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Abstract

Automated methods for force field parametrization have attracted renewed interest of the 

community, but the robustness issues associated with the often ill-conditioned nature of parameter 

optimization have been vastly underappreciated in the recent literature. For this reason, the present 

paper offers a detailed description of the origin and nature of these issues. This includes a 

discussion of the RESP charge-fitting model, which does contain explicit robustness-enhancing 

measures albeit not in the context of bonded parameters, and which forms an inspiration for the 

present work. It is also discussed how all the bonded parameters in a Class I force field can be 

simultanteously fit using the Linear Least Squares (LLS) procedure, and a novel restraining 

strategy is presented that overcomes robustness issues in the LLS fitting of bonded parameters 

while minimally impacting the fitted values of well-behaved parameters. Two variants of this 

methodology are then validated through a number of case studies, including the fitting of bond-

charge increments, which illustrates the method’s potential for robustly solving general LLS 

problems beyond force field parametrization.
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1 INTRODUCTION

Mathematical optimization problems are ubiquitous in science and engineering. The design 

of empirical force fields for molecular mechanics is an example of a discipline where 

optimization plays a central role. Specifically, a force field is the sum of a potential energy 

function and a parameter set, the latter typically comprising hundreds of numerical 

parameters all of which require optimization. In the case of the popular Class I additive 

force fields, the parameters can be classified by the type of parameter optimization effort 

required, which is different for van der Waals parameters, partial charges and bonded 

parameters. 1–3 For condensed phase force fields, optimizing van der Waals parameters 

involves reproducing bulk phase properties through bulk phase simulations, which is 

laborious, computationally intensive and hard to automate. Fortunately, these van der Waals 
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parameters also exhibit a high degree of transferability, so once a sufficiently wide palette is 

available for a given force field, little van der Waals parameter optimization is required to 

add large numbers of arbitrary molecules to the force field. 2 The same cannot be said of the 

charges and bonded parameters.3 Over the last few decades, increases in computer power 

and improvements in Quantum Chemistry software have made it possible to generate 

acceptable Molecular Mechanics models using solely Quantum Mechanical (QM) target 

data for the optimization of these parameters. This has spurred a wave of renewed interest in 

automatic optimization of force field parameters, with efforts to automate the setup of the 

required QM calculations as well as the actual optimization of the charges and bonded 

parameters. 4–6 While QM-derived charges have seen considerable success, 7,8 the use of 

automatically optimized bonded parameters is less widespread and not routine. This is at 

least partially due to robustness problems in the optimization, which are scarcely 

documented in the literature and usually not considered in the development of automatic 

optimization programs. The present paper tries to rectify this situation, by which we hope to 

facilitate routine and automatic optimization of force fields for organic molecules. 

Additional introductory information about optimization problems and multi-objective 

optimization is respectively provided in sections S1.1 and S1.2 of the Supporting 

Information.

1.1 Linear Least Squares

Simply spoken, an optimization involves finding values for n parameters such that a merit 

function that depends on these parameters attains an optimal value. This can be generalized 

to multi-objective optimization problems, where the goal is to find values for n parameters 

such that m ensuing numerical properties (henceforward called “observables”) each 

approach respective target values. Although force field parametrization in principle falls into 

the latter category, for the sake of mathematical tractability, it is often reduced to a single-

objective optimization with a merit function that is the sum (or mean) of the squares of the 

differences between the observables and their respective target values, i.e. the squared 

distance between the observable vector and target vector. In the case of linear equations, this 

is called the Linear Least Squares (LLS) approach, which will be the focus of the present 

paper. To facilitate the discussion, we will express the system of linear equation in terms of 

matrices and vectors throughout this paper. As such, the LLS approach consists of finding 

an approximate solution in X of the generally inconsistent system AX = B, where the 

parameter vector X is the vector of unknown parameters K1 … Kn, the target vector B is the 

vector of target data points T1 … Tm, and each column i of m × n response matrix A is a 

response vector Ri with elements R1i … Rmi.

Using these definitions, the least-squares solution is the value of the vector X that minimizes 

merit function S = ||B′ − B||2, where the observable vector B′= AX, and each response vector 

Vanommeslaeghe et al. Page 2

J Comput Chem. Author manuscript; available in PMC 2016 May 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Ri determines the change in B′ in response to a change in parameter . Any 

response vector can have a large norm or be close to zero, and any two response vectors can 

be orthogonal, nearly orthogonal, parallel, or nearly parallel, which greatly influences the 

behavior of the system, as discussed in more detail in the next sections. How to obtain the 

least-squares solution X is a historically well-studied problem, and algorithms for doing so 

(e.g. QR factorization and Singular Value Decomposition) are commonly part of 

mathematical software libraries. For example, the program developed as part of the present 

work performs a QR factorization by calling of LAPACK’s DGELS routine. 9

1.2 Ill-conditionedness and robustness

It has been mentioned in the previous paragraph that the problem is only nontrivial if the 

system of equations is mathematically inconsistent. This statement and its implications merit 

a more detailed discussion. Any two equations may be inconsistent, necessitating an 

approximate solution, but this does not imply that all parameters are defined. Thus, from a 

least-squares point of view, a system can be inconsistent and underdetermined at the same 

time. For example, the following system:

is inconsistent in K1 and undetermined in K2; in the least-squares solution, K2 can have any 

value (one would likely choose 0) as long as K1 = 10.5. A more insidious problem is ill-

conditionedness. Consider the very similar system:

This system is exactly solvable; the solution is X = (500, −489500). Thus, adding only the 

slightest numerical noise in the coefficients results in a completely different solution. 

Furthermore, it should be noted that the approximate solution (10.5, 0) produces an 

observable vector B′ that deviates only 5% from the target vector B, which would be 

acceptable for some practical purposes. Perturbing both elements of B′ by 5% requires a 

change of 500 in K2 as opposed to a change in K1 of only 0.5; accordingly, if a fixed 

perturbation is applied to K1, the least-squares optimal solution in K2 is perturbed 1000-fold. 

The system is almost underdetermined, or more formally ill-conditioned (with K2 being 

“poorly determined” according to Bayly et al.’s terminology10). Using the definitions from 

section 1.1, parallel response vectors Ri lead to underdetermination, while nearly parallel 

response vectors cause ill-conditionedness. Indeed, in the first example above, R2 is the null 

vector, which is parallel to any other vector, while in the second example, R1 = (0.999, 

1.001) and R2 = (0.001, 0.001) are almost parallel. This situation can be readily identified 

and quantified by performing a Singular Value Decomposition (SVD) and calculating the 

condition number from the singular values. However, the pragmatic interest of the present 

paper is not so much to quantify the problem, as to find an approximate fitting methodology 

for linear systems that avoids this lack of robustness altogether.
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1.3 The RESP Model

A prominent example of an LLS problem in the field of Molecular Mechanics is 

electrostatic potential-based charge fitting. Lack of robustness because of ill-

conditionedness is commonly observed when solving the associated system of linear 

equations, which led Bayly et al. to propose the RESP model in which restraints are added 

to the system. 10 As discussed in depth in section S1.3 of the Supporting Information, this 

has provided a strong inspiration for the present work. Specifically, we undertake a similar 

effort to find a set of workarounds to make the derivation of bonded parameters from a 

Potential Energy Surface (PES) robust enough to be widely useful to non-expert users. We 

furthermore endeavor to choose our workarounds carefully so that they can be generalized to 

other linear optimization problems without having to abandon the algebraically convenient 

LLS functional form.

2 METHODOLOGY

2.1 The dihedral fitting problem

The dihedral portion of an empirical force field’s potential energy function is commonly 

determined by

(1)

where ϕ is the dihedral angle and , ni and δi are respectively the amplitude, multiplicity 

and phase associated with a given dihedral term. A dihedral parameter, defined by a 

sequence of 4 atom types, can consist of multiple such dihedral terms with different ni, 

which are strictly positive integers no larger than 6 and are typically chosen based on the 

symmetry of the rotatable bond in question. It should be noted that a δi other than 0° or 180° 

gives rise to an asymmetric potential, which is unphysical for a symmetric molecule and 

non-transferable between molecules of different symmetry, and therefore often undesirable. 

