We find that the motional behavior can be separated into two components; the first

component represents the concerted overall motion of the three domains, and the second describes

the independent component of the motion of each individual domain. We find that this division of

the motional behavior of the protein is maintained only when their timescales are distinct and can

be made when the angles between sequential domains remain between 60° and 160°. In this work,

we identify and quantify inter-domain motional correlations.
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Introduction

Many proteins rely on interdomain mobility within linear chains of three or more domains to

recognize and bind to other proteins. We previously attempted to explore motions between

some of the 20 domains of complement factor H that are collectively critical to its

destructive engagement with its principal target, complement component C3b [1,2].

Characterizing motions in multi-domain proteins, although challenging, has the potential for

more profound understanding of their functions [3]. Ever more detailed dynamic

information on such proteins can be obtained in solution from a number of spectroscopic

methods, including nuclear magnetic resonance spectroscopy at a range of magnetic field

strengths [4], but it is not straightforward to parameterize this information. This is a growing

problem given the abundance of data resulting from ongoing efforts to improve the

resolution of the experimental methods and increase the size limit of the molecules that

these methods can reliably characterize [4]. Several different theoretical approaches to

address this problem have been developed. Examples include the slowly relaxing local

structure model [5,6], which describes the dynamics of solute molecules surrounded by a

coating of solvent molecules, and a multiple-state interconversion model that describes

conformational exchange (such as that from varying domain orientations) between any

number of discrete states [7–9]. Another notable example of analysis of interdomain

dynamics is provided by coarse-grained simulations of interdomain motion, such as those

carried out to analyze the Pin1 protein [10]. An alternative approach to parameterizing

molecular motion that has met with significant success was proposed by Lipari and Szabo

[11,12]. Their model-free (MF) formalism has been used to analyze dynamics of proteins,

and in particular to extract parameters from NMR relaxation data independent of any

particular model of the motion [10–14]. This latter formalism has been used to analyze the

interdomain flexibility in two-domain proteins [18–21]. Here we evaluate parameters that

characterize the motion of three-domain proteins.

The MF formalism is based on the assumption that one can separate the overall and internal

motion as:

(1)

C0(t) represents the overall motion correlation function and CI(t) the internal motion

correlation function. CI(t) can be rewritten as a sum of exponentials, well-approximated if

only two first exponential terms are considered:

(2)

Therefore, dynamics described by the MF approach are characterized by three parameters:

the generalized order parameter S; the correlation time for overall motion τM; and an

effective internal motion correlation time τi.

Clore et al. [18] described a case that tested the limits of the two-exponential approximation

of MF. In their study of staphylococcal nuclease and interleukin-1β, they found groups of
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residues whose relaxation data was poorly addressed by MF. In order to improve this fit,

they expanded MF by an additional exponential, effectively separating the internal motion

into a fast component, characterized by correlation time τf, and a slow component,

characterized by the correlation time τs, as shown in Eq. (3):

(3)

Residues that did not fit the MF two-exponential approximation were readily explained with

the use of the “extended model-free” (EMF) formalism [18] described by Eq. (3). It should

be noted that the framework of this formalism only describes rotational diffusion.

Additionally the legwork of EMF is based on isotropic diffusion [11,18], but it has also been

used in studies focusing on molecules that consist of highly anisotropic domains, such as

Calmodulin [20,21]. In one study [22] it was shown that diffusion properties of a two-

domain protein consisting of GB1 domains connected with a flexible linker is significantly

altered compared to single GB1 domains, even at linker sizes as long as 24 residues. This is

indicative of inter-dependence of motion of the domains, suggesting that EMF can be

applicable even in the cases in which the domains are connected by long linkers.

EMF has been successfully applied as a tool to study interdomain motion in two-domain

systems [20,21]. A similar framework is needed for proteins consisting of three domains and

more, since the data that reflects the dynamics of such proteins can currently be analyzed

only to a limited degree, especially when it comes to interdomain motion. A case in point is

the study of FLNa16-21, whose structure resembles a three-bladed propeller [23]. In this

study the ranges of the relative motion of the three propeller “blades” could not be obtained

directly from the NMR relaxation data. This information could only have been obtained by

using a proper framework to describe the dynamics.

