
A comparison between parallelization approaches in molecular dynamics
simulations on GPUs

Lorenzo Rovigatti,1, 2, a) Petr Šulc,3 István Z. Reguly,4 and Flavio Romano5

1)Dipartimento di Fisica, Sapienza—Università di Roma, Piazzale A. Moro 5, 00185 Roma,
Italy
2)Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna,
Austria
3)Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford, OX1 3NP,
United Kingdom
4)Oxford e-Research Centre, University of Oxford, Oxford, 7 Keble Road, Oxford, OX1 3QG,
United Kingdom
5)Physical & Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road,
Oxford, OX1 3QZ, United Kingdom

(Dated: 6 November 2018)

We test the relative performances of two different approaches to the computation of forces for molecular
dynamics simulations on Graphics Processing Units. A “vertex-based” approach, where a computing thread
is started per particle, is compared to an “edge-based” approach, where a thread is started per each potentially
non-zero interaction. We find that the former is more efficient for systems with many simple interactions per
particle, while the latter is more efficient if the system has more complicated interactions or fewer of them.
By comparing computation times on more and less recent GPU technology, we predict that, if the current
trend of increasing the number of processing cores – as opposed to their computing power – remains, the
“edge-based” approach will gradually become the most efficient choice in an increasing number of cases.

I. INTRODUCTION

For a long time the steady increase in frequency of
CPUs guaranteed an almost equally steady increase in
the performance of compute-intensive applications with
very little effort on the programming side. However, by
2005, it became clear that, essentially due to power dis-
sipation constraints, this trend would not last for much
longer. In order to keep increasing the computational
capacity, multi-core CPUs have appeared, the size of
on-chip caches has grown and the complexity of con-
trol circuitry has increased. At the same time, new
architectures have emerged; Graphical Processing Units
(GPUs), originally special-purpose hardware for graph-
ics, were equipped to carry out general purpose compu-
tations. While most CPU architectures are still aimed at
low-latency handling of a few processes, GPUs support
a massive amount of parallelism, giving up low latency
in exchange for high throughput. By integrating up to
thousands of simple computing units, grouping them un-
der just a few dozen control units and connecting them
to high-speed memory, they are capable of supporting
up to tens or hundreds of thousands of threads execut-
ing concurrently. This enables GPUs to deliver an order
of magnitude higher performance than CPUs on work-
loads with a high amount of data parallelism, i.e. where
the same operations are carried out over different data.
Efficient use of this hardware requires employing par-
allel programming models that are very explicit about
data parallelism and often expose low-level features of the

a)Author for correspondence, lorenzo.rovigatti@uniroma1.it

GPU. The situation is further complicated by significant
architectural changes when a new generation of GPUs is
released: improved hardware and new features may af-
fect the relative performance of different algorithms, of-
ten permitting some of them to run more efficiently and
slowing down others.

Computer simulations are a very valuable tool in many
areas of science.1–6 The relatively cheap computer power
offered by GPUs is very attractive to simulators, since
it allows extended time scales and large system sizes
to be investigated.7–10 But while some simulation al-
gorithms are relatively easy to parallelize, some others
are very difficult to code efficiently on a parallel ma-
chine. Molecular dynamics (MD), in its many variants,
is a prominent technique in computational physics and
chemistry, and it is in principle an algorithm that is suit-
able for parallelization.4,5,9,11 Most free and commercial
simulation packages have the option to run in parallel,
and a growing number of them offers the option to run
on GPUs.12–16 The different simulation packages exploit
GPUs in different ways, each using a distinct approach
to overcome the two main obstacles to make full use of a
GPU: potentially concurrent writes to the same memory
location and having a large number of balanced tasks for
the GPU to carry out.

An important difference between CPUs and GPUs is
that the latter have a much smaller cache, and therefore
the optimisation of memory access patterns has received
a lot of attention; since many scientific computations are
bound by the amount of data they have to move, it is
crucial to achieve as high a bandwidth as possible.

GROMACS 4.6, for example, uses the GPUs for the
calculation of non-bonded interactions17 and a paral-
lel reduction algorithm to add the calculated forces be-

ar
X

iv
:1

40
1.

43
50

v2
 [

ph
ys

ic
s.

co
m

p-
ph

]
 3

0
Se

p
20

14

mailto:lorenzo.rovigatti@uniroma1.it

2

tween pairs of particles, rearranging particles in memory
to speed-up memory access. NAMD15 also implements
a GPU-based calculation of non-bonded forces,18 where
forces for each pair of interacting particles are calculated
twice. HOOMD-blue12 and LAMMPS13 also compute
forces for each interacting pair twice to avoid atomic op-
erations or memory synchronization bottlenecks.

Different parallelization approaches of the MD algo-
rithm have been considered for various platforms. Three
main parallel decomposition schemes typically considered
are:11

• Atom-decomposition. The particles in the simula-
tion are split between the computing units, which
calculate the interaction forces between them.

• Force-decomposition. The interactions between
particles are split in a way that each computing
unit is responsible for a particular subset of forces
between particles to be evaluated.

• Space-decomposition. The domain of the simulated
system is partitioned into smaller subsets, with
each computing unit responsible for calculation of
forces and updates of positions of particles in its
assigned subdomain.

Each of the proposed schemes requires communication
between the computing units. The choice of the opti-
mal parallelization scheme hence depends on the system
studied as well as on the properties of the hardware ar-
chitecture. The communication cost and the load bal-
ance between computing units then determine the opti-
mal parallelization scheme.