Also, changing δi from 0° to 180° or vice versa is equivalent to inverting the sign of , 

except for a constant offset of  that is physically irrelevant because MM energies are 

only meaningful in a relative sense. Therefore, δi can be set to 0 in (1), leaving only  to 

be fit (programmatically, a negative  in the solution vector X can be translated back to a 

δi of 180° a posteriori). As first implemented by Halgren et al. 11 and further discussed by 

Guvench et al. 12, this reduces the dihedral fitting problem to a system of linear equations 

that can be solved using the LLS approach. Specifically, consider m conformations of a 

molecule. For each conformation j, a target (typically QM) energy  is available, along 

with a corresponding initial MM energy  in which all force field terms are present 

except the dihedrals being fitted. Using the notation from section 1.1, let 

 and  (which can be precomputed from the 

dihedral angle ϕj in conformation j). The constant offsets  and 
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 ensure that  and  for all values of i, and don’t impact 

the physics as explained above. Note that the constant 1 in (1) is absorbed into . The least-

squares optimal amplitudes  for the dihedral terms i are now given by the elements of the 

solution vector Ki. By virtue of the offsets cT and , guaranteeing 

that B′ and B are always aligned in a way that minimizes merit function S, which therefore is 

equal to the square of the figure of merit “RMSE” in 12.

2.2 Extension to variable phases

In the rare cases where fitting of the phase δi is desirable, the above scheme is no longer 

applicable because the response of the energy to δi is not linear. This limitation can be 

overcome by expressing a variable-phase dihedral term as the sum of two terms with 

independently variable amplitudes and fixed, predetermined phases δx and δy:

Indeed, for a fixed δx ≠ δy, any ( ) corresponds to a single ( , δi) and vice versa, 

as expressed by the phasor addition rule. However, an angle of 90° between δx and δy is a 

prerequisite for the corresponding response vectors R to be orthogonal, which improves 

robustness as explained in section 1.2. For mathematic and computational convenience, it is 

appealing to choose δx = 0 and δy = π/2, so that  and 

cos(niϕ − δy) = sin(niϕ). Although the same decomposition is commonly used in MD 

software such as CHARMM to improve performance by limiting the number of 

computationally expensive trigonometric functions to be evaluated,* Hopkins and Roitberg 

independently noted that it can also be of utility in the fitting of asymmetric dihedrals. 13 

However, we show in section 2.10 that in combination with restraints (sections 2.5 and 2.6), 

this choice imposes a small spurious asymmetric bias on the solution, and that in these 

circumstances, a more correct choice is δx = −π/4 and δy = π/4, which retains the advantage 

of being orthogonal and is mathematically not substantially more complicated.

It should be repeated that variable phases are not commonly desirable, and the remainder of 

this paper will assume fixed phases as discussed in section 2.1, unless explicitly noted 

otherwise.

*Starting from cartesian coordinates, the dihedral angle can only be obtained by first calculating its cosine and sine, then taking the 
arctangent of the quotient. This would then make it possible to obtain the dihedral energy contribution by multiplying by ni, 
subtracting δi, and taking the cosine of the result per expression (1). However, for an ni = 1 term, all of the above can be bypassed by 

simply multiplying the starting cosine and sine of the dihedral angle by the respective precomputed  and . Similarly, the 
higher-multiplicity contributions can be obtained through the orthogonal fixed-phase terms without additional trigonometric function 
evaluations by using the known trigonometric identities for sin(nϕ) and cos(nϕ) (a.k.a. the multiple angle formulas).
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2.3 Extension to other bonded parameters

All other bonded parameters in a Class I force field, specifically bonds, angles, improper 

dihedrals and optional Urey-Bradley (UB) terms, correspond to harmonic terms in the 

potential energy function of the form , where Ki is the force constant and  the 

reference value (distance for bond and UB, angle for angle and improper dihedral). 

Traditionally, parameters for these terms were obtained by analysis of the (experimental or 

QM) vibrational spectrum, but this is a somewhat complex procedure that is not trivial to 

automate, and it was observed during the parametrization of the CHARMM General Force 

Field (CGenFF) to commonly suffer from severe robustness problems related to the fact that 

many contributions of different parameters are mixed into one vibrational frequency, with 

substantial differences in mixing between the MM and target spectra. 2,14 Instead, we 

propose to perform QM potential energy scans along these Degrees of Freedom (DF), 

ideally consisting of the minimum energy conformation and at least two other conformations 

at both sides of the minimum. This can readily be automated, and its higher computational 

cost is mostly rendered irrelevant by advances in QM software and computer power.

Just as for the dihedrals in section 2.1,  can be precomputed if  is known before-

hand, making LLS fitting of Ki trivial. This is almost always the case for improper dihedrals, 

where  is generally 0, but rarely for the other bonded parameters such as bonds and angles. 

For these cases, we can express the harmonic function with variable reference value as the 

sum of two harmonic functions with fixed reference values, analogous to section 2.2:

(2)

in which case Ki = Kx,i + Ky,i and , or the weighted mean of  and , 

weighted by Kx,i and Ky,i, respectively. The choice of  and  is less clear-cut than that of 

δx and δy in section 2.2; choosing them too close together would clearly lead to 

illconditionedness due to the vectors R being near-parallel, but choosing them too far apart 

may also cause numerical precision issues, with small changes in Kx,i and Ky,i causing big 

shifts in . In our current implementation, we simply use the lower and upper limit of the 

input scan range for this purpose, as the scan range necessarily needs to be wide enough to 

produce a significant energy difference but small enough to stay within the thermally 

accessible region and to avoid artifacts such as chemical rearrangements in the QM 

calculations.

2.4 Sources of ill-conditionedness in bonded parameter fitting

Just like in the case of charge fitting (section S1.3), there are some inherent sources of 

illconditionedness in the fitting of bonded parameters in general and dihedrals in particular. 

An avoidable yet oft-overlooked class of these problems is the case where the fitting 

algorithm is tasked to fit dihedral multiplicities that are forbidden by the molecule’s 

symmetry, as elaborated in section S2.1.1 of the Supporting Information. Conversely, the 

present discussion will be limited to giving an example of a closely related phenomenon that 
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is not avoidable. Specifically, in the example of the ψ protein backbone rotation, the two 

carbonyl carbon substituents with 180° offset each have their own combinations of atom 

types (i.e.  and ) and own parameter, which we will 

henceforward call a and b. Assume that the same set of dihedral multiplicities is used for 

both of these parameters, and that the target PES can be exactly fitted using the same 

multiplicities. In this case, the equation  is exactly satisfied as long as 

 and  for ni = 1, 3 and ni = 2, 4, 6, respectively* 

(assuming the phases are both 0 and allowing for negative amplitudes, as discussed in 

section 2.1). In other words, the system has an undetermined DF in the form of an arbitrary 

constant offset that can be simultaneously applied to  and . In terms of vectors, Ra and 

Rb are parallel. For non-idealized geometries, the vectors are almost parallel, the constant 

offset has a small residual impact on B′, the algorithm will try to exploit this to fit arbitrary 

features in B, and undesirably large, mostly compensatory  values will ensue, as 

illustrated by the example in section 4.1.2 below. From this, it can easily be seen that ill-

conditioned dihedral fitting problems are ubiquitous and cannot generally be avoided by a 

knowledgeable choice of multiplicities. The issue is not limited to dihedral parameters 

either; an example involving valence angles is worked out in section S2.1.2 of the 

Supporting Information.

On a more general level, the number of parameters in a molecule with no recurrent atom 

types is equal to the number of redundant internal coordinates, while the number of DF 

along which perturbations can be performed is 3N – 6. While actual molecules more often 

than not have recurrent atom types, the fact remains that the bonded parametrization of a 

single molecule is almost always underdetermined/ill-conditioned. Therefore, any fitting 

algorithm that is to be generally useful for this purpose must forcefully include a mechanism 

to mitigate this problem. Past efforts have often included implicit or even unintentional 

features to this effect, as elaborated in section S2.1.3 of the Supporting Information. In the 

present paper, we formally analyze the problem and propose a general solution.

2.5 Limitations of constant restraint

The most straightforward measure against overfitting is to weakly restrain the parameters 

towards approximate but reasonable “initial guess” * values, as successfully implemented in 

the RESP charge model (sections 1.3 and S1.3). In the case of bonded parameters, these 

initial guess values will depend on the type of parameter. Specifically, because of the 

symmetry of sigma bonds, dihedral parameters around single bonds that are not subject to 

conjugation are mostly correction terms for imperfections in the 1–4 and longer-range non-

bonded interactions. 3 In a force field where these imperfections are not systematic errors, 

the average amplitude for this type of bonds should approach 0, so it seems reasonable to 

*i.e.  equals  for odd values of ni and 

 for even ni values. The constant offset  can be ignored for the present purpose, as 
explained in section 2.1.
*LLS has no initial guess in the strict sense of the word, but the term “initial guess” will henceforward be used to describe the restraint 
target, in order to avoid confusion with the target vector B or the elements thereof.
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pull their restraints towards 0, like in the RESP model. Of all bonded parameters, this class 

of dihedral parameters is the most critical for correct conformational behavior. For dihedral 

parameters around (hyper)conjugative single bonds and (partial) double bonds, as well as 

bond, angle and improper dihedral parameters, reasonable initial guess values different from 

0 could be proposed on a case-by-case basis, but this exceeds the scope of the present paper. 