In this study, we investigate the dynamics of three-domain proteins. First we use Brownian

methods [24,25] to simulate the rotational diffusion of these domains coupled by repulsive

potentials. Then, we analyze the correlation functions of the trajectories of the domains. Our

motivation is three-fold: First, to study the dynamics of three-domain (or larger) systems.

While such studies are rare, reports featuring multi-domain systems are beginning to appear

[1,2,23,26]. Second, to understand how restrictions in the relative motion of domains, by the

presence of repulsive potentials, can influence each other and are reflected in the correlation

functions [19]. Third, to learn whether such coupling of domain motions could be captured

within the current scope of MF and EMF, as was the case in the two-domain motion study of

Chen and Tjandra [19].

We fit the time-correlation functions of the domain trajectories to various multi-exponential

functions for three-domain proteins to test if coupled three-domain motions can be

interpreted using the EMF formalism. It is important to assess whether the overall motion of

any one of the mutually coupled domains can be characterized, and if so whether it can be

described by a single decaying exponential term. Here we determine the ranges of

interdomain motion in which the domains behave like individual proteins, and those in

which the domains move in an interdependent fashion.
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Methods

Simulation of rotational diffusion of domains

Here we represent a linear three-domain protein by unit vectors, a, b, and c, and we simulate

their rotational diffusion using an approach based on a Brownian algorithm [24,25], in

which the trajectory of each domain is affected by repulsive potentials based on the

proximity of neighbor domains. In our protein, domains a and c are symmetrically

connected to the opposing ends of domain b, and thus their rotational motion is (in the case

of domain a):

(4)

Domain b, however, is influenced by domains a and c in a pairwise-additive fashion [24]:

(5)

where θab and θbc are the angles between domains a and b, and b and c, respectively, D0 is

the diffusion constant of each of the domains, Δt is the time step, U is the potential between

the pair of domains, and R is a random normally distributed number with variance of 1.

We have generated trajectories based on Eqs. (4) and (5) that consisted of 5·108 steps, with

time step Δt of 1 ps, in which the pair of terminal domains (a and c) and domain b were

initiated at opposite polar points of a spherical coordinate system. The simulations were

carried out under two types of potential U. The first type was a hard cone potential, defined

in Fig. 1. Under this potential, the domains are free to diffuse within a cone of semi-angle β

with respect to an axis that is defined by the relative orientation of the domains (such that

within this cone dU/dcosθ = 0). If a diffusive step results in the pair of domains breaching

their cone, all three domains are reset to their previous positions. This potential is an

extension of the hard cone potential defined earlier [19]. While Chen et al. [19] studied a

two-domain system that was coupled under a hard-cone potential, in the linear three-domain

system each of the two pairs of sequential domains interacts under such a potential (domain

a with domain b, and domain b with domain c). We ran 18 independent simulations with the

hard-cone potential applied symmetrically between domains a and b, and b and c (such that

the semi-angles of both cones were equal), at β ( = βab = βbc) in the range between 5° and

90°, at 5° intervals. Another type of potential that we used was a cosine potential defined as:

(6)

We ran 30 simulations under symmetric cosine potentials at varied scaling factors k = {1 to

10} and i = {1 to 3}. In these simulations both inter-domain angles were constrained with β

= 45°.

Additionally, we ran six simulations in which the cone potentials of various strengths were

applied between respective domains. These simulations were run using hard cone potentials
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with the following angles: (βab = 90°, βbc = 30°), (βab = 70°, βbc = 30°), (βab = 60°, βbc =

30°), (βab = 50°, βbc = 30°), (βab = 40°, βbc = 30°), (βab = 5°, βbc = 30°).