In this work, we implement and study the
atom-decomposition approach (which we call the
“vertex-based” approach) and a variant of the force-
decomposition approach (which we call the “edge-based”
approach) on GPUs, where one computing unit corre-
sponds to a single thread of the graphics card that will
be carrying out the computations. In the “vertex-based”
approach, a computing thread is started per each parti-
cle and the force Fij between each pair of particles i and
j is calculated separately for i and j. This might seem
like a waste of computational resources, since it is known
by Newton’s third law that Fij = −Fji, but it has the
advantage of being more parallelizable. In the Supple-
mentary Information we show that often the work saved
by using Newton’s third law is outbalanced by the fact
that the force calculation is less parallel, and in all cases
the performances of the two approaches are similar. In
the “edge-based” approach, a thread is started per each
potentially non-zero interaction, and we use atomic oper-
ations and Newton’s third law, Fij = −Fji, to calculate
the resulting force acting on each particle.

We study the two parallelization approaches by imple-
menting a GPU-based MD algorithm for three different
model molecules (Lennard-Jones particles, patchy parti-
cles and coarse-grained DNA, see Section III) that differ
substantially in the complexity and physical features of

the interaction potential and we report the relative per-
formance of the algorithms for different hardware.

To our best knowledge, the edge-based approach has
not yet been systematically compared to the vertex-
based approach on GPU. Most GPU implementations use
the atom-decomposition (i.e., vertex-based in our termi-
nology) scheme.10,12,13,18,19 Zhmurov and collaborators
considered both atom and force decomposition schemes
for an MD study of a coarse-grained polymer model on
GPU20, but a comparison of the performance of the two
approaches was not reported.

Interestingly, we find that the edge-based approach
holds better performance on newer hardware for short-
ranged, anisotropically interacting systems. This broad
class of coarse-grained models has recently gained sig-
nificant attention from the soft matter and biophysics
community as a tool for the investigation of biological
macromolecules21,22 and self-assembling processes23,24

and for the synthesis of new materials25,26. The perfor-
mance boost provided by the edge-approach, which can
be readily implemented in any modern MD package, will
help in exploiting the power of the GPUs in this field
with even more efficiency.

II. METHODS

For our performance tests, we perform Brownian dy-
namics simulations in the NV T ensemble, with the ther-
mostat described in Ref. 27. Thermostating the sys-
tem with this method does not significantly affect per-
formances, and thus we do not expect this thermostat to
bias our comparison in any way. We implement a combi-
nation of fairly standard optimizations in order to speed-
up performance. We use Verlet lists4 to provide each
particle i with a list Li of all the particles inside a sphere
centred on i of radius rv = rc+rs, where rc is the interac-
tion cut-off and rs is the Verlet skin. Verlet lists are then
updated by using a standard cell algorithm. On GPUs,
both cell filling and Verlet lists updating are performed
on a one-particle-per-thread basis. We perform simula-
tions at different numbers of particles N (nucleotides in
the case of the DNA model).

In the case of the Lennard-Jones and patchy models
(see Section III for details), we maximise cache hits by
periodically sorting particle data, stored in the global
memory, according to a 8-vertex Hilbert curve.12 The
resulting speed-up depends on N , ranging from 20% to
100% for N > 104 as discussed in Ref. 28. We do not
apply this procedure to DNA simulations, since doing so
does not result in any significant measurable gain.

One of the potential drawbacks of using GPUs is in the
accuracy of floating point operations. Even though dou-
ble precision support is quickly improving, the GPUs’
peak double precision performance is only a half or a
third of its peak single precision performance, and it
is thus crucial to use single-precision performance as
much as possible. Unfortunately, it has been shown

3

that lengthy single precision simulations lack reliability
even for simple potentials.29 In order to maximise per-
formances and minimise numerical instabilities, we use
double precision calculations to carry out the integra-
tion of positions and momenta and single precision cal-
culations to compute forces, as commonly done in many
MD packages. This mixed precision algorithm results in
a performance decrease ranging between 10% and 40%
compared to single precision (depending on the model
and simulation parameters), but dramatically improves
the numerical stability.28

We now describe in more detail the two parallelization
approaches used in this work. A cartoon providing a
visual explanation of the two algorithms is shown in 1.
The first one, which we call “vertex-based”, is to start
a thread for each of the particles in the system. This
thread will go through a list of potentially interacting
neighbours, compute the force coming from each of the
neighbours, and then add them together to yield the total
force acting on the particle. The threads done in this
way are completely independent, since they do not need
to write concurrently to the same memory.

The second parallelization approach we consider is a
more aggressively parallel “edge-based” approach, where
a thread is started for each potentially non-zero interac-
tion (or equivalently for each potentially interacting pair
of particles). Therefore, the total number of threads is
equal to the sum of the number of neighbours of each par-
ticle divided by two. Each thread will compute the force
due to a specific pair interaction and add it to the total
force acting on both particles i and j. However, multi-
ple threads trying to concurrently apply a force to the
same particle pose a data race which has to be resolved:
the most general approach is for the force computation to
store the three components of force vectors on a per-edge
basis, and once all the threads have finished, carry out a
parallel segmented reduction to add up the contributions
from each interaction for each particle. The second ap-
proach is to use atomic operations to directly accumulate
the total force acting on a particle. However, compared
to regular memory transactions, atomic operations are
very expensive. Therefore the update should not be per-
formed naively, but only if the force is actually non-zero.
This is a common occurrence when treating anisotropic
interactions, since it is possible to have particles sepa-
rated by a distance r < rc but mutually oriented in such
a way that the force acting between them is zero, but
is also relatively common when treating isotropic inter-
actions since the Verlet lists always contain a significant
fraction of non-interacting particles. Threads computing
an interaction between two particles that turns out to be
zero thus do not carry out any atomic operations. We
stress that in this approach it is natural to exploit New-
ton’s third law, since many different threads compute the
forces acting on a single particle and thus threads cannot
be independent by design.

