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Abstract

The capabilities of an adaptive Cartesian grid (ACG)-based Poisson-Boltzmann (PB) solver (CPB) 

are demonstrated. CPB solves various PB equations with an ACG, built from a hierarchical octree 

decomposition of the computational domain. This procedure decreases the number of points 

required, thereby reducing computational demands. Inside the molecule, CPB solves for the 

reaction-field component (ϕrf) of the electrostatic potential (ϕ), eliminating the charge-induced 

singularities in ϕ. CPB can also use a least-squares reconstruction method to improve estimates of 

ϕ at the molecular surface. All surfaces, which include solvent excluded, Gaussians and others, are 

created analytically, eliminating errors associated with triangulated surfaces. These features allow 

CPB to produce detailed surface maps of ϕ and compute polar solvation and binding free energies 

for large biomolecular assemblies, such as ribosomes and viruses, with reduced computational 

demands compared to other PBE solvers. The reader is referred to http://www.continuum-

dynamics.com/solution-mm.html for how to obtain the CPB software.
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Introduction

The Poisson-Boltzmann equation (PBE) describes the long-range and non-specific 

electrostatic interactions of molecules immersed in ionic solutions. It is based on an implicit 

solvent model where the molecule and ionic solution are treated as low and high dielectric 

regions, respectively. The solution of the PBE provides the electrostatic potential (ϕ) over 

the entire molecule-ionic solution system and various electrostatic energy-derived quantities 

and sensitivities (e.g., salt sensitivities and forces) that are employed in many biophysical 
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applications1–3. For example, the ϕ on and/or around a molecule is used to rationalize 

molecular function and to locate potential binding sites. Additionally, the PBE is now 

widely used to estimate the electrostatic component (ΔΔGel) of the binding free energy 

(ΔΔG), which can be combined with estimates of the non-electrostatic contributions to 

determine ΔΔG for drug design purposes4.

Because the PBE is analytically solvable for only certain idealized geometries, such as 

spheres, various algorithms based on boundary element, finite difference, finite element, and 

stochastic methods have been developed to numerically solve the PBE for the complex 

geometries of three-dimensional (3D) molecules5–10. Due to the desire for improved speed 

and accuracy of 3D PBE solutions, especially for highly charged and large-scale 

biomolecular assemblies (e.g., viruses and ribosomes that can contain O(107) atoms), the 

development of fast and accurate PBE solvers remains an active area of research. The 

interested reader is referred to recent reviews for a detailed discussion of the various 

numerical techniques developed to solve the PBE6,7,11. In the present study the capabilities 

and features of a Cartesian grid-based PBE solver (CPB)5 were examined.

One advantage of CPB over some other PBE solvers is that rather than solving for ϕ inside 

the molecule, it instead solves for the reaction-field component (ϕrf) of ϕ5. Solving for ϕrf 

inside the molecule is beneficial because it lacks the singularities at the atomic charge sites 

present in ϕ. Consequently, ϕrf is less sensitive to mesh spacing and grid placement than ϕ. 

Additionally, a singularity-free description obviates the need for auxiliary reference 

calculations and allows the electrostatic energy (Gel) to be computed directly from one PBE 

solution, thereby further reducing overall computation time and eliminating the potential for 

numerical errors associated with subtracting comparable magnitude energy contributions.

One feature of CPB not available in most PBE solvers is an adaptive Cartesian grid (ACG) 

based on a hierarchical octree data structure. The ACG, which is generated via a recursive 

subdivision of a cube representing the physical domain, is widely used in other contexts, 

including mesh generation 12,13, data search14, computational fluid dynamics 

simulation 15,16, and fast multipole methods17,18. By using an ACG, a single grid with 

variable grid resolution allocates the necessary length scales (mesh spacings or grid point 

densities) where needed so that the solution is obtained in a single PBE calculation. As 

shown in Figure 1, outside the molecule CPB assigns fewer grid points to regions far from 

the molecular surface because ϕ varies slowly in these regions. Similarly, inside the 

molecule CPB concentrates fewer points in regions far from the molecular surface because 