As the algorithms proposed in this paper limit sensitivity to the restraints’ initial guesses 

(see section 2.9), they allow the case-by-case assignment of these guesses to be performed in 

a very approximate fashion.

Once the initial guess (i.e. target of a restraint) is determined, and assuming a harmonic 

functional form is chosen for its computationally convenient properties, the remaining 

question is its force constant. The most naive choice is to use a constant value, as used in the 

RESP model. However, this was found to be problematic in practice. Indeed, as discussed in 

section S1.3, Bayly et al. observed that larger parameters experience a stronger restraining 

force, which they overcame by sacrificing computational convenience in favor of a 

hyperbolic restraint. While this ad hoc measure was empirically shown to largely overcome 

the observed disproportionate restraining bias, it can be seen from the discussion in section 

S2.2 of the Supporting Information that the problem is fundamentally not due to the 

harmonic functional form of the restraint, and as such, changing the functional form to a 

hyperbolic one is not expected to produce the intended results for all LLS problems. 

Additionally, it does not yield direct control over the factor by which independent/

orthogonal parameters are scaled down due to the restraints. Given such control, it would 

become possible to multiply the resulting parameters by the same factor after the fitting, and 

thus eliminate the effect of the bias on well-behaved parameters altogether. The next section 

discusses a proposal to attain this goal.

2.6 General expression for variable restraints

Similar as in section 1.1, the harmonically restrained LSS problem discussed in section 2.5 

can generally be defined as the solution to the system AresXres = Bres, with Xres being the 

vector of restrained parameters , and Ares and Bres being A and B with extra 

lines added as follows:

where b1 … bn are the force constants of the restraints (henceforward referred to as biases) 

associated with parameters  and the n zeroes that are appended to the original 

target vector B are the initial guess values for the restraints; the case of nonzero initial guess 

values is discussed separately in section 2.10. Finding the LLS solution of this system 
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involves minimizing the merit function , or in other words, finding the 

value of the vector Xres for which

(3)

Consider the case where the unrestrained system as described in section 1.1 is exactly 

solvable, i.e.

(4)

Per section 2.5, we want the restraining bias to scale each parameter Ki that makes up this 

perfect solution by a chosen fraction (henceforward referred to as the bias fraction) σi:

(5)

Substituting (5) in (3) yields

(6)

Per (4), this simplifies to:

(7)

where the notation 〈Rk|Ri〉 denotes the dot product Rk · Ri to reflect the fact that the m 

elements of the vectors Ri are generally discrete samples of a continuous function.

Calculating bk using equation 7 before performing the restrained LLS fit would be 

straightforward, except that the factor Ki/Kk is a priori unknown, and its introduction is 

based on the assumption that the unrestrained system is exactly solvable, which is generally 

not the case. A natural solution would be to perform an unrestrained LLS to obtain this 

factor and calculate the biases bk prior to the restrained LLS, but even assuming that the 

original system is never truly underdetermined, this will simply lead to a restrained solution 
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that is equal to the unrestrained – and often ill-conditioned – solution, scaled down exactly 

by the fraction σi. Therefore, this will do nothing to improve robustness. A similar proposal 

would be to calculate the biases from the restrained solutions  in an iterative self-

consistent fashion, but this is neither guaranteed to converge quickly nor to yield more 

reasonable results. Indeed, the main lesson from this thought experiment is that a solution 

that approximates the exact Ki/Kk is undesirable from the point of view of robustness.

Before discussing how to resolve this problem, a closer understanding of the functional form 

of (7) is in order. Specifically, the expression under the square root can be broken down into 

a self-term and a sum of cross-terms:

(8)

If all the response vectors are orthogonal, 〈Rk|Ri〉 will always be zero for i ≠ k, and only the 

self-term remains for each k. This term is not dependent on any K value, and  is 

simply the norm of the vector Rk, so that

(9)

In other words, if all the response vectors are orthogonal, the bias bk required for pulling Kk 

down by a fraction σk is trivially dependent on σk and ||Rk|| only. This makes it clear that the 

cross-terms express the coupling between non-orthogonal DF. Specifically, 〈Rk|Ri〉 is 

proportional to the cosine of the angle (in m-dimensional Euclidean space) between the two 

vectors: 〈Rk|Ri〉 = ||Rk|| ||Ri|| cos θ. Consider an unrestrained system where these vectors are 

almost parallel, which is a common occurrence as discussed in section 2.4. Introducing a 

single bias bi that makes  lower than Ki by a fraction σi into this system will make 

higher than Kk by an almost-equivalent magnitude, so that B′ is almost unchanged. To 

further rationalize this observation, (8) can be rewritten in the following form:

This shows  is a quantitative measure for how strongly a perturbation in Ki influences 

Kk. For parallel vectors Rk and Ri, swapping i and k inverts this factor: . 

In this respect, Ki and Kk behave as if they were the vertical positions of the opposite ends of 

a lever with mechanical advantage .* Similarly, σiKi is the absolute magnitude of the 

*It it worth noting that in this analogy, a negative number represents a situation where Ki and Kk are at the same side of the fulcrum. 
This possibility has important implications, which are discussed in more detail below.
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perturbation in Ki. Multiplying this by  yields the negative of the absolute magnitude 

of the corresponding perturbation in Kk in the absence of any other influences, and dividing 

this by Kk translates this to a relative value, which is added to the relative perturbation σk 

directly imposed on Kk, as to annul the effect of σi.

It should be noted that the mechanical analogy of a lever is not a perfect one. To illustrate 

this, consider the exactly solvable but underdetermined system consisting of two identical 

response vectors a and b discussed in section 2.4, with an infinite number of unrestrained 

solutions subject to the condition Ka+Kb = Ktarget. If this system is restrained by the biases 

 and  given in (9), with σa = σb = σ, the restrained LLS solution will approach the 

unrestrained solution for which  (because this minimizes the merit 

function), but  and , in disagreement with (5). This 

violates the analogy of a rigid lever, and can be rationalized by observing that the two biases 

work at cross-purposes. The analogy could partially be recovered by assuming a flexible 

lever with a rigidity proportional to the aformenetioned factor cos θ; indeed, the parameters 

K associated with perpendicular vectors do not couple at all. However, this analogy is still 

not perfect and should be thought of as an intuitive rationalization tool rather than a rigorous 

alternative description.

While the unrestrained system has no single solution (Ka, Kb) due to the underdetermination, 

arbitrarily choosing Ka = Kb in (7) or (8) for the purpose of calculating the cross-terms 

yields . Using these biases, the restrained LLS solutions is 

, so the cross-terms potentiates the biases 

as to bring the solution in agreement with (5). Interestingly, arbitrarily setting Ka = 2Kb in 

(7) or (8) instead so that  and  yields  and 

, and (5) is now satisfied for the solution  and 

. Thus, it can be seen that in a truly underdetermined system, the arbitrary 

choice of the relative magnitudes of Ki and Kk in (7) and (8) directly determines relative 

magnitudes of  and . A similar relationship exists for ill-conditioned systems, albeit 

in a more approximate fashion. This knowledge confirms the earlier observation that using 

the exact Ki/Kk from the unrestrained solution of an ill-conditioned system for the purpose of 

calculating the biases will yield restrained solutions that are similarly affected by the ill-

conditionedness, and raises further doubt on whether a hypothetical self-consistent 

calculation of these factors would convergence towards a robust solution. However, the 

same knowledge can be exploited to propose values that can be used in (7) and (8) in lieu of 

Ki/Kk in order to robustly obtain desirable results.