Calculation and fitting of the correlation functions

The auto-correlation function is defined here for domain a as [27]:

(7)

where the angular brackets denote the average taken over all times τ, aτ is the orientation of

domain a at time τ, and aτ+t is its orientation at time τ+t. We have calculated correlation

functions of the trajectories of each of the domains in all simulations numerically, according

to Eq. (7), in the τ range between 0 and 1·105 ps and the t intervals of 100 ps. The calculated

correlation functions were fit to single-, double-, and triple-exponential curves using the

constrained Levenberg-Marquardt routine available from the Grace software [28] via the

models presented below.

(8a)

(8b)

(8c)

The model preference in the cases in which the additional exponential in the more

complicated model made a significant contribution (> 5%) was established by means of an

F-test [29] at the rejection probability threshold PF of 0.01 (integration of rejection

probability was carried out in Mathematica 6.0.1.0). Fittings and model selections were

applied to the correlation functions of the trajectories of normalized vectors a, b, c, and a−b

+c from each simulation.

Simultaneous fitting

In cases where a double exponential model was preferred for the correlation functions of the

trajectories of domains a, b, and c and a single exponential model was preferred for the

correlation functions of the trajectory of vector a−b+c, simultaneous fitting of the

correlation functions of the individual domains (a, b, or c) and that of vector a−b+c were

performed. In such simultaneous fittings the correlation functions of the individual domains

were fit to Eq. (8b), and the correlation functions of the a−b+c vector were fit to Eq. (8a).

The parameter d0 was shared in these simultaneous fittings.
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Results

The overall motion of the domains in a three-domain protein

The core ideas of MF formalism impose an overall reference frame [11,30]. In the case of

EMF, a molecular reference frame is necessary to describe the overall motion of the protein

relative to which the domains carry out their slow internal motions. The a−b+c vector was

considered as a representation of the frame of interactions of domains in the three-domain

simulations, owing to the fact that this vector, connecting the terminal tips of domains a and

c, resembles the overall linear shape of the studied three-domain system. The utility of this

vector was tested for the simulations run under symmetric potentials. The correlation times

of the a−b+c vectors were expected to reflect the timescale of the overall motion, which for

three linearly connected domains is expected to depend on the effective size of the protein

that they constitute, or in the present vector analogy, the effective (average) length of the

sum of vectors throughout the simulation [19]. This effective length of each of the terminal

domains will be given by a projection of their domain vector at the average angle on the axis

of linearity. In establishing such an average angle we took into account the fact that both

domain b and each of the terminal domains can flex between angle 0 and β relative to the

reference axis, which constitutes an effective flexion range between 0 and 2β:

(9)

If all three domains are considered in this symmetric case, the expected effective overall

correlation time is given by:

(10)

For example in case of β = 10° the effective overall length is 1 + 2cosβ≅2.970, and the

corresponding expected overall correlation time given by Equation (10) is

 ns. The correlation times obtained from the fits of vectors a−b+c in the

simulations symmetrically restrained with cone potentials were compared to the correlation

times expected from Eq. (10). In Fig. 2 it can be observed that an a−b+c vector indeed

provides a good representation of the overall motion of the three domains in the whole range

of the cone potentials β that were used.

Model fitting in simulations run under symmetric potentials

The model preferences from the fittings to correlation functions of symmetrically restrained

domain trajectories have been summarized in Table S1 in Supporting Information. These

results indicate that single exponential fits were preferred (and therefore motions of the

constituent domains were independent) for simulations ran with symmetric cone potentials β

in the range between 65° and 90° (inclusive), and additionally at 5° (at which the domain

motions were very strongly inter-dependent). Double exponential fits were preferred
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(indicating that the motions of the constituent domains were inter-dependent) for simulations

ran with symmetric cone potentials β in the range between 10° and 60° (inclusive).

Preference for double exponential fits was also observed in all simulations run under

symmetric cosine potentials, a result similar to that observed by Chen and Tjandra [19] for

two-domain proteins. Triple exponential fits were not preferred in any of the simulations run

with symmetric potentials, indicating that the domain interactions could be characterized

using a single exponential (preference of the trajectory of domain b always mirrored that of

the terminal domains). For all trajectories in which the double exponential model was

preferred, the a−b+c vectors displayed a single exponential preference.