ϕrf varies slowly in these regions. As noted above, choosing ϕrf to represent the interior 

solution eliminates the need to pack points near charge sites, thus permitting the use of 

fewer mesh points to represent the interior solution. By reducing the number of points on the 

solution grid, the use of an ACG reduces both the solution time and memory compared to 

what would be achieved with uniform mesh spacing. The use of the ACG also allows the 

outer boundaries to be placed far from the molecular surface, which leads to smaller 

boundary errors without significant computational overhead. Lastly, ACG facilitates the use 

of multigrid schemes that further expedite the solution process.
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Many PBE solvers use approximate triangulated surface definitions to specify the dielectric 

boundary, which separates the interior (molecule) and exterior (ionic solution) dielectric 

regions, and often generate these surfaces using separate software. CPB instead adopts 

analytical representations of common surface definitions, such as the solvent-excluded (SE), 

van der Waals (vdW), solvent-accessible (SA), and various Gaussian and polynomial 

surfaces. These analytical representations help reduce discretization errors near the surface, 

particularly when referencing surface normal and curvature information necessary to 

reconstruct the surface solution. Also, different PBE metrics, such as ϕ and energies, and 

their associated grid discretization errors (e.g., those that depend on grid resolution and 

positioning) are affected to varying degrees by the choice of surface definition19,20.

To improve the accuracy of ϕ CPB uses a least-squares reconstruction (LSR) at the 

molecular surface21. This procedure is similar to that developed by LeVeque and Li22 and 

implemented in some PBE solvers23,24. At the molecular surface ϕrf and ϕ are expanded to 

second-order, and the appropriate jump conditions in ϕ and its spatial derivatives across the 

surface are explicitly enforced. The use of an LSR scheme can greatly improve the 

convergence rate of the calculations with respect to grid spacing, as shown in Results, with 

minimal increases in memory and computational overhead.

Near the surfaces of highly charged molecules the PBE can over predict ion concentrations 

since the ions are assumed to have no size. To account for ion (and solvent) size, CPB 

provides the option of solving the size-modified PBE (SMPBE)25–27. Additionally, CPB 

allows for inclusion of a Stern (ion-exclusion) layer. The reader is referred elsewhere for 

applications of CPB’s SMPBE in the prediction of the number of excess ions around nucleic 

acids20.

Because most PBE solvers use a finite computational grid, some method of assigning ϕ on 

the grid boundary must be implemented. Most PBE solvers assume that ϕ on the boundary 

can be estimated with the Debye-Hückel equation, which may introduce bias errors for 

nonlinear problems, particularly ones involving highly charged molecules at low salt 

conditions. Instead CPB uses a more rigorous, general, and accurate charge-conserving 

boundary condition, which has been shown to yield better estimates of ϕ and is valid for the 

linear, nonlinear and sized modified PBE28. CPB can correct PBE quantities (e.g., energies 

and their salt sensitivities, and numbers of excess ions) for contributions from outside the 

computational grid.

The above features allow CPB to perform common molecular computations while requiring 

less computational time and memory than other PBE solvers. CPB can compute electrostatic 

potential surface maps (EPSMs), which are used to rationalize molecular structures and 

predict the location of ligand binding sites. Because the above features of CPB reduce the 

number of points required in the solution grid, CPB can generate EPSMs for large 

biomolecular assemblies (e.g., ribosomes and viruses) that would require much more 

memory in other PBE solvers. Additionally, using the LSR scheme and solving for ϕrf inside 

the molecule improves the rate at which the estimates of ϕ projected on the molecular 

surface converge with respect to grid spacing. The above features also improve the rate at 
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which ΔΔGel converges with respect to grid spacing and allow these PBE-derived quantities 

to be computed for large molecular systems.

Methods

All molecular structures determined by X-ray diffraction techniques were taken from the 

RCSB Protein Data Bank (PDB). Only the chains containing the molecules of interest were 

used, whereas ions, water, ligands, and other small molecules were discarded. The ideal 40 

base pair B-DNA structure was generated using the 3DNA package29. With the exception of 

paromomycin, the partial charges and van der Waals (vdW) radii were taken from the 

Amber 94 force field30 and added to the structure files with the pdb2pqr software 31. For the 

paromomycin in the ribosome and 16S rRNA complexes the AM1-BBC method in 

Chimera32 was used to assign partial charges, as in previous PBE studies33. The vdW radii 

of paromomycin were taken from a previous study 33. With the exception of paromomycin, 

the hydrogen atoms were added with pdb2pqr. All ionizable protein and nucleic acid 

residues were in their standard ionization states at pH=7. The PDB structure file for virus 

capsid structure was obtained from the VIPERdb icosahedral virus capsid database (http://

viberdb.scripps.edu). No hydrogen atoms were added to this virus capsid structure and only 

a formal charge assignment was employed. In this formal charge model only the side chains 

of the Lys, Arg, Glu, and Asp residues assumed a net charge of −1e or +1e, with all other 

atom charges set to zero. The His residues had a net charge of zero.