2.7 Uniform bias

The discussion in the previous paragraph makes it tempting to propose to set Ki/Kk = 1 in (7) 

and (8). In a truly underdetermined fit of multiple equivalent parameters Ki (ie. with 

perfectly parallel Ri), this would result in the parameters being given the same value, and in 

an ill-conditioned system that approaches this situation, the parameters values would tend to 

be similar. This would be desirable in common cases such as 3 equivalent dihedral 
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parameters around the same rotatable bond (illustrated in subsection 4.1.1) or 2 angle 

parameters around a trigonal planar center (discussed in section S2.1.2), where it is the 

authors’ experience that similar values improve transferability. However, this naive proposal 

fails when the vectors Rk and Ri are antiparallel (see the discussion in section 2.4 for odd ni 

values). In that case, parameters Ki with the same sign will counteract each other, and 

restraining them to be similar substantially decreases the robustness of already ill-

conditioned systems. To obtain the same balance and transferability as discussed above, the 

parameters would need to be restrained to be of similar magnitude but opposite sign, i.e. 

Ki/Kk = −1. This can be accomplished by observing that for antiparallel vectors, the factor 

〈Rk|Ri〉 in (7) and (8) is negative as well, so that the behavior will be as desired in the cases 

discussed so far if we change (7) to:

(10)

This, however, poses another problem. In section 2.3, we expressed harmonic parameters 

with variable reference value as a sum of two harmonic functions with fixed reference 

values, which we proposed to set equal to the lower and upper limit of the input scan range. 

It can be shown that under these circumstances, the 〈Rx,i|Ry,i〉 of the component harmonic 

functions will generally be negative; however, for an  that lies between  and  (as will 

commonly be the case), the fitted Kx,i and Ky,i need to have the same sign, which would be 

disfavored by (10), again decreasing the robustness. Similar situations may arise for variable 

phase dihedral parameters for certain scan ranges. The solution here is to apply the absolute 

value in (10) only when k and i are not components of the same compound parameter; if 

they are, the sign is retained, i.e.

where k′ is k’s counterpart in a compound parameter. It should finally be noted that setting 

Kk′/Kk = 1 biases the two components towards having equal values, so that the resultant 

reference value or phase is biased towards the middle between the reference values or 

phases of the components, i.e. the middle of the scan range for bonds and angles. In practice, 

the impact of this effect was observed to be small. As we did not find a way to compensate 

or otherwise eliminate any restraint-induced bias on the reference values and phases, a small 

bias towards the center of the scan range seems relatively benign, justifiable, and an 

acceptable limitation of the methodology.

2.8 Target-adapted bias

It is the authors’ experience that for response vectors that are roughly parallel, non-

compound parameters (or more precisely, parameters that are not components of the same 

compound parameter) that have the same sign usually lead to the most favorable fit, both in 
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terms of reproducing the target vector and preventing overfitting and the associated large, 

mostly mutually compensating parameter values. Similarly, non-compound parameters with 

opposite sign are usually the most favorable for response vectors that are roughly 

antiparallel. While the rationale for this has been demonstrated in section 1.2 for the 

asymptotic case where the response vectors are almost exactly parallel or antiparallel, the 

considerations for compound parameters in section 2.7 demonstrate that this cannot be held 

as a general rule in more complex cases, which is the main limitation of the uniform bias. 

Additionally, it would appear desirable to employ the properties of the factor Ki/Kk 

discussed in section 2.6 to make the fitting procedure favor the parameters that have the 

greatest impact on how well B′ reproduces B for the smallest change in parameter.* Both of 

these concerns could tentatively be addressed by proposing to set

(11)

in (7) and (8), which will henceforward be referred to as “target-adapted bias”. Per the 

discussion in section 2.6, the resulting restraint would indeed favor low Kk values for 

parameters whose response vector is close to orthogonal to the target vector. It should be 

noted that the uniform bias formula presented in section 2.7 (or even a simple LLS 

procedure with constant bk as discussed in section 2.5) already has an inherent tendency to 

this effect, so that the target-adapted bias disproportionally favors parameters k with high 

〈Rk|B〉. As for the sign, two perfectly antiparallel vectors (Ri and Rk) by definition have 

opposite dot products with a third vector (B). While this is not necessarily true for roughly 

antiparallel vectors, the treatment is asymptotically correct and the chance of an incorrect 

sign increases as the angle between the vectors becomes greater and 〈Rk|Ri〉 in (7) and (8) 

decreases in absolute value, so that the numerical impact of Ki/Kk on the total bk becomes 

smaller as its “precision” decreases. Compound harmonics are again an exception; as 

explained in section 2.7, a positive Ky,i/Kx,i would usually be desirable, while (11) is likely 

to be negative owing to the response vectors typically being roughly antiparallel (〈Rx,i|Ry,i〉 

< 0). In light of the discussion in section 2.7, it would appear logical to use an absolute value 

in these cases, but it was empirically observed that differences in the magnitudes of Kk′/Kk 

values had unpredictable effects on the reference values obtained from equation 2 (data not 

shown). Better results were obtained by using the uniform bias approach for Kk′/Kk for all 

compound functions, so that the final target-adapted bias becomes

*Note that this is not the same as favoring the parameters with the greatest impact on B′, as nothing guarantees that this impact is 
along a direction in m-dimensional space that brings it closer to B.
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using the same notation as in section 2.7. The limitation of having a small bias on the 

reference values and phases of compound parameters remains the same as in the uniform 

bias.

2.9 Bias compensation

Both the uniform and target-adapted bias functions reliably decrease all well-behaved fitted 

force constants and amplitudes by a fraction σk. This makes it possible to scale these values 

up by a same amount after fitting, so that the final force constants and amplitudes for well-

behaved DF have exactly the same value as they would have without biasing restraint. We 

will henceforward refer to this operation as “bias compensation”, and apply it to all results 

of restrained fits unless explicitly stated otherwise. It should be noted that this does not 

nullify the advantages that led us to introduce the biasing restraint in the first place, because 

the ill-conditioned DF are impacted far stronger by said biasing restraints.

2.10 Restraints with nonzero target

All restraints discussed up to this point pull the fitted Kk values towards zero. As discussed 

in section 2.5, this is particularly appropriate for dihedral parameters around rotatable bonds, 

and as demonstrated in the case studies below, it yielded excellent results when applied to 

dihedral fitting problems in general. However, it was found to be far less appropriate for 

bonds and angles, which not only cannot reasonably expected to approach zero, but in 

practice very often turn out to be non-orthogonal and/or ill-conditioned to some degree, 

causing their force constants to be pulled down far more than σk and rendering the bias 

compensation ineffective. An appealing solution would be to construct Bref in section 2.6 by 

adding nonzero values to B, but unfortunately, the corresponding expression for bk 

(equivalent to to equation (7)) is not of practical use. Rather, we opted to subtract the energy 

contribution associated with the initial guess parameter (i.e. ) from B prior to 

the fitting, and combine the fitted Kk with the initial guess parameter before outputting the 

result, so that pulling Kk towards 0 is equivalent to pulling the final result towards . 

As mentioned before, this scheme is most often applied to bond and angle parameters which, 

as discussed in section 2.3, generally are expressed as a combination of two harmonic 

functions, the resultant of which is now a correction term to be applied on top of 

by means of equation (2). Per the discussion in section 2.7, this correction term contains a 

slight bias towards the middle of the scan range because Kk′/Kk is set to 1 both in the 

uniform and the target-adapted bias, causing a small but artificial distortion in the final 

reference value. As it would be more ideal to bias the reference value towards its 

corresponding value in the initial guess parameter, this was attempted by choosing Kk′/Kk 

such that the resultant reference value of 2 component parameters with ratio Kk′/Kk would 

equal the initial guess reference value. However, similar as in section 2.8, Kk′/Kk values 

other than 1 gave rise to unpredictable results in practice. This was worked around by 

leaving Kk′/Kk = 1 and shifting both  and  such that they are centered around the initial 

guess reference value without changing their mutual distance. This shift was also 

straightforward to apply in the cyclic phase space of variable-phase dihedrals and improper 

dihedrals. As discussed in section 2.2, it is even advantageous to shift the δx and δy of 
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dihedrals with no initial guess phase to −π/4 and π/4. Doing so applies a slight bias towards 

a symmetric potential and thereby improves transferability, whereas the more naive choice 

of δx = 0 and δy = π/2 imposes a small spurious bias towards π/4 and 5π/4.