Parameters extracted from the symmetric trajectories

MF and EMF formalisms were considered for the interpretation of the simulations. In the

MF and EMF formalisms, the fit exponentials constituting the correlation function are

interpreted as either internal or overall motions. The fast internal motions that are

characterized in the EMF correlation function expression by correlation time τf were not

simulated in this study; due to this, Eq. (8b) is equivalent to the EMF description and Eq.

(8a) corresponds to MF. MF in this study has indeed been reduced to one exponential (and

one type of motion). In the cases in which the interaction between the domains is weak

(simulations at symmetric cone potentials β between 90° and 65°), this exponential describes

the individual independent motion of the domains. At the opposite extreme (simulation at

symmetrically applied cone potentials β of 5°), it describes a situation in which the domains

move together in an arrangement so rigid that their individual motions make a negligible

contribution and their dynamics can be entirely described by the overall concerted motion of

the three domains.

In the cases in which the double exponential model is preferred, this overall motion (reliably

represented by the a−b+c vector) can be factored out of the correlation function as one of the

two exponentials. If such treatment is correct, the remaining exponential should correspond

to the internal motion of the domain – if one transforms the entire trajectory into the frame

of the overall motion and carries out a single exponential fit to the correlation function of the

resulting trajectory, this single exponential will display a decay constant similar to that of

the internal motion exponential mentioned above. In the simulations in which the double

exponential model was preferred (those at symmetrically applied cone potentials in the

range of β between 60° and 10°, as well as those run under cosine potentials) co-fits to the

correlation functions of the domain trajectories were carried out with the correlation

functions of the a−b+c vector. Motions in this range corresponded to the EMF treatment.

The results of fittings in the range in which MF and EMF were applicable to the

symmetrically restrained simulations are given in Supporting Information Tables S2 and S3,

respectively.

Timescale separation of the internal and overall motion

The relationship between S2 and the timescale separation of overall and slow internal

motions was plotted in Fig. 3. It can be seen that the timescale separation diminishes with

S2, and that the fitting of the motion parameters becomes ill-defined when the ratio of the
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correlation times approaches 1. A similar loss of definition is observed at S2 values > 0.9.

The results presented in Fig. 3 indicate that in highly rigid systems (characterized by high S2

values) the overall motion of domains is much slower than their individual motions. In the

high limit of S2, the contribution of slow internal motions becomes negligibly small (and ill-

defined), and overall motion becomes the vastly dominant descriptor of motion. Conversely,

in the highly flexible systems (characterized by low S2 values) motion of the domains is so

highly independent that the timescale of the slow internal motion becomes very similar to

that of the overall motion – the two types of motion progressively cannot be distinguished,

and begin to both describe the underlying independent motions of domains, rather than

provide true separation into overall and slow internal diffusion.

Motions within the overall frame

Trajectories of constituent domains from symmetrically restrained simulations for which the

EMF model preference was established were transformed into their overall motion frame. In

every simulation domains a, b, and c were transformed into the overall motion frame

defined by vector a−b+c. Correlation functions were calculated for the trajectories

transformed into their overall motion frame. It was expected that these transformed

trajectories would be devoid of the overall motion component, and as such would conform

to Eq. (2) with their asymptotes reproducing the S2 of the core trajectories and the

correlation times corresponding to τs.

Fig. 4A displays a comparison of correlation times τs obtained from double-exponential fits

to the correlation functions of the original trajectories with those obtained from single-

exponential fits (in a form similar to that in Eq. (2)) to the transformed correlation functions.

The agreement between the fits from the two cases is high, and gets progressively better as

the symmetric cone potentials β increase in strength (i.e. decrease in the value of the cone

angle).

The asymptotes of the transformed correlation functions were compared to the S2 of the core

trajectories. This comparison is shown in Fig. 4B, in which it can be seen that (like the fits

presented in Fig. 4A) the agreement between the values observed in the correlation functions

of the transformed trajectories and those from the correlation functions of the core

trajectories increases with the strength of the potential β.