The vertex-based approach has the advantage of be-
ing “embarrassingly parallel”; threads do not have to

communicate or synchronize in any way. On the other
hand, the amount of threads that get started at the same
time is equal to the number of particles in the system,
which poses a lower bound on the computer time required
per step: if there are fewer particles than the number of
threads required to saturate the GPU (we point out that
the current trend is to increase the number of concurrent
threads), there will be no computational benefit in study-
ing smaller systems using the vertex-based approach. We
also point out that the edge-based approach is only ef-
fective if treating systems with short-range forces (i.e.,
forces that vanish faster than r−3 in 3D), since otherwise
O(N2) threads would need to be started. While this ap-
proach is in principle feasible for small values of N , the
many concurrent updates to the force vector acting on
each particle would make it not competitive.

It is important to identify the bottlenecks in each of
the approaches, since the convenience in using one par-
allelization approach or the other will depend on how
each particular case is affected by these bottlenecks. The
vertex-based approach is limited by insufficient paral-
lelism at low N , and by the computational time required
by the slowest thread in each of the warps, and thus by
the computation of the forces of the particle that has the
most and/or most complicated interactions. The edge-
based approach, on the other hand, is limited by the most
expensive pair interaction, a much lower bound, and by
the throughput of atomic operations.

It may be worth addressing in more detail whether it
would be worth to exploit Newton’s third law (Fij =
−Fji) in the vertex-based approach. As discussed ear-
lier, this would half the total number of computations.
However, additional operations are then necessary to up-
date the total force acting on the chosen particle. For
this reason, many MD packages on GPUs prefer to re-
peat the calculation to avoid concurrent writes, which
are known to be a potential source of slowdown.10,12,18–20

To provide a quantitative analysis of this point, we also
implemented a version of the vertex-based approach that
uses Newton’s third law. Atomic addition is used to up-
date the total force acting on a particle. In order to
avoid most of the slowdown related to the atomic ad-
dition of the forces, each particle has m force vectors
on which the atomic adds are performed separately, and
then the vectors are combined to obtain the total force
acting on each particle. The performances turned out
to be rather insensitive on the value of m, as long as
m > 10. We found that for some of the studied sys-
tems the vertex based-approach with Newton’s third law
was marginally (at most 1.2 times) faster, and for the re-
maining cases considered its performance was the same
or worse than for the vertex-based approach which did
not exploit Newton’s third law. Importantly, in all cases
where the vertex-based approach with Newton’s third law
is the fastest, it is always slower than the edge-based ap-
proach. We hence consider the vertex-based approach
without the Newton’s third law here and provide bench-
marks comparing the vertex-based approaches with and

4

FIG. 1. A cartoon showing how the (left) vertex and (right) edge algorithms work in a patchy system. Patches are depicted
as yellow spheres. The Verlet list of the central particle i contains all the particles which are within a sphere of radius rv (in
green), j, k, l and m. i and the only two particles exerting a non-zero interaction on it are colour-coded in red, while all the
other particles are coloured in light blue. Particles whose centres are outside the Verlet sphere are semitransparent. In the
vertex approach (left panel), the i-th thread computes the interaction between i and each of the particles in its Verlet list.
Thus, if we consider only particles within the green sphere, 5 threads are started. By contrast, in the edge approach (right
panel) a thread is started for each potential interaction between two particles, i.e. one for each of the lines connecting particle
pairs in the figure. If, once again, we consider only particles within the green sphere, the total number of started threads is 10,
doubling the number of threads of the vertex case and thus enhancing parallelism. The only threads that require to perform
expensive atomic operations to update the forces acting on the particles are those for which these forces are different from zero
(full lines). In anisotropic models such as the patchy one presented here, a large part of the potential interactions is effectively
zero (dashed lines) and hence does not result in any concurrent memory write.

without Newton’s third law in the Figure S2 in the Sup-
plementary Information.30

All our simulations have been carried out on CUDA-
enabled NVIDIA GPUs with oxDNA, a simulation soft-
ware originally developed to simulate a coarse-grained
DNA model,31,32 now extended to support additional in-
teraction potentials. The code is open source and can be
freely downloaded from the oxDNA website.33

It is important to ensure that our algorithm compar-
isons are carried out with a simulation code of good over-
all efficiency, otherwise the results would be of little use.
We thus compared the oxDNA implementation of vertex-
based parallelization for Lennard-Jones (LJ) systems, a
very common test potential, consisting of up to 262 144
particles with two popular simulation packages that also
allow for MD simulations on GPUs: LAMMPS13 (1Feb14
version) and HOOMD-blue (0.11-3 version).12 Figure 2
shows some benchmarks, obtained on Tesla C2070 and
Kepler K10 GPU cards. The speed of our code is within
10% of the performance of the HOOMD-blue package
for systems composed of 10000 particles or more, being
slightly faster for larger systems. In comparison with
LAMMPS, our code is at least 20% faster for all the sys-
tems considered. More details can be found in the Sup-

0.0 5.0×10
4

1.0×10
5

1.5×10
5

2.0×10
5

2.5×10
5

N

0.4

0.6

0.8

1

1.2

O
th

er
s

v
s

o
x
D

N
A

 s
p
ee

d
-u

p

oxDNA / HOOMD (C2070)

oxDNA / HOOMD (K10)

oxDNA / LAMMPS (C2070)

oxDNA / LAMMPS (K10)

FIG. 2. Relative performance of oxDNA vs LAMMPS (in
red) and HOOMD-blue (in black) for different system sizes
on Tesla C2070 (full lines, empty symbols) and Kepler K10
(dashed lines, full symbols) GPUs. A y-value larger (smaller)
than one means that oxDNA is slower (faster) than the other
package.

plementary Information (Fig. S1)30, which also contains
a performance comparison between oxDNA and GRO-
MACS 5.0.1 on a LJ system showing that oxDNA is

5

much faster than GROMACS in this case. We thus con-
firm that our implementation of the MD algorithm has
performances comparable with two widely used parallel
MD simulation packages oriented towards the soft matter
community.