2.11 Group fitting and weighting of data points and parameters

As discussed by Guvench et al. 12, it is often desirable to assign different importance to 

different data points in the LLS fit (i.e. elements to the target vector B). This can 

straightforwardly be accomplished by multiplying each row j of A and B by the square root 

of a user-defined weight factor wj, which results in an intuitive weighting consistent with 

reference 12. Perhaps somewhat less trivial is the possibility of applying per-parameter 

weight factors by multiplying each column of B (i.e. each response vector Ri) and each 

output parameter Ki by a weight factor wi. This proved crucial to bring the bond, angle and 

dihedral parameters on the same footing. Specifically, these different types of parameters are 

expressed in different units and have different magnitudes, and mixing them in the same 

restrained LLS fit (with either uniform or target-adapted bias) only gives reasonable results 

when applying a wi of 200 to the bonds and 40 to the angles and improper dihedrals. In the 

program developed as part of the present work, this basic weighting scheme is applied by 

default. Finally, to make it possible to fit a parameter to target data sets calculated on 

chemically different molecules containing that parameter, it is necessary to have the ability 

to calculate independent offsets cT and  (as defined in section 2.1) for each set of data 

points.15 In other words, the conformational energies associated with different chemical 

entities need to be aligned independently, as it is often meaningless to try to capture the 

energy difference between different compounds. This feature, henceforward referred to as 

“group fitting“, also found unexpected use for routinely fitting bond and angle parameters in 

a robust fashion, as discussed in section 2.12.

2.12 Potential Energy Scanning considerations

It is generally accepted that for a given potential energy function, the scope and quality of a 

force field is largely defined by the target data used in its parametrization. A variant of this 

rule holds true even at the level of optimizing a modest number of bonded parameters to 

conformational energy differences, in that even the most robust fitting algorithm cannot be 

expected to yield reasonable results if the target data does not unambiguously define the 

parameters to be fitted. Therefore, when generating target data in the form of QM potential 

energy scans, the details of these calculations should be chosen carefully. While a 

substantial body of knowledge regarding the scanning of dihedral DF for this purpose, there 

has been much less previous work on the scanning of bond and angle DF. Our experiences 

and the ensuing recommendations in this respect can be found in section S2.3 of the 

Supporting Information. In summary, bond and angle scans consisting of 3 points in 

principle suffice to approximate the associated force constant. In our proposal, one of the 

scan points is the minimum energy conformation and for the two others, the DF of interest is 

respectively incremented and decremented by a constant. The best results were obtained if 

this constant was chose such that the outer points are between 1 and 3 kcal/mol above the 

middle (minimum energy) point. This typically corresponded to step sizes of ~0.05Å and 

~5° for bonds and angles, respectively. Importantly, it was found that in contrast with 
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dihedral scans, degrees of freedom that are not directly involved in bond, angle and 

improper scans should not be allowed to relax. However, performing a concerted fit of 

dihedral and other parameters in this fashion gives rise to an energetic discrepancy between 

the set of constrained and the set of relaxed scan points. This was solved by using the group 

fitting discussed in section 2.11 to independently align these two sets.

As an alternative to Potential Energy Scans, Burger et al. recently proposed MC sampling of 

molecular conformations. 16 While, as argued in section S2.3, this may not be practical 

when the number of DF is large, a lot of parameter fitting problems involve small model 

compounds and modest numbers of parameters, making MC sampling an interesting 

prospect. While a systematic evaluation of this option within the current framework is 

outside the scope of the present paper, it may become the subject of future work.

3 COMPUTATIONAL DETAILS

All relaxed QM potential energy scans were performed at the MP2/6-31G(d) level of theory 

using the “ModRedundant” feature of the Gaussian 03 program. 17 The program’s defaults 

were used for all other options, except that the “NoSymm” keyword is often required when 

starting a scan from a symmetric geometry. As discussed in section 4.2.2 and reference 18, in 

the case of THF, MP2/6-31G(d) is not sufficient to quantitatively capture the potential 

energy surfaces that result from higher-level calculations or experiment. However, the aim is 

to provide a proof-of-concept for the present parameter fitting methodology, not to provide 

an updated force field, which would involve many other considerations. Conversely, the 

hexopyranose scans in section 4.2.3 are aimed at future release to the community, and were 

therefore performed at the MP2/cc-pVQZ//MP2/6-31G(d) level. Specifically, after 

performing a relaxed potential energy scan at MP2/6-31G(d) level using Gaussian 03, single 

point energies of all the resulting conformations were calculated at the MP2/cc-pVQZ using 

PSI4.19 Where applicable, constrained QM potential energy scans were performed at 

MP2/6-31G(d) level, using Gaussian 03’s “Scan” feature with a Z-matrix representation of 

an MP2/6-31G(d) optimized structure.

Where applicable, version 2b8 and 0.9.7 of the CGenFF force field and program were used, 

respectively. All MM scans were performed using the CHARMM program 20 by reading the 

QM geometry for each scan point into CHARMM. As discussed in section 2.12, the 

constrained MM scans that are indicated for bonds and angles are performed by simply 

computing single-point energies on these QM geometries; for the relaxed dihedral scans, 

energy minimizations (gradient tolerance = 10−4 kcal mol−1 Å−1) are performed while 

constraining all DF associated with all parameters being fit, including non-dihedral DF and 

DF that are not explicitly being scanned (e.g. in case a dihedral parameter applies to two 

separate chemically equivalent bonds out of which only one is scanned). For practical 

reasons, this constraining scheme is implemented using restraints with high force constants 

(99999 kcal mol−1 Å−2 for bonds and 9999 kcal mol−1 radian−2 for all other types of degrees 

of freedom), which are removed after the minimization to yield the MM energy. This is in 

line with the procedure employed in reference 12, which contains more details. Sample 

CHARMM scripts are provided with the program to facilitate reproducing the current 

procedure. The parameter fitting was performed using the “lsfitpar” program that will be 
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made available under an open-source license. Its interface is similar but not identical to the 

“fit_dihedral.py” program from reference 12; usage examples are provided with the program. 

Unless stated otherwise, the uniform bias (section 2.7) was used with σi = 0.001.

4 CASE STUDIES

4.1 Toy systems

In this subsection, two case studies are presented that consists of mathematical functions 

rather than real molecules, but are representative of phenomena that commonly occur in real 

molecules. This allows the study of said phenomena in a controlled environment devoid of 

any considerations other than the one of interest.

4.1.1 2+1 dihedrals around the same rotatable bond—To illustrate the difference 

between the uniform and the target-adapted bias, this case study consists of three dihedral 

angles a, b and c around the same rotatable bond, with the same parameter applying to b and 

c. This case is ubiquitous; for example, a might represent the O-C-C-C dihedral in 1-

propanol (compound 6 in figure 1), while b and c represent its two O-C-C-H dihedrals. In 

this example, the rotatable bond is scanned from 0 to 345° in steps of 15°, a, b and c are 

each offset by 120° and the target potential consists of a single cosine function with 

, n = 3 and δ3 = 0°. As the unrestrained system for this idealized situation is 

underdetermined, any solution for which  is exact. On this system, 

the uniform bias yields  while the adaptive bias results in 

and  after applying the bias compensation discussed in 2.9 in both cases. Since a 

perturbation in  has twice the impact on how well B′ reproduces B as the same 

perturbation in , the adaptive bias as intended gave  twice the magnitude, 

minimizing ||X|| in the process. While emphasizing the parameter with the highest response 

and minimizing the parameter vector are important objectives during parameter 

optimization, in this (unfortunately very common) case, it leads to higher amplitudes on the 

dihedrals associated with the hydrogens, which is both unphysical and poorly transferable. 

In contrast, the uniform bias as intended equalized the amplitudes , which minimizes 

max(X) and yields parameters that are more physical and transferable. While it should be 

noted that in an actual parameter optimization, dihedral parameters involving hydrogen 

atoms are typically transferred from existing parameter in the force field, similar situations 

can arise with non-hydrogen atoms, and since one of the stated goals of this work is to be 

useful to non-expert users, the uniform bias was chosen to be the default in the lsfitpar 

program, even though expert user may occasionally be able to improve the general quality of 

the parameters by choosing the adaptive bias option.