The agreement of the τs and S2 values between the transformed and core trajectories can be

seen to diminish at the higher values of β, which is symptomatic of the decreased timescale

separations concomitant with such increased flexibility (see Fig. 3).

Limits of motion separation

The correlation functions of domain trajectories from simulations run under cone potentials

applied asymmetrically to the interdomain hinges were analyzed. In a simulation that tested

the limiting case in which potentials βab and βbc were 90° and 30°, respectively, domain a

was not coupled with domain b, and domains b and c were coupled and adhered to the EMF

model, closely matching the numerical result reported for a two-domain system [19] (C(t)

= 0.62−t1.88τ0 + 0.38e−t/0.57τ0 for each of the two domains). In the simulation in which βab
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was 70° and βbc was 30°, the double exponential fits performed in the correlation function of

domain a produced results in which the contribution of one of the exponentials was

negligible (< 5%), suggesting that the single exponential model was sufficient to describe its

motion. In the case of domains b and c, double exponential preference was observed – this

suggested that in this system domain a moved independently, while b and c moved in an

inter-dependent fashion. When the c-b vector was used to represent the frame of the inter-

dependent motion of domains c and b, co-fits performed using this overall motion

representation resulted in C(t) = 0.69e−t/1.94τ0 + 0.31e−t/0.75τ0 for domain b, and C(t) =

0.64e−t/1.94τ0 + 0.36e−t/0.87τ0 for domain c.

In all other asymmetric simulations, the trajectories of all domains displayed a double

exponential model preference, including the simulation in which βab was 5° and βbc was 30°.

Due to this, the inter-dependent motion in these simulations was modeled, as in the case of

symmetric potentials, by the a−b+c vector. No triple exponential preference was noted,

furthering the applicability of the a−b+c overall motion representation to cases in which the

applied potentials are not equal. The results of the analysis of these simulations are given in

Supporting Information Table S4.

An additional “asymmetric” simulation was performed, in which the cone potentials were

symmetric and equal to 60° on both interdomain hinges, but for domain a and b the D0
a,b =

16 · 106 s−1, while for domain c the D0
c = 8 · 106 s−1 (trajectory length of 5 · 108 ps and Δt

of 1 ps). Yet again, all domains in this simulation displayed preference for the double

exponential model (the obtained parameters are summarized in Supporting Information

Table S5). It can be observed from this table that the domain that tumbles more slowly

dominates the overall motion – its dynamics consist almost entirely of the overall motion of

the protein (for domain c S2 ≅ 1, and τM ≅ 1/(6 D0
c)).

Discussion

This work simulated the dynamics of a three-domain system, in which the domains were

connected in a beads-on-a-string fashion. Various repulsive potentials were applied between

the terminal domains and the central domain, either symmetrically or asymmetrically. These

simulations made it possible to distinguish the ranges of orientation in which the motion of

the domains was independent versus those in which it was inter-dependent.

The simulations showed that the limiting hard cone potential at and below which all three

domains are inter-dependent is 60°. If either of the terminal domains is free to explore a

larger conformational space with respect to the central domain, then it becomes

disconnected from the overall motion of the protein. The remaining two domains behave in

an inter-dependent fashion, as long as they meet the criteria for coupled two-domain protein

motion established by Chen and Tjandra [19].

The inter-dependence of the domains in the three-domain system is captured by extended

model-free formalism (EMF) [18]. EMF can be used to divide the motion of the domains

into overall motion, representing the concerted, inter-dependent component of the motion of

the domains, and slow internal motion, representing the independent dynamics of the
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domains with respect to the overall motion frame (molecular frame). In the simulations,

overall and slow internal motions proved hard to separate. Nevertheless, it was possible to

decompose these two types of motion by invoking a particular overall motion frame.