We note that GPU vs CPU relative performance de-
pends dramatically on the hardware and even more
on the simulation parameters and system under study.
Common speed-ups for LJ and patchy systems of a sin-
gle GPU vs a single CPU-core for large systems varies
between factors of 20 and 100, depending mainly on the
density.12,29,41 As for the DNA model, the performance
gain is usually between 20 and 50.28

III. MODELS

In order to compare the performance of the two paral-
lelization approaches on diverse situations, we have im-
plemented three different models with substantially dif-
ferent features and different scopes. The first model is
the widely employed Lennard-Jones interaction poten-
tial, used to model atomic and molecular systems such as
noble gases and glass-forming materials.4,34 This iconic
model potential, often used to test algorithms, is a pair-
wise, spherically symmetric potential that can be written
in terms of the relative distance r between two particles
as

V (r) = 4ε

[(σ
r

)12
−
(σ
r

)6]
(1)

where ε controls the depth of the attraction and σ is the
particle diameter. As commonly done, we cut and shift
the potential at a distance rc = 2.5σ.4

The second interaction potential we implement, the
patchy model, depends on the relative orientations of
each pair of particles as well as their relative distance.
Anisotropically interacting systems such as this one are
becoming increasingly popular in the soft matter field,
due to the richness of phenomena they exhibit35 and
to the possibility of synthesising particles with tunable
shape and surface patterns.36 Patchy particles are spher-
ical colloids, i.e. nano– or micro–sized particles, with
interacting spots decorating their surface. Lately, patchy
particles have been the subject of several theoretical, nu-
merical and experimental studies, and have been shown
to exhibit novel and unexpected behaviour such as the
formation of stress-yielding, density-vanishing equilib-
rium gels,27,37 crystallisation into open lattices25,38 or
re-entrant gas-liquid phase separations.39,40 More specif-
ically, we use an interaction potential that comprises a
spherical hard-core-like repulsion and a short-ranged in-
teraction that depends on the relative orientations of each
pair of particles:

V (1, 2) = VCM (1, 2) + VP (1, 2) (2)

where VCM is the interaction between the centres of mass
and VP is the interaction between the patches, modelled
as follows:

VCM (12) =

(
σ

r12

)200

(3)

VP (12) = −
M∑
i=1

M∑
j=1

ε exp

[
1

2

(
rij12

0.12σ

)n]
(4)

where r12 is the distance between the centres of mass, rij12
is the distance between patch i on particle 1 and patch j
on particle 2 and M is the number of patches per particle,
which we fix to the value M = 2. This potential has been
used in the past to study the dynamics of patchy particles
by means of MD simulations.27,41

The third and last model we use is oxDNA, a coarse-
grained model specifically designed to reproduce the me-
chanical, structural and thermodynamic properties of
DNA targeted to simulating processes occurring in DNA
nanotechnology.31,32,42 Indeed, oxDNA has been used
to investigate DNA nanotweezers,43 DNA walkers,44, a
burnt-bridges DNA motor45 and other DNA motifs com-
mon in DNA nanotechnology.22 By exploiting GPUs,
oxDNA can be used to investigate systems composed
of thousands of nucleotides.26,46 The basic unit of the
oxDNA model is a nucleotide, which is modelled as a
rigid body interacting with other nucleotides through a
short-ranged, highly anisotropic potential that takes into
account contributions due to excluded volume, backbone,
stacking, coaxial stacking, cross-stacking and hydrogen
bonding interactions. The detailed form of the potential
can be found in Refs. 31 and 42.

From the point of view of the computational complex-
ity, these three models have different properties. In the
LJ model, which is spherically symmetric and relatively
long-ranged (rc = 2.5σ), particles can have a large num-
ber of interacting neighbours. The patchy model, on the
other hand, is very short-ranged (rc = 0.18σ in our case),
and thus each particle has a small number of potentially
interacting neighbours, and on top of that its anisotropic
nature makes it so that each particle has an interaction
which is non-zero with only a fraction of its neighbours.
Differently from the other two models, oxDNA features
a very complicated and computationally demanding po-
tential that, due to the large amount of branching and
imbalance in the calculations required by particle pairs
in different local environments, hinders performances on
GPUs. Indeed, the GPU vs CPU speed-up for oxDNA is
usually smaller than what we find for the LJ or patchy
model. Similarly to the patchy model, the high degree of
anisotropy of the potential results in a small number of
interacting neighbouring particles.

The LJ and patchy models are simulated at three dif-
ferent values of the number density, namely ρσ3 = 0.1,
0.3 and 0.5 The simulation temperature is kBT/ε = 1.8
for the LJ model and kBT/ε = 0.15 for the patchy model.