4.1.2 A typical ill-conditioned pair of dihedrals—This case study consists of two 

dihedral angles a and b around an idealized rotatable bond that contains a subtly nonplanar 

sp2 atom. The rotatable bond is scanned from −180° to 179° in steps of 1° driven by a, and b 

is offset by 179.5° to mimic a 0.5° deviation from planarity. The target potential consists of 

a single cosine function with , n = 1 and δ1 = 2°, the latter to simulate a 
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slight asymmetry in the target data that can be either an artefact or caused by the presence of 

an asymmetric center. This is an ubiquitous occurrence in real-life force field studies as 

well; to name just two examples, the C-C-N-C and C-C-N-H dihedral angles in the 

asymmetric molecule N-sec-butylformamide (compound 7 in figure 1) exhibit this type of 

behavior, as do the same dihedrals in its symmetric counterpart N-propylformamide 

(compound 8 in figure 1) if the C-C-C-N dihedral is accidentally sampled slightly 

asymmetrically in the target conformational ensemble. As demonstrated in Hopkins et al.’s 

case studies, 13 avoiding this kind of subtle asymmetry is difficult, and it can safely be 

assumed to be present in the majority of nontrivial dihedral parametrization studies, 

underlining the importance of the method performing well in this case study. Indeed, 

although the exact solution to the unrestrained least-squares problem is 

and , it would be preferable for the fitting algorithm to ignore the 

asymmetry and output  and , as this would be more 

physical in the case of a symmetric molecule and (vastly) more transferable in the presence 

of an asymmetric center, at the cost of an insignificant 2° error in reproducing the target 

data. As can be seen in figure 2, the solution is within 2% of the above unrestrained solution 

when the bias fraction is ≤ 2 × 10−7, but within 2% of the desired solution when the bias 

fraction is ≥ 10−3, with a sigmoid (on the present logarithmic scale) transition in-between. 

Even for bias factors σ up to 0.5, the bias compensation (section 2.9) gives rise to the correct 

solution, although this is not generally the case on more complex real-life problems; in this 

context, bias factors between 0.001 and 0.03 produce the best results in the authors’ 

experience.

4.2 Model compounds

While the lsfitpar program was internally validated on a significant number of compounds, 

the qualities of interest, i.e. robustness in the hands of a non-expert user and the generation 

of parameters that are “physical” and transferable, are not trivial to quantify, and are not 

problematic for all molecules. Therefore, two model compounds are discussed in detail to 

illustrate the use and behavior of the present algorithm.

4.2.1 N-ethylsulfamate—N-ethylsulfamate (NESM; compound 9 in figure 1) was 

selected because it exhibited significant coupling between different types of parameters as 

well as issues associated with the scan range for bonds and angles, thus presenting a good 

case study for the present algorithm as well as the practical considerations discussed in 

sections 2.12 and S2.3. Relaxed Potential Energy Scans were performed on the three 

dihedral angles C3-N2-S1-O11, C4-C3-N2-S1, and C4-C3-N2-H21 from −180° to 180° in 

steps of 5° (see figure 1, compound 9 for a key of the atom names). This small step size was 

chosen for cosmetic reasons, i.e. to get a smoother plot in figure 3; a step size of 15° is more 

common in practical studies as it produces more than enough target data to fit any sensible 

combination of multiplicities in the vast majority of cases, with cyclic structures being an 

important exception (see sections 4.2.2 and S3.1). As discussed in section 2.12, fully 

constrained 3-point scans were performed on the valence angles and bonds of interest. 

Specifically, the angles C3-N2-H21, H31-C3-N2 and H32-C3-N2 were each decremented 

and incremented by 10° in the QM optimized structure. Conversely, step sizes of 5° and 0.05 
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Å were used for the C4-C3-N2 angle and the C3-N2 bond, respectively. As the different 

scans had widely differing numbers of points, weight factors inversely proportional to the 

number of scan points were applied in order to give both the bond scan and the set of four 

angle scans the same weight as the set of three dihedral scans.

An initial guess parameter set was put together manually by combining parameters assigned 

by analogy by the CGenFF program 21 with manual adjustments and relevant parameters 

transferred from an earlier parametrization study on N-methylsulfamate. 22 As shown by 

figure 3, while this initial guess might be qualitatively acceptable for some purposes, it 

shows large quantitative deviations. The LLS solution with uniform bias and no restraints on 

bonds and angles (labeled “blind” in the figure) reproduces the bonds and angles well 

(figure 3b), but performs poorly on the dihedrals (figure 3a) compared to the other fits. On 

closer inspection (table 1), this appears to be caused by a somewhat unrealistic value for the 

C-N-S angle parameter compared to its initial guess value, which is highly trustworthy 

because it was optimized on the closely related model compound N-methylsulfamate. The 

observation that this angle significantly worsens the dihedral profiles despite the algorithm 

being given ample freedom in terms of multiplicities illustrates that dihedrals can strongly 

depend on other parameters, underlining the relevance of the present work. Furthermore, the 

fact that this angle is relatively sensitive to the presence or absence of an initial guess 

indicates that it is ill-defined; indeed, the geometric degree of freedom associated with this 

parameter was not explicitly scanned, forcing the algorithm to derive its value from 

energetic information that is implicitly present in the relaxed dihedral scans. This was done 

for the sake of illustration and while the result is encouraging, it is obviously safer in 

practical applications to either improve conformational sampling or use a high-quality 

transferred parameter, if available.

While the fit without weighting has the lowest RMSE, it performs significantly worse than 

others on the angles (figure 3b), which can trivially be explained by the fact that the 

weighting strongly emphasizes the angles and bonds. Combined with the observation that 

the weighting doesn’t make the dihedrals observably worse, this justifies its routine 

application in concerted fitting. It should also be noted that the RMSEs in the figure and 

table were calculated without weighting, thus inherently favoring parameters that were fit 

without weighting because an LLS fit that uses a given weighting scheme minimizes the 

correspondingly weighted RMSE. Finally, although a small but significant difference in the 

value for the C-C-N angle parameter can be observed between the uniform and target-

adapted bias, their PES and RMSE are not significantly different, underlining the somewhat 

ill-conditioned nature of even this seemingly straightforward and innocuous problem. While 

in this case study, the RMSE for the uniform bias is lower than that for the target-adapted 

bias by an insignificant amount, preliminary data indicate that the former’s advantage 

becomes stronger when given more ill-conditioned problems.

4.2.2 Tetrahydrofuran—Tetrahydrofuran (THF; compound 10 in figure 1) was chosen as 

a less trivial example of concerted bond, angle and dihedral fitting. Indeed, its 

pseudorotational energy surface is complex and subtle, and qualitative disagreement exists 

between different levels of correlated ab initio QM calculations as well as experiment. 18 

From a Molecular Mechanics point of view, while ring strain often dominates the 
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conformational energetics of small rings, in the case of all-sp3 5-membered rings, the effect 

of the ring strain is subtle because the idealized tetrahedral angle (109.5°) is only subtly 

larger than the inner angle in an ideal planar pentagon (108°), thus exerting only a small in-

plane force. Competing with this is an out-of-plane dihedral force caused by 1–4 repulsion, 

which is strong enough to induce a set of nonplanar minima, but not to impose high barriers 

between them. Therefore, all-sp3 5-membered rings such as THF are a prime example of 

molecules that would benefit from concerted angle and dihedral fitting. However, this is 

complicated by the fact that the relationship between the parameters and the conformational 

energetics is less straightforward than for noncyclic molecules and that it is not trivial to 

obtain a set of target data that is not ill-conditioned, as discussed in depth in section S3.1 of 

the Supporting Information. Therefore, previous efforts have involved alternating 

adjustments to angle and dihedral parameters 2 in an empirical fashion using a target data set 

that contained QM energies for only a limited number of conformations.23 Another factor 

that makes THF an attractive case study is that it is the scaffold for the furanose 

carbohydrates, 24 which include the ribose moiety in the RNA and DNA backbone.

In agreement with the analysis in section S3.1, a relaxed 2D scan was conducted on the pair 

of C-C-C-O dihedral angles (figure 4a), which neatly shows an annular minimum-energy 

basin corresponding to the ring’s pseudorotational surface. A second relaxed 2D scan was 

performed on the pair of C-C-C valence angles (figure 4b), and the latter scan was repeated 

while constraining both C-C-C-O dihedral angles at −39.72 ° (figure 4c). In the fully relaxed 

angle PES, both angles were scanned from 92.19° to 110.19° in steps of 3° (figure 4b). This 

(somewhat unexpectedly) brought a case of the aforementioned hysteresis to light in one of 

the scan points, underlining the prevalence of this problem as discussed in section S3.1. 