A normalized vector drawn between the termini of the protein (given as a−b+c) provided a

good frame of overall motion in the considered three-domain protein. Based on this frame,

the mixing of overall motion and slow internal motion was deconvoluted across most of the

range of potentials in which the trajectories adhered to EMF. This mixing could not be

remedied in the cases in which the motion was weakly coupled or in the cases in which the

coupling was very strong. For weakly coupled motions, the correct amplitude of the overall

motion could not be found, due to very low separation of the timescales of the two types of

motion. For strongly coupled motions, the slow internal motion could not be separated out

from the dominating overall motion.

To demonstrate the applicability of these simulations we studied interdomain motions in the

three N-terminal domains of factor H (FH1-3) [1]. Here it was found that the range of

motion was mostly encompassed by a cone of a 40° full-angle. This corresponds to a half-

angle of 20°, which corresponds to 2β. At β = 10° it is expected that the effective ranges of

motion of all three domains will be very similar (i.e. the effective range of motion of the

central domain will not be visibly lower, see Table S3A in Supporting Information). This is

in excellent agreement with the equal ranges of distributions of residual dipolar couplings in

the three domains of FH1-3 in this study [1].

The findings presented in this article will be applicable to the interpretation of future

experimental measurements of the interdomain dynamics of multidomain proteins.

Interdomain dynamics are important in many proteins, including fibrillin-1 [31], fibronectin

[32], integrins [33], titin [34], myosin binding protein [35], and smooth muscle myosin [36].

In addition, many proteins in the complement system [37] (a principal component of innate

immunity) contain three-domain stretches where the domains are arranged in a beads-on-a-

string fashion with putative interdomain flexibility expected to be important for their activity

[38].

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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MF model free

EMF extended model free

NMR nuclear magnetic resonance
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Author Summary

As experimental methods improve the level of detail to which the structural and dynamic

features of proteins can be elucidated, the ability to interpret these experimental studies

and extract all of the information they offer often reaches its limits. These analytical

limitations are common in studies of the interdomain dynamics of proteins. In particular,

it is very challenging to determine the correlation of the motions of the domains in multi-

domain proteins from various types of experimental data. In this study, we use Brownian

dynamics simulations to study the feasibility and limitations of describing the motional

behavior of three-domain proteins in which the domains are linearly connected. We find

that their motion is independent when the domains interact via weak potentials, and inter-

dependent in the cases when these potentials are strong. We also demonstrate that

dynamics in three-domains systems can be completely described by model-free

formalism, the leading framework for describing protein dynamics.
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Figure 1.
Hard cone potential in a three-domain system. If at any step of the simulation the

interdomain angle θab between domains a and b falls below 180°-2βab then all three

domains will be reset to their previous positions; the situation is analogous for domains b

and c, their interdomain angle θbc, and the constraining cone semi-angle βbc.
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Figure 2.
Correlation times of the overall motion representation. Values from vectors a−b+c from the

simulations restrained with symmetrically applied cone potentials are shown. The numbers

above the points in the plot show the magnitude of the applied symmetric potential β

corresponding to each given point. The three overlapped points near the high end of the plot

correspond to β values of 15°, 10°, and 5°.
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Figure 3.
Values from trajectories of terminal domains are presented in black (those in the ill-defined

range in green); values from the central domains in blue (those in the ill-defined range in

red).
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Figure 4.
A) Correlation time in trajectories transformed into the overall motion reference frame vs τs

in core trajectories. The black circles correspond to fits to correlation functions of

trajectories of domain a (equivalently c), and blue diamonds are from fits to correlation

functions of trajectories of domain b. The numbers above each point reflect semi-angle β in

the cone potential that was symmetrically applied to both interdomain hinges during the

corresponding simulation. B) S2 in trajectories transformed into the overall motion reference

frame vs. S2 in core trajectories. The black circles correspond to fits to correlation functions

of trajectories of domain a (equivalently c), and blue diamonds correspond to fits to

correlation functions of trajectories of domain b. The numbers above each point reflect

semi-angle β in the cone potential applied to both interdomain hinges during the

corresponding simulation.
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