6

0.0 4.0×10
4

8.0×10
4

1.2×10
5

N

0

0.2

0.4

0.6

0.8

1

S
p
ee

d
-u

p
 o

f
ed

g
e

o
v
er

 v
er

te
x

C2070
K10
K20

LJ, ρσ
3
 = 0.5

(a)

0 1×10
5

2×10
5

3×10
5

4×10
5

5×10
5

N

0.4

0.6

0.8

1

1.2

1.4

S
p
ee

d
-u

p
 o

f
ed

g
e

o
v
er

 v
er

te
x

C2070
K10
K20

Patchy, ρσ
3
 = 0.5

(b)

0.0 2.5×10
4

5.0×10
4

7.5×10
4

1.0×10
5

1.2×10
5

N

1

1.5

2

2.5

3

S
p
ee

d
-u

p
 o

f
ed

g
e

o
v
er

 v
er

te
x

C2070
K10
K20

(c)

FIG. 3. Achieved speed-up for the edge approach over the
vertex approach for (a) the LJ model and (b) the patchy
model at ρσ3 = 0.5 and (c) for the oxDNA model as a func-
tion of the number of particles N and for different GPUs.
All bumps and spikes are reproducible. The edge (vertex)
approach is more efficient when y-values are larger (smaller)
than one.

For the DNA model we perform simulations of double-
stranded octamers at a concentration of 2.7 mM and at
a temperature of 300 K.

0.1 0.2 0.3 0.4 0.5

ρσ
3

0.0

0.1

0.2

0.3

0.4

0.5

S
p

ee
d

-u
p

 o
f

ed
g

e
o

v
er

 v
er

te
x

C2070
K20
K10

LJ

(a)

0.1 0.2 0.3 0.4 0.5

ρσ
3

0.4

0.6

0.8

1.0

1.2

1.4

S
p
ee

d
-u

p
 o

f
ed

g
e

o
v
er

 v
er

te
x

C2070
K10
K20

Patchy

(b)

FIG. 4. Achieved speed-up for the edge approach over the
vertex approach as a function of density for (a) the LJ model
and (b) the patchy model for all considered GPUs. kBT/ε =
1.8 for the LJ model and 0.15 for the patchy model. The edge
(vertex) approach is more efficient when y-values are larger
(smaller) than one.

IV. RESULTS

We start the discussion of our results by comparing the
performances of the two approaches for the three differ-
ent models under standard thermodynamic conditions.
We repeat our measurements for three different GPU ar-
chitectures, since these are under active development and
tests might give substantially different results. We run
our tests on the NVIDIA cards C2070 (Tesla architecture,
released in 2010), K10 and K20 (Kepler architecture, re-
leased in 2012). In Fig. 3 we report the speed-up due
to the edge-based approach versus the vertex-based ap-
proach for the patchy and LJ models at the highest den-
sity ρσ3 = 0.5 and for oxDNA at the only investigated
density. The speed-up is defined as the average running
time for the vertex-based algorithm divided by the av-
erage running time of the edge-based algorithm. The
averages are taken over the same number of cycles with
the two algorithms on the same hardware. Each amount
of cycles is larger than the decorrelation time of each sys-
tem, thus giving timings that are reflective of its phys-
ical properties. We point out that newer hardware has

7

better performance than old hardware in all cases if the
same algorithm and model are employed. The timings
are repeated 5 times for each data point to accumulate
averages. Since floating point operations are not commu-
tative, and the order of operations cannot be controlled
in an efficient parallel algorithm, simulations on GPUs
(as well as parallel simulations on CPUs) are not repro-
ducible. We thus have to let each simulation undertake
a different trajectory and make sure that our timings are
taken over long enough intervals to average out the small
differences in running time due to the different sequences
of calculations.

All panels in Fig. 3 show a plateau in the speed-up for
a large enough system, and the height of this plateau is
the benchmark that we use to asses the performance of
the algorithms. Since GPUs become faster than a single
CPU core only at large (N >∼ 500−1000) system sizes, we
assume that it is most relevant to compare GPU codes
for large systems. In the case of the LJ potential, shown
in Fig. 3(a), the vertex-based approach is the fastest for
all GPUs considered, although newer architectures suffer
less from the introduction of the edge-based approach.
This is because the edge-based approach is slowed down
by carrying out many atomic operations, which are faster
in the newest architecture but not yet fast enough to
make it competitive. The patchy model displays a differ-
ent behaviour (Fig. 3(b)): the edge approach becomes
favourable on the most recent architecture by almost
40%, compared to a slowdown of 50% on the oldest hard-
ware. It is the substantially improved speed of atomic op-
erations on the newer hardware architecture that favours
the edge-based approach.47 The amount of pair interac-
tion computations is essentially controlled by the density,
while the number of non-zero interactions has a maxi-
mum which is dictated by the interaction potential. This
means that the number of interactions that need to be
computed and the number of interactions that are actu-
ally non-zero both increase with density, but the former
increases faster than the latter. Slower atomic operations
and a smaller amount of compute units on the older archi-
tecture favour the vertex-based approach, that requires
fewer threads and no atomic operations. The edge-based
approach is faster on the newer hardware because it can
better exploit the larger number of threads and is slowed
down less by the atomic operations which it requires.