All calculations were performed with CPB. All details about the finite difference PBE 

implementation in CPB, including the numerical methods used to solve the discretized PBE, 

are provided elsewhere5. Unless otherwise stated the nonlinear PBE (NLPBE) with a 1:1 salt 

(i.e., NaCl) concentration of 0.1 M was used. The interior (solute/molecule) and exterior 

(solvent) dielectric constants were set to 1 and 80, the temperature was set to 298.15 K, the 

SE surface with a solvent probe radius of 1.4 Å was used to define the dielectric boundary, 

and no Stern layer was used. Unless otherwise stated, the finite difference equations were 

solved iteratively until the change in the dimensionless potential at any grid point was less 

than 10−9. Also, the length of each side of the grid was set to 4 times the largest dimension 

of the molecule. Charge-conserving outer boundary conditions 28 were applied. All ΔΔGel 

were computed using grids with the same size and position for the binding partners and 

complex. To estimate the dependence of ΔΔGel on the position of the grid, for some of the 

results 30 different calculations were run at each grid spacing, with the grid randomly 

shifted by a fraction of a grid spacing in each Cartesian direction. The standard deviations of 

the resulting estimates of ΔΔGel are reported as error bars. With the exception of Figure 3 all 

plots were generated using the Tecplot graphics package (http://www.tecplot.com/). All PBE 

calculations were carried out on a 24 core (2 AMD Opteron 6234 12-core machine) 2.6 GHz 

workstation with 128 GB memory.

Results and Discussion

Polar Binding and Solvation Free Energies

Computing ΔΔGel is a common application with PBE methods, but doing so is challenging 

because of the fine grid spacing required for convergence. Here ΔΔGel was computed for the 
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three different complexes shown in Figure 2: paromomycin binding to an 16S RNA (PDBid: 

1J7T), paromomycin binding to a 30S ribosomal subunit (PDBid: 1FJG), and barnase-

barstar (PDBid: 1B3S). As shown in Figure 3 for large grid spacings these energies are very 

sensitive to the placement of the grid, and ΔΔGel deviates significantly from its value at the 

finest grid spacing. These findings agree with previous results19. For both paromomycin-

nucleic acid complexes a finest grid spacing of 0.5 Å was required to obtain converged 

estimates of ΔΔGel without LSR to within 1 kcal/mol. However, for 1B3S this same finest 

grid spacing of 0.5 Å produced ΔΔGel that differed from ΔΔGel computed with 0.1 Å by 11 

kcal/mol. In contrast, when LSR was used converged estimates of ΔΔGel were obtained with 

much larger finest grid spacings. For instance, for 1B3S, (ΔΔGel (0.8 Å) - ΔΔGel (0.1 Å)) is 

only 1.1 kcal/mol. The polar solvation free energies, ΔGel, ranged from −1290 kcal/mol to 

−2290 kcal/mol for the 1B3S complex and its components; −502 kcal/mol to −17200 

kcal/mol for 1J7T; and from −379 kcal/mol to −4,330,000 kcal/mol for 1FJG. Because ΔGel 

is orders of magnitude larger than ΔΔGel, highly accurate predictions of ΔGel are required to 

estimate ΔΔGel.

Table 1 shows the results of computing ΔGel with the Adaptive Poisson-Boltzmann Solver 

(APBS) and CPB on grids with uniform mesh spacings and with CPB on an adaptive grid 

with and without LSR. This table illustrates that using an adaptive grid in CPB enables ΔGel 

to be computed much more quickly than with a uniform grid in APBS because of the huge 

reduction in the number of grid points. This advantage should increase with the size of the 

considered molecular system because the ACG in CPB concentrates grid points near the 

molecular surface and the surface area to volume ratio should decrease as the size of the 

molecule increases.

Table 1 also demonstrates that the use of a LSR gives higher accuracy for a given grid 

spacing without a significant penalty in CPU time or number of grid points required. For an 

ACG with a finest grid spacing of Δsf = 1.0 Å the ΔGel given without a LSR differed by 

more than 500 kcal/mol from that obtained with Δsf = 0.0625 Å; the corresponding 

difference using LSR is only 46 kcal/mol. For some systems, the LSR may provide a 

significant savings in CPU times by allowing the user to use a larger finest grid spacing.