Conversely, the angle PES with constrained dihedrals was scanned from 95.19 ° to 107.19° 

in steps of 1° (figure 4c) because of geometrical convergence issues associated with the 

constraints. Finally, these three 2D scans were followed by three relaxed 3-point scans on 

the three chemically distinct bonds in the molecule. This implies that the C-C bond 

parameter is scanned twice in chemically different environments. Doing so leads to a fitted 

parameter that is a compromise between the two environments, which is generally 

desirable2. Moreover, the availability of a higher diversity of target data can typically only 

improve the quality of the fit. 16 The bonds were scanned by decrementing and incrementing 

their respective MP2 equilibrium distances by 0.06 Å. These were relaxed scans as well 

because performing fully constrained scans on a single bond or angle as recommended in 

section 2.12 is not possible in a cyclic structure.* As the different scans had widely differing 

numbers of points, weight factors inversely proportional to the number of scan points were 

applied in order to give the two 2D angle scans equal weight in the fit. Similarly, the set of 

three bonds scans and the 2D dihedral scan were given equal weight to the sum of the two 

angle scans.

Fitting the parameters in THF to the QM profiles resulting from the above scans gave 

excellent results to the extent that that a graphical representation of the fitted PES is 

*Conversely, it can be shown that it is possible to perform fully constrained scans on combinations of bonds and angles that are 
carefully chosen such that no linear dependencies or near-dependencies exist. However, doing so is too cumbersome for routine use, 
so the present simple relaxed scans represent a more realistic use case, as discussed above.
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indistinguishable from the corresponding QM data. Therefore, we will limit ourselves to 

discussing the data in table 2. As can be seen from the RMSEs, both of the fitted parameter 

sets appear to outperform the original CGenFF model; inspection of the PES (not shown) 

reveals that the discrepancies in the latter are mainly in the dihedral profile. This is no 

surprise, as the dihedral parameters in CGenFF were not only fitted to a different set of 

target data at a different level of theory and with less freedom in the multiplicities (i.e. we 

introduced a 4-fold term because this gave a substantial improvement in the reproduction of 

the shape of the PES), but also and more importantly represent a compromise between 

different model compounds, including compounds such as cyclopentane and pyrrolidine. For 

these reasons and because they were fit “on top of” different bond and angle parameters, the 

dihedral parameters cannot be compared between CGenFF and the fitted model; the only 

significant observation that can be made is that the amplitudes are of very similar 

magnitude. As discussed in section 2.5, the dihedral term can be considered a correction 

term for the remainder of the potential energy function; thus, the fact that these corrections 

are of similar magnitude indicates that the fitted bond and angle parameters are physically at 

least equally relevant as the CGenFF values. Indeed, all the parameter associated with the 

bonds and angles are very similar, enforcing the validity of both the present work and the 

(more laborious) established methodology that contains a component of chemical intuition. 

The only nontrivial difference in the parameters is the reference C-O-C angle, where the 

CGenFF and the fitted values bracket the angle measured in the QM minimized 

conformation, which is very close to the ideal tetrahedral angle. It can be speculated that the 

smaller reference value in the fitted parameter set helps reproduce certain details of the PES 

(see below), but given the highly coupled nature of the 5-membered ring, no reliable 

statements can be made in this respect. Of note is the observation that the different level of 

theory does not result in radically different parameters, in line with the fact that, while 

reference 18 does show different sets of minima depending on the level of theory, the 

differences are small purely in energetic terms, as the barriers between the minima are low 

in all cases.

Introducing nonzero target values for the bonds and angles only yielded a small change in 

the parameters and a modest improvement in the fit, with very small gains in the high-

energy regions of the angle scan with constrained dihedrals. This indicates that the bond and 

angle parameters are not underdetermined; it appears that even though the conformational 

ensemble was not explicitly aimed at avoiding correlation, the target data was diverse 

enough for the LSS algorithm to deconvolute the inevitable correlation in the relaxed scans. 

This picture is corroborated by the observation that the target-adapted bias gives almost 

identical results. The present case study thus illustrates that relaxed scans are in fact a viable 

option when the model compound’s potential energy surface is scanned exhaustively 

enough, allowing for convenient routine parametrization of rings. The fact that the target-

adapted bias yields a very slightly (albeit not significantly) lower RMSD and minute 

improvements in the PES demonstrates that in the less common cases where robustness is 

not an issue, the target-adapted bias sometimes performs better - on rare occasions 

significantly so. 14 Finally, it should be noted that in the more common cases where the 

degree of underdetermination is higher, a greater dependence on sensible target values is 

expected as discussed above and illustrated in section 4.2.1.
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4.2.3 Hexopyranose monosaccharides—To demonstrate that the present 

methodology is applicable for fitting larger sets of parameters, it was used to refit the 

dihedral parameters of the hexapyranose monosaccharides in the CHARMM Drude 

polarizabile force field; see figure 1, compound 11 for a representative structure. The 

bonded part of this force field uses the same energy terms and fitting schemes as its additive 

(i.e. non-polarizable) counterpart. For the reparametrization of the hexapyranose 

monosaccharides, the electrostatic description (consisting of atom-centered and lone pair 

charges, atomic polarizabilities and Thole damping parameters) in the current Drude force 

field for pyranose 25 was first updated to reproduce a new set of dipole moments and sugar-

water interactions at MP2/cc-pVQZ level; this work will be described elsewhere. Then, the 

dihedral parameters were refit, targeting several pyranose diasteromers (table 3) in order to 

provide sufficient target data. Potential energy scans with step sizes of 15° were performed, 

including all the possible dihedrals consisting of the hydroxyl hydrogen and heavy atoms in 

the different diastereomers. In order to better reproduce the statistically important low-

energy states, only the points with a potential energy less than 12 kcal/mol above the global 

minimum were retained as target data, resulting in a total of 1887 points (table 3). A uniform 

set of 26 dihedral parameters were fitted to maintain transferability across all 16 different 

hexapyranose diasteromers. In addition to the reasons discussed in previous sections, the 

fact that parameters obtained in this fashion need to be valid for different chiralities provides 

justification for fixing the dihedral phases. Multiplicities of 1, 2, 3 and 4 were fit for the 

intra-ring dihedrals (C1-C2-C3-C4, C2-C3-C4-C5, C3-C4-C5-O5, C4-C5-O5-C1, C5-O5-

C1-C2, and O5-C1-C2-C3), using 1, 2 and 3 for all other dihedrals.

While the hexapyranose diasteromers in this study are chemically distinct, they have the 

same connectivity. Accordingly, arguments can be made both in favor of and against 

applying the group fitting discussed in section 2.11. In this work, we performed uniform-

bias LSS fits (1) considering every different diastereomer as a different group, (2) 

considering all monosaccharides that are chemically distinct in aqueous solution on 

macroscopic time scales as different groups, but anomers of the same monosaccharide as the 

same group, 15 and (3) without group fitting. The resulting RMSEs were respectively 0.52, 

0.54 and 0.56 kcal/mol, and visual inspection of the energy profiles revealed no significant 

differences. This indicates that, in contrast to the additive CHARMM force field for 

carbohydrates, 26 the nonbonded interactions (to which the dihedrals are a correction term) 

in the Drude polarizabile force field are accurate enough to capture the energy differences 

between the different diastereomers. The lower RMSE values further underline the increased 

accuracy of the nonbonded description in the Drude polarizabile force field compared to its 

additive counterpart (RMSE = 1.69 kcal/mol) as well as the previous iteration of the same 

polarizable force field (RMSE = 1.18 kcal/mol). 25 As the non-group fitted parameters are 

thought to be more transferable because they include the energy differences between the 

diastereomers as target data, these parameters will be released in an upcoming update of the 

CHARMM Drude polarizabile force field. This also enables free energy perturbation studies 

between any two diastereomers, which was not possible with any of the previous CHARMM 

force fields. The PES resulting from the selected parameter set is shown in figure 5. Only 

one dihedral term, the 1-fold term on O4-C4-C5-C6, has an amplitude of 2.51 kcal/mol, with 

amplitudes lower than 1.10 for all other terms (see supporting information), again 
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confirming the enhanced description of the nonbonded interactions in the Drude polarizabile 

force field. Very similar observations were made for the furanose parameter set, which will 

be discussed in an upcoming paper. 27 As for validating the restrained LSS procedure, the 

results from this case study demonstrate that the present method is applicable on larger 

numbers of parameters and that its improvements not only benefit the parametrization of 

class I additive, but also polarizable force fields.

4.3 CGenFF bond-charge increments

To demonstrate the current restraining scheme’s usefulness beyond bonded parameters, we 

used it to fit the bond-charge increments that are used by the CGenFF program for the 

assignment of charges by analogy. 21 As discussed in the cited reference, the 

underdetermined nature of this fit was originally overcome using the same constant 

restraints that are the subject of sections 2.5. Also, some of the fitted increments were 

empirically adjusted a posteriori in order to rigorously satisfy a number of preexisting 

charge assignment rules in the CHARMM force field. As the fit was later redone for each 

subsequent new release of the force field, it was found that the resulting bond-charge 

increments underwent small but significant changes in a seemingly random fashion, each 

time necessitating a slightly different variation of the set of empirical adjustments, which 

made the process laborious. This relative lack of robustness presented an opportunity to 

compare the performance of the constant restraints (bk = b) with the uniform and target-

adapted biases on a completely different problem than bonded parameters. Also included in 

the comparison was a bias consisting of the self-term only, i.e.  as defined in 

equation (9).