Finally, the compute-intensive pair interactions of the
oxDNA model (Fig. 3(c)) always benefit from the edge-
based approach, which yields a 70% performance increase
or more with the newest K20 hardware.47 There are sev-
eral reasons for this, the main one being that the ver-
tex approach has a poorer balance between the workload
each thread has to carry out as opposed to the edge-
based approach, which is itself not very well balanced but
hides the load imbalance with a much larger amounts of
threads. It is worth pointing out that in general the more
recent the hardware the bigger the speed-up of the edge-
based approach, because it benefits from more compute
units and faster atomic operations.47

The relative effectiveness of the two parallelization ap-
proaches depends on the amount of potentially interact-
ing neighbours. For the LJ and patchy models this num-
ber can change significantly as the density of the system
is changed, and we thus repeat our tests at three dif-
ferent values of the density. In the DNA model, since
the local environment of the molecules stays the same,
the density does not change significantly the number of
potential interactions and hence performances are very
weakly density-dependent, at least in the density range
usually considered in DNA applications. The density de-
pendence of the speed-up is shown in Fig. 4 for the three
models. In the case of LJ, the relative performances stay
more or less constant, except for the oldest hardware
where the increased number of atomic operations has
a negative impact on the edge-based approach. In the
case of the patchy system, on the other hand, increas-
ing the density favours the edge-based approach if using
new hardware and favours the vertex-based approach on
the older hardware. This can be rationalized as follows:
the number of potential interactions increases faster with
increasing density than the number of non-zero interac-
tions. The edge-based approach is effective in treating
potential interactions that turn out to be zero, because
they do not produce atomic operations. But the latter
nevertheless increase with density, and when using the
oldest hardware the balance is still reversed in favour of
the vertex-based approach.

We note that the vertex-based approach reported in
this section does not use Newton’s third law. We also
measured the performance of the vertex-based approach
which uses Newton’s third law, as outlined in Sec. II.
We found its performance to be inferior for LJ systems
in comparison with vertex-based approach without New-
ton’s third law on all considered architectures. For the
patchy particle systems, we found that on the Kepler ar-
chitectures K10 and K20 the vertex-based approach with
Newton’s third law can be faster by up to a factor 1.2,
but it is always slower than the edge-based approach.
For the DNA systems, we found the vertex-based ap-
proach with Newton’s third law to be slightly faster than
the approach without Newton’s third law on both Tesla
and Kepler architectures. However, the achieved speed-
up was only at most 16%, significantly smaller than the
speed-up achieved with the edge-based approach. For
completeness, we provide the comparisons of the vertex-
based approaches with and without Newton’s third law
in Supplementary Information (Fig. S2), along with the
absolute time per MD step for the results shown in Fig-
ure 3.30

V. CONCLUSIONS

Being able to exploit the impressive computer power of
GPUs can be important in molecular simulations, since
these computing devices have the power to study system
sizes and time scales previously untreatable. Unfortu-

8

nately, this comes at the cost of rethinking the structure
of the simulation codes, since approaches that are known
to fail in CPU programming can turn out to be effec-
tive or vice-versa. We have compared the performances
of two different parallelization approaches, “vertex”- and
“edge”-based, by simulating three different models with
quite distinct computational complexities. The edge-
based parallelization approach, where a thread is started
for each potentially non-zero interaction, is competitive
and often outperforms the vertex-based approach, where
a thread is started for each particle in the system. The
reason for this is that sometimes the vertex-based ap-
proach is not parallel enough to take full advantage of
the GPU.

A vertex-based approach is still the fastest when deal-
ing with very simple potentials with a relatively large
number of neighbours, which is the case when the in-
teraction range is large and the interaction is spherical.
The edge-based approach is the fastest when the non-zero
interactions per particle are few and/or complicated, giv-
ing its best performance when the interaction potentials
are both highly anisotropic and complicated as it is the
case in the oxDNA model. Not surprisingly, the edge-
based approach benefits more from an increased number
of scalar processors on the graphics card, which appears
to be the current trend in improving this kind of hard-
ware. We thus predict that the edge-based parallelization
will become more and more competitive in the future, if
the current trends in hardware improvements are contin-
ued.

ACKNOWLEDGEMENTS

The authors thank M. Sega for technical help, the Ad-
vanced Research Computing, University of Oxford for
computer time and NVIDIA for the hardware donations.
F.R. acknowledges financial support from the Engineer-
ing and Physical Sciences Research Council. P.Š. is grate-
ful for the Bobby Berman and Scatcherd European Schol-
arship awards. L.R. thanks the Physical & Theoreti-
cal Chemistry Laboratory, University of Oxford for its
hospitality and acknowledges support from ERC-226207-
PATCHYCOLLOIDS.

1R. Feynman, Int. J. Theor. Phys. 21, 467 (1982).
2M. S. Waterman et al., Introduction to computational biology:
maps, sequences and genomes. (Chapman & Hall Ltd, 1995).

3F. Jensen, Introduction to computational chemistry (Wiley,
2007).

4B. Smith and D. Frenkel, Understanding molecular simulation
(Academic Press, 1996).

5M. P. Allen and D. J. Tildesley, Computer simulation of liquids
(Oxford University Press, 1989).

6D. Landau and K. Binder, A Guide to Monte Carlo Simulations
in Statistical Physics (Cambridge University Press, 2005).

7J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and
J. C. Phillips, Proc. IEEE 96, 879 (2008).

8J. Nickolls and W. J. Dally, IEEE micro 30, 56 (2010).
9J. E. Stone, D. J. Hardy, I. S. Ufimtsev, and K. Schulten, J.
Mol. Graphics Modell. 29, 116 (2010).

10J. A. van Meel, A. Arnold, D. Frenkel, S. F. Portegies Zwart,
and R. G. Belleman, Mol. Simulat. 34, 259 (2008).

11S. Plimpton, J. Comput. Phys. 117, 1 (1995).
12J. A. Anderson, C. D. Lorenz, and A. Travesset, J. Comput.

Phys. 227, 5342 (2008).
13W. M. Brown, P. Wang, S. J. Plimpton, and A. N. Tharrington,

Comput. Phys. Commun. 182, 898 (2011).
14S. Pronk, S. Páll, R. Schulz, P. Larsson, P. Bjelkmar, R. Apos-

tolov, M. R. Shirts, J. C. Smith, P. M. Kasson, D. van der Spoel,
et al., Bioinformatics 29, 845 (2013).