Given the various optimizations and adjustments available in APBS and CPB, Table 1 is 

necessarily a very limited comparison of the two codes. For example, the CPU times and 

accuracy of APBS could be improved by focusing (focusing is not necessary in CPB). The 

data in Table 1 also indicate that the results given by APBS may have been converging to a 

different value than that given by CPB, possibly because APBS uses a triangulated 

definition of the SE surface, whereas CPB uses an analytical SE surface, and perhaps also 

because of different numerical implementations of the Stern layer. Nevertheless, the data in 

Table 1 does provide a rough illustration of the advantages provided by CPB, and we expect 

that the advantage of CPB will increase with system size because, as discussed above, the 

ACG in CPB concentrates grid nodes at the molecular surface and the surface area to 

volume ratio should decrease with system size.
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Size-modified Poisson-Boltzmann equation with nonuniform ion sizes

Because the PBE idealizes ions as points, no constraints exist to prevent ion concentrations 

from exceeding the tightly packed ion limit. As a result the PBE can produce excessive and 

physically unrealistic ion concentrations near highly charged molecules. Finite ion sizes can 

be accounted for by means of an ion exclusion (Stern) layer, but recent studies have 

indicated that this can produce ion distributions grossly different from those found in 

molecular dynamics simulations27. Various methods to account for finite ion sizes by 

modifying the PBE have been developed34–36. In CPB the SMPBE25, which allows for 

different ion sizes and can also model the finite size of water, can be invoked for salt 

mixtures containing an arbitrary number of ionic species. The computational times required 

to solve the SMPBE are comparable to those required by the NLPBE, with system-

dependent increases in execution times of about 10–20%.

Figure 4 shows a 40 base pair ideal A-RNA structure previously studied using the “tightly 

bound ion” (TBI) theory 37 that accounts for both ion size and correlation effects. In Figures 

4a and 4b, isosurfaces where the sodium ion densities predicted by the PBE and SMPBE 

differ by 1 M and 0.1 M respectively, are shown. These isosurfaces closely conform to areas 

of large negative ϕ, as expected.

Electrostatic Potentials of Molecules

PBE solvers are used in conjunction with popular molecular modeling software packages, 

such as Pymol (http://www.pymol.org/) and VMD38 to visualize ϕ on and near the surfaces 

of molecules. Such EPSMs help characterize molecules, explain their functions, and identify 

binding sites. For example, several studies have claimed that regions with large ϕ are 

associated with binding sites for ions, ligands, and other molecules39–43; many DNA-

binding proteins contain surface patches with large positive ϕ near the binding site 44,45; and 

ϕ has been incorporated into machine-learning algorithms to identify nucleic acid-binding 

proteins 46. The combination of LSR and an ACG in CPB enables the generation of high-

resolution EPSMs5 and requires a minimal number of grid points in the solution grid.

To further demonstrate the high-resolution EPSMs generated by CPB5, several cases, three 

of which were previously considered in the literature47–49 using other PBE solvers, were 

examined. First, the EPSM of a RNA-binding protein Host factor for Q beta (Hfq) (PDBid: 

1KQ2) was generated (Figure 5). It agrees qualitatively with an EPSM reported in the 

literature48 and confirms that one side of the central cleft in the Hfq protein, where the RNA 

binds, has a region of distinctly positive ϕ whereas the other side contains no region of large 

ϕ. As shown in Figures 5a and 5b, the RNA binds in a circular conformation aligned with 

this region of positive ϕ. The magnitude of ϕ is smaller in Figure 5 than in Figure 5 of a 

previous study48 since this latter figure was created with the LPBE, whereas the current 

figure was created with the NLPBE. Second, the EPSM of the 23S ribosomal RNA (PDBid: 

1HC8) is shown in Figure 6 and is similar to one reported in the literature47. Figure 6 agrees 

with the EPSM in the literature47 with two particular magnesium ions (MG1167 and 

MG1163) binding in regions of relatively large negative ϕ, even though the EPSM in the 

literature47 used the SA rather than the SE surface. Third, an EPSM of a 30S ribosomal 

subunit, containing a net charge of −1256e, previously considered in the literature49 was 
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produced. As shown in Figure 7a this particular view of the 30S ribosome subunit, which 

faces the 50S ribosome subunit, consists of large regions of negative ϕ and small regions of 

positive ϕ. A close-up view of the binding site of paramomycin in this 30S ribosome subunit 

(see Figure 2b) reveals the very high quality of CPB’s EPSM. Finally, an EPSM of the 

satellite panicum mosaic viral capsid (PDBid: 1STM) was created and as observed in Figure 