15J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid,
E. Villa, C. Chipot, R. D. Skeel, L. Kale, and K. Schulten, J.
Comput. Chem. 26, 1781 (2005).

16P. Eastman, M. S. Friedrichs, J. D. Chodera, R. J. Radmer, C. M.
Bruns, J. P. Ku, K. A. Beauchamp, T. J. Lane, L.-P. Wang,
D. Shukla, T. Tye, M. Houston, T. Stich, C. Klein, M. R. Shirts,
and V. S. Pande, J. Chem. Theory Comput. 9, 461 (2013).

17S. Páll and B. Hess, Comput. Phys. Commun. 184, 2641 (2013).
18J. E. Stone, J. C. Phillips, P. L. Freddolino, D. J. Hardy, L. G.

Trabuco, and K. Schulten, J. Comput. Chem. 28, 2618 (2007).
19W. Liu, B. Schmidt, G. Voss, and W. Müller-Wittig, Comput.

Phys. Commun. 179, 634 (2008).
20A. Zhmurov, R. Dima, Y. Kholodov, and V. Barsegov, Proteins
78, 2984 (2010).

21D. M. Hinckley, G. S. Freeman, J. K. Whitmer, and J. J.
de Pablo, J. Chem. Phys. 139, 144903 (2013).

22J. P. K. Doye, T. E. Ouldridge, A. A. Louis, F. Romano, P. Sulc,
C. Matek, B. E. K. Snodin, L. Rovigatti, J. S. Schreck, R. M.
Harrison, and W. P. J. Smith, Phys. Chem. Chem. Phys. 15,
20395 (2013).

23D. C. Rapaport, Phys. Rev. Lett. 101, 186101 (2008).
24I. Coluzza, P. D. J. van Oostrum, B. Capone, E. Reimhult, and

C. Dellago, Phys. Rev. Lett. 110, 075501 (2013).
25F. Romano and F. Sciortino, Nat. Commun. 3, 975 (2012).
26L. Rovigatti, F. Smallenburg, F. Romano, and F. Sciortino, ACS

Nano 8, 3567 (2014).
27J. Russo, P. Tartaglia, and F. Sciortino, J. Chem. Phys. 131,

014504 (2009).
28L. Rovigatti, Role of the anisotropy in the interactions between
nano- and micro-sized particles, Ph.D. thesis, Sapienza Univer-
sità di Roma (2012).

29P. H. Colberg and F. Höfling, Comput. Phys. Commun. 182,
1120 (2011).

30“See Supplementary Materials No. XXXX for the comparison of
the vertex-based algorithm performance with and without New-
ton’s third law implemented and for the benchmark comparison
of oxDNA with HOOMD and LAMMPS packages for simulations
of LJ system.”.

31T. E. Ouldridge, A. A. Louis, and J. P. K. Doye, J. Chem. Phys.
134, 085101 (2011).

32P. Šulc, F. Romano, T. E. Ouldridge, L. Rovigatti, J. P. K. Doye,
and A. A. Louis, J. Chem. Phys. 137, 135101 (2012).

33http://dna.physics.ox.ac.uk.
34W. Kob and H. C. Andersen, Phys. Rev. Lett. 73, 1376 (1994).
35E. Bianchi, R. Blaak, and C. Likos, Phys. Chem. Chem. Phys.

(2011).
36S. C. Glotzer and M. J. Solomon, Nat. Mater. 6, 557 (2007).
37L. Rovigatti, W. Kob, and F. Sciortino, J. Chem. Phys. 135,

104502 (2011).
38Q. Chen, S. C. Bae, and S. Granick, Nature (2011).
39J. Russo, J. Tavares, P. Teixeira, M. T. da Gama, and

F. Sciortino, J. Chem. Phys. 135, 034501 (2011).
40A. Reinhardt, A. J. Williamson, J. P. K. Doye, J. Carrete, L. M.

Varela, and A. A. Louis, J. Chem. Phys. 134, 104905 (2011).
41L. Rovigatti and F. Sciortino, Mol. Phys. 109, 2889 (2011).
42T. E. Ouldridge, Coarse-Grained Modelling of DNA and DNA
self-assembly, Ph.D. thesis, University of Oxford (2011).

43T. E. Ouldridge, A. A. Louis, and J. P. K. Doye, Phys. Rev.
Lett. 104, 178101 (2010).

http://dx.doi.org/10.1007/BF02650179
http://dx.doi.org/http://dx.doi.org/10.1016/j.jmgm.2010.06.010
http://dx.doi.org/http://dx.doi.org/10.1016/j.jmgm.2010.06.010
http://dx.doi.org/ 10.1021/ct300857j
http://dx.doi.org/http://dx.doi.org/10.1016/j.cpc.2013.06.003
http://dx.doi.org/http://dx.doi.org/10.1063/1.4822042
http://dx.doi.org/10.1039/C3CP53545B
http://dx.doi.org/10.1039/C3CP53545B
http://dx.doi.org/10.1103/PhysRevLett.110.075501
http://dx.doi.org/10.1021/nn501138w
http://dx.doi.org/10.1021/nn501138w
http://dx.doi.org/10.1063/1.3153843
http://dx.doi.org/10.1063/1.3153843
http://dx.doi.org/DOI: 10.1016/j.cpc.2011.01.009
http://dx.doi.org/DOI: 10.1016/j.cpc.2011.01.009
http://dx.doi.org/10.1063/1.3552946
http://dx.doi.org/10.1063/1.3552946
http://dx.doi.org/ 10.1063/1.4754132
http://dx.doi.org/10.1103/PhysRevLett.73.1376
http://dx.doi.org/10.1063/1.3626869
http://dx.doi.org/10.1063/1.3626869
http://dx.doi.org/10.1080/00268976.2011.609148
http://dx.doi.org/10.1103/PhysRevLett.104.178101
http://dx.doi.org/10.1103/PhysRevLett.104.178101

9

44T. E. Ouldridge, R. L. Hoare, A. A. Louis, J. P. K. Doye, J. Bath,
and A. J. Turberfield, ACS Nano 7, 2479 (2013).