7b, the exterior of the viral capsid has a series of connected star-like negative ϕ patches 

created by clusters of external acidic residues, surrounded by interconnected positive ϕ 

regions that follow the symmetrical elements of the full viral capsid. The ribosome and viral 

capsid are large and highly charged biomolecular systems that contain 88,532 and 63,600 

atoms, respectively. Most EPSM’s of such ribosomes and viruses reported in the literature50 

have used large, likely inadequate, grid spacing (i.e., the same size as atomic radii) due to 

memory constraints, and/or been based on the linear PBE due to convergence/stability issues 

associated with the NLPBE. Due to the large size of these biomolecular assemblies, 

producing these fine grid resolution (i.e., ≤ 0.3 Å) EPSMs for large-scale biomolecular 

assemblies on laptops and workstations would present challenges to PBE solvers that do not 

use a LSR or ACG.

The generation of isopotential surfaces or contours is another way to visualize the ϕ around 

molecules. Such depictions have been used to infer the role of electrostatics in the formation 

of encounter complexes51. Isopotential contours have also been employed to examine 

electrostatic similarity between families of proteins52. To examine the quality of CPB’s 

isopotential contours we considered the Hfq protein whose dipolar nature, which is common 

to many nucleic acid binding proteins, is evident in Figure 5. Another application of PBE 

methods is to calculate ϕ at sites outside the molecular surface in an attempt to locate 

binding sites for ligands or ions39,44. In Table 2 the ϕ’s at the locations of Mg2+ ions located 

in the crystal structure of the 23S ribosomal RNA (PDBid: 1HC8, Figure 6) are reported. 

Arrows in Figure 6 indicate the two Mg2+ sites with the most negative ϕ. Table 2 shows that 

the LPBE gives very different answers than the NLPBE for ϕ at these sites, so the NLPBE is 

likely necessary for these calculations. Fortunately, the CPB solves the NLPBE nearly as 

fast as the LPBE. For instance, from an analysis of 10 RNA structures, which range in size 

from 2032 and 5569 atoms and have net charges that range from −56e to −171e, considered 

in a PB study performed by Luo and co-workers53 the CPU time for the NLPBE was larger 

than that of the LPBE by at most a factor of 1.2 (results not shown). In other codes, the 

times to solve the NLPBE can be substantially higher than to solve the LPBE. For example, 

the popular UHBD solver takes about 5 times longer to solve the NLPBE than LPBE for a 

set of 55 proteins54.

Conclusions

CPB performs all of the standard PB calculations, including computing ΔΔGel, ESPMs, 

isopotential surfaces, and ϕ’s. In addition to solving the LPBE and NLPBE, CPB can also 

solve the SMPBE to account for finite ion sizes with minimal computational overhead. The 

use of an ACG, solving for ϕrf rather than ϕ in the molecular interior, and using charge-

conserving outer boundary conditions lead to grids with smaller numbers of points on the 

solution grid than some other PBE solvers and reduce computational times and memory 

requirements. The use of an LSR at the molecular surface and analytical surface definitions 
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increase the accuracy of ϕ and related quantities without adding significant overhead. CPB’s 

speed and low memory requirements allow it to be used on large biomolecular assemblies 

(e.g., viruses and ribosomes) with standard laptops and workstations.
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Figure 1. 
A slice through the computational domain, containing a barnase (PDBid: 1B3S) and ionic 

solution dielectric regions, showing the adaptive Cartesian grid of CPB. This figure shows 

how CPB assigns more grid points to regions where the solution potential varies most 

rapidly (i.e., near the molecular surface).
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Figure 2. 
(a) An electrostatic potential surface map (EPSM) of the isolated 16S rRNA (PDBid: 1J7T) 

computed without its cationic aminoglycosidic paromomycin (net charge=+4e) binding 

partner at 0.1 M NaCl. The paromomycin is shown as a gray surface. This cationic drug 

binds in the deep enlarged major groove created by a distorted phosphate backbone 

containing unpaired and bulging adenines. (b) A close-up view of the paromomycin binding 

site in the full 16S rRNA of the 30S ribosomal subunit (PDBid: 1FJG) at 0.1 M NaCl. The 

paromomycin is buried when bound to the A-site of the 16S rRNA in the 30S ribosomal 

subunit. (c) An EPSM of barnase (PDBid: 1B3S) immersed in a 0.1 M NaCl solution. (d) An 

EPSM of barstar (PDBid: 1B3S) embedded in a 0.1 M NaCl solution. (e) An EPSM of the 

barnase-barstar complex (PDBid: 1B3S) at 0.1 M NaCl. The electrostatic potential (ϕ) 
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coloring scales (in kT/e) are as follows: green (G) = 5, blue (B) = 2.5, white (W) = 0, red (R) 

= −2.5, and yellow (Y) = −5 in panel a. For panel b, (G,B,W,R,Y)=(4,2,0,−2,−4). For panels 

c, d, and e, (G,B,W,R,Y)=(3,1.5, 0,−1.5,−3). In views (c) and (d), which show the binding 

interface, one observes that barnase has a large region of positive ϕ and barstar has a 

complementary negative ϕ.
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Figure 3. 
Electrostatic binding free energies (ΔΔGel) calculated with and without LSR as functions of 

the finest grid spacing. The data points show the average of 30 calculations for each grid 

spacing, and the error bars depict their standard deviations, as outlined in Methods. (a) 

Paromomycin bound to a 16S rRNA fragment (PDBid: 1J7T). (b) Paromomycin bound to a 

30S ribosomal subunit (PDBid: 1FJG). (c) Barnase-barstar complex (PDBid: 1B3S). The 

NaCl concentration was set to 0.1 M.
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Figure 4. 
Electrostatic potential (ϕ) surface maps generated with the nonlinear Poisson-Boltzmann 

equation (PBE) for a 40 base pair ideal A-RNA helix embedded in a NaCl solution. Using 

the notation in Figure 2, the ϕ scale in kT/e is (G,B,W,R,Y) = (+5,+2.5,0,−2.5, −5). The gray 

meshes represent isocontours where the difference between the concentration of counterions 

given by the size-modified PBE and that given by the nonlinear PBE is (a) 0.1 M and (b) 1.0 

M NaCl.
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Figure 5. 
(a), (b), and (c) show three views of the electrostatic potential (ϕ) surface map of the Host 

factor for Q beta (Hfq) protein with its companion RNA shown in black (PDBid: 1KQ2). (b) 

shows a close-up view of (a), highlighting the RNA-binding region. (c) shows the back view 

of (a). (d), (e), and (f) show isopotential contours around the Hfq protein. The blue contour 

has a ϕ of +1 kT/e, and the red contour has a ϕ of −1 kT/e. The dipolar nature of the Hfq 

protein is clearest in (e), which is a side view of (d). The ϕ scale is as follows: (G,B,W,R,Y) 

= (3,1.5,0, −1.5, −3) kT/e.
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Figure 6. 
Two views of the electrostatic potential (ϕ) surface map of the rRNA (PDBid: 1HC8) 

obtained with the nonlinear Poisson-Boltzmann equation and a finest grid spacing of 0.1 Å. 

The ϕ scale is as follows: (G,B,W,R,Y) = (5.5,2.75,0, −2.75, −5.5) kT/e. The Mg2+ binding 

sites are displayed as gray spheres. Panel (a) highlights the two Mg2+-binding sites 

(MG1163 and MG1167) with the largest negative ϕ’s.
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Figure 7. 
(a) shows the electrostatic potential (ϕ) surface map (EPSM) for the 30S ribosomal subunit 

immersed in a 0.1 M NaCl solution (PDBid: 1FJG). The black arrow points to the binding 

site of the paromomycin, which is represented as a translucent gray surface. A close-up view 

of the binding site showing the high quality of the generated EPSM is portrayed in Figure 2b 

(b) shows a similar EPSM for the satellite panicum mosaic viral capsid (PDBid: 1STM) at 

0.1 M NaCl. The ϕ scale is as follows: (G,B,W,R,Y) = (4,2,0, −2, −4) kT/e. The nonlinear 

PBE was solved using a finest grid spacing of 0.3 Å.
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Table 2

The electrostatic potentials (ϕ’s) at Mg2+ binding sites near the 23S ribosomal RNA (PDBid: 1HC8) shown in 

Figure 5. These ϕ’s were computed with both the linear (LPBE) and nonlinear (NLPBE) Poisson-Boltzmann 

equation (PBE) and a finest grid spacing of 0.1 Å.

MG site* NLPBE LPBE

1159 −4.12 −32.32

1160 −4.15 −23.36

1161 −4.78 −24.04

1163 −6.04 −43.40

1164 −4.03 −12.90

1165 −3.05 −4.26

1166 −0.95 −2.24

1167 −42.93 −77.38

1168 −2.57 −8.25

1172 −4.10 −18.78

*
These numbers were taken from the PDB file. Some of these Mg2+ sites are shown in Figure 6.
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