45P. Šulc, T. E. Ouldridge, F. Romano, J. P. Doye, and A. A.
Louis, Natural Computing (2013), 10.1007/s11047-013-9391-8.

46L. Rovigatti, F. Bomboi, and F. Sciortino, J. Chem. Phys. 140,
154903 (2014).

47NVIDIA, “Kepler GK110 whitepaper,”
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-
GK110-Architecture-Whitepaper.pdf (2012).

SUPPLEMENTARY INFORMATION

In this Supplementary information we report a com-
parison between oxDNA and HOOMD-blue-blue and
LAMMPS, as well as absolute timings for the test cases
employed in the text.

VI. COMPARISON TO HOOMD-BLUE AND LAMMPS

0 5,0×10
4

1,0×10
5

1,5×10
5

2,0×10
5

2,5×10
5

N

0

0.2

0.4

0.6

0.8

1

G
R

O
M

A
C

S
 v

s
o
x
D

N
A

 s
p
ee

d
-u

p

Full
Forces only

FIG. 5. Performance comparison between oxDNA and GRO-
MACS 5.0.1. Timings are carried out on a C2070 NVIDIA
GPU. We show the ratio between the average time required
by oxDNA to perform an MD step over the time taken by
GROMACS (in black). We also show the ratio between the
average time required by the kernel computing the forces of
oxDNA and of GROMACS (in red).

Since our aim is to compare parallelization algorithms,
it is important to verify that the performances of our
code are comparable to state-of-the-art codes that are
publicly available. Figure 2 in the main text shows the
comparison between oxDNA and the GPU-enabled ver-
sions of HOOMD-blue (0.11-3 version) and LAMMPS
(1Feb14 version) for a standard NVE Lennard-Jones sim-
ulation at ρ = 0.1 (vs HOOMD-blue) and ρ = 0.8442 (vs
LAMMPS) for several system sizes. Overall, the large-N
performances are roughly equivalent, with the largest dif-
ference being less than 20%. In addition, the asymptotic
performances of the three codes are very similar.

Figure 5 shows a comparison (carried out at ρ = 0.1)
between oxDNA and GROMACS 5.0.1. oxDNA is faster
for all the considered number of particles. We stress that
GROMACS uses the GPU only to calculate non-bonded
forces and thus we also show the relative performance be-
tween the force-computing kernels in oxDNA and GRO-
MACS. We note that GROMACS is not tailored to simu-
late short-ranged-only potentials and hence it is perhaps
unsurprising that it does not perform very well in this
particular test.

VII. ABSOLUTE TIMINGS AND COMPARISON OF
THE VERTEX-BASED APPROACH WITH AND
WITHOUT NEWTON’S THIRD LAW

For reference, we report in Fig. 6 the absolute time that
is required for each of the algorithms to perform a sin-
gle molecular dynamics step with the different architec-
tures and models. The figures include timings for edge-
based approach (“edge”), vertex-based approach (“ver-
tex”) and vertex-based approach with Newton’s third law
implemented (“newton”) for C2070, K10 and K20 archi-
tectures

http://dx.doi.org/ 10.1021/nn3058483
http://dx.doi.org/10.1007/s11047-013-9391-8
http://dx.doi.org/http://dx.doi.org/10.1063/1.4870467
http://dx.doi.org/http://dx.doi.org/10.1063/1.4870467

10

2.5×10
4

5.0×10
4

7.5×10
4

1.0×10
5

1.2×10
5

1.5×10
5

1.8×10
5

N

0

2

4

6

8

10

m
s

/
st

ep
K10 vertex
K10 edge
K10 newton
K20 vertex
K20 edge
K20 newton
C2070 vertex
C2070 edge
C2070 newton

(a)

0 1×10
5

2×10
5

3×10
5

4×10
5

5×10
5

6×10
5

7×10
5

N

0

10

20

30

40

50

m
s

/
st

ep

K10 edge

K10 newton
K20 vertex
K20 edge

K20 newton
C2070 vertex
C2070 edge

C2070 newton
K10 vertex

(b)

0 1×10
5

2×10
5

3×10
5

4×10
5

5×10
5

6×10
5

7×10
5

N

0

5

10

15

20

m
s

/
st

ep

K10 vertex
K10 edge

K10 newton
K20 vertex
K20 edge

K20 newton
C2070 vertex
C2070 edge

C2070 newton

(c)

FIG. 6. Absolute timings as a function of system sizes. (a)
DNA model at a double strand concentration of 2.7 mM, T =
300 K. (b) LJ model, kBT/ε = 1.8, ρσ3 = 0.5. (c) patchy
model, kBT/ε = 0.15, kBT/ε = 1.8, ρσ3 = 0.5

	A comparison between parallelization approaches in molecular dynamics simulations on GPUs
	Abstract
	I Introduction
	II Methods
	III Models
	IV Results
	V Conclusions
	 Acknowledgements
	 Supplementary Information
	VI Comparison to HOOMD-blue and LAMMPS
	VII Absolute timings and comparison of the vertex-based approach with and without Newton's third law