As this optimization contains large numbers of DF that are poorly determined, 21 the number 

of increments that are rounded to zero after fitting is used as a measure for the effectiveness 

of the restraints. The rounding is explained in more detail in the caption of Figure 6. In this 

figure, the charge RMSD is plotted against the aforementioned measure of effectiveness for 

a wide, logarithmically scaled range of restraint fractions σ, or the restraints b in the case of 

the constant restraint. This is repeated for two different weighting schemes: “weights 1” in 

the figure denotes the wighting scheme from the reference, where the charges on all 

hydrogen atoms are weighted by a factor 10, while for “weights 2”, all non-hydrogen 

terminal atoms are weighted by a factor 10 and the hydrogen atoms are weighted by a factor 

100. On the left side of figure 6a, the restraints are numerically insignificant and the LSS 

calculation fails because of the underdetermined character associated with cyclic moieties21; 

arbitrary results are produced due to numerical imprecision. For stronger restraints (~2 × 

10−21 < σ < ~2 × 10−15 for the adaptive bias with weights 2), the RMSD rapidly reaches a 

plateau at an “optimal” value, while the number of zero increments increases roughly 

proportional to the logarithm of the bias, reflecting improvements in the relevance/

transferability of the parameter vector that do not affect the quality of the fit. Figure 6b 

zooms in on the lower right corner, where the most desirable solutions are located. Here, a 

concentration of data points can be observed, reflecting the fact that a change of the bias 

within this region (~5 × 10−15 < σ < ~1 × 10−9 for the adaptive bias with weights 2) will 

have little effect on the solution. This demonstrates that the present method indeed is 

capable of finding the most desirable solution in a robust fashion. Finally, when increasing 
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the bias beyond this range, it starts dominating the solution, causing a somewhat chaotic 

transition into a region where the RMSD increases steeply for a comparably small increase 

in the number of near-zero solutions.

Comparing the different weighting schemes, it is apparent from figure 6b that “weights 2” 

performs better when keeping in mind that the vertical axis has a very narrow range 

compared to the horizontal one. Within the same weighting scheme, the RMSD plateau is at 

the same location for all restraining methods, including the constant bias. Conversely, in 

terms of numbers of zeroes, the target-adapted bias clearly performs best for this particular 

application, followed by a significant margin by the “self-term only” bias, which in turn 

performs slightly better than the uniform and constant biases. The latter two perform 

similarly, except that the “desirable σ or b range” is twice as large (on a logarithmic scale) 

for the uniform bias. In fact, the self-term and uniform biases both feature a larger desirable 

range than the adaptive and constant biases. Keeping in mind that the cross-terms are 

required for the fitting of bonded parameters, ruling out the self-term and constant biases, 

this observation appears to support our previous hypothesis that the uniform bias performs 

slightly worse than the adaptive bias on well-behaved problems but is more robust. While 

the fact that the self-term performs better than the uniform bias is surprising, it should be 

stressed that this case study concerns a very specific niche application and serves to 

demonstrate the viability of the present biasing scheme’s basic principles for applications 

other than bonded parameter optimization, rather than providing solid conclusions regarding 

the relative performance of its different variants; if anything can be concluded in this 

respect, it is that the most optimal variant depends on the application.

5 SUMMARY

A detailed overview of the origin and nature of robustness issues in optimization problems 

in general and the fitting of bonded parameters in particular was presented in terms of 

matrices and vectors, allowing for degrees of freedom in the fitting procedure to be qualified 

as orthogonal, parallel or nearly parallel. It is also discussed how all the bonded parameters 

in a Class I force field can be fit using the Linear Least Squares (LLS) procedure. A novel 

restraining strategy was proposed that overcomes the robustness issues associated with 

doing so in a single, non-iterative LLS fit, with minimal impact on the fitted values of well-

behaved parameters. It should be stressed that while this method effectively overcomes 

inherent robustness issues, it is no substitute for target data of sufficient quality and quantity. 

The methodology in question harmonically restrains the parameters so that the restraints can 

readily be integrated into the matrices that form the input for LLS functions in mathematical 

software libraries. Its novel aspect lies in a careful choice of the restraint force constants, 

which are calculated such that well-behaved parameters are scaled down by the restraint by 

an exact factor that can be applied to the output of the LLS procedure to annihilate the 

impact of the restrains on these well-behaved parameters. The formula (8) for determining 

these restraints contains terms that describe the crosstalk between the restraints on different 

non-orthogonal parameters. These terms in turn each contain a factor that cannot be known a 

priori. Two approximation strategies for these factors were presented, each with its strong 

and weak points. Both of these strategies were validated through a number of case studies, 

which also serve to establish a standard methodology for potential energy scanning and 
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concerted fitting of bond, angle and dihedral parameters. Of special note is the inclusion of 

the fitting of bond-charge increments in the case studies, which illustrates the method’s 

potential for robustly solving general LLS problems beyond bonded parameters or even 

beyond force field parametrization. The fitting part of the methodology was implemented in 

a C program named “lsfitpar” that will be made available to the community under an open-

source license alongside the necessary documentation at http://mackerell.umaryland.edu/

~kenno/lsfitpar/. It is therefore hoped it will become an important part of the sprawling 

ecosystem of automatic parametrization interfaces. Future directions include validating the 

methodology for the purpose of charge fitting and extending the program’s feature set.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Skeletal formulas of compounds discussed in the manuscript, with representation chosen to 

highlight attributes of interest. Compounds 1-5 can be found in Figure S1 in the Supporting 

Information. 6: 1-propanol, with the rotatable bond discussed in section 4.1.1 marked. 7 and 

8: N-sec-butylformamide and N-propylformamide, respectively. As discussed in section 

4.1.2, a PES of the right (C-C-N-C) dihedral in the latter compound may display spurious 

asymmetry if the left (C-C-C-N) dihedral is sampled asymmetrically. 9 and 10: N-

ethylsulfamate (NESM) and tetrahydrofuran (THF), as discussed as case studies in sections 

4.2.1 and 4.2.2, respectively. 11: a representative hexopyranose monosaccharide. 

CHARMM atom names are given in the figures for NESM 9 and the hexopyranose 

monosaccharide 11 in order to facilitate the discussion.
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Figure 2. 
Dihedral amplitude as a function of bias fraction σ for case study 4.1.2: a typical ill-

conditioned pair of dihedrals. “Uniform” and “Adapted” stand for uniform and target-

adapted bias, respectively; there is no perceptible difference between the two because 〈Ra|

B〉 and 〈Rb|B〉 differ by only 0.03%.
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Figure 3. 
PES of N-ethylsulfamate (NESM; see compound 9 in figure 1 for a key of the atom names 

used in this study). Points 0-72, 73-145 and 146-218 are respectively scans of the dihedrals 

C3-N2-S1-O11, C4-C3-N2-H21 and C4-C3-N2-S1. The angles C3-N2-H21, H31-C3-N2, 

H32-C3-N2 and C4-C3-N2 were scanned in scan points 219-221, 222-224, 225-227 and 

228-230, respectively, whereas scan points 231-233 represent the C3-N2 bond. In agreement 

with the methodology discussed in section 2.12, the set of (relaxed) dihedral scan points 

(0-218) was aligned separately from the set of (constrained) bond and angle scans 

(219-233). RMSEs were calculated without weighting. Figure 3b zooms in on the bond and 

angle scans in order to bring differences to light that cannot be seen in figure 3a.
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Figure 4. 
2-Dimensional QM PES of Tetrahydrofuran (THF; compound 10 in figure 1). 4a: relaxed 

PES around the two C-C-C-O dihedral angles; 4b: relaxed PES around the two C-C-C 

valence angles; 4c: PES around the two C-C-C valence angles while constraining both C-C-

C-O dihedral angles at −39.72° and relaxing all other DF. The quantities in each plot are 

relative to that plot’s absolute minimum (b) (as opposed to the global minimum.)

Vanommeslaeghe et al. Page 30

J Comput Chem. Author manuscript; available in PMC 2016 May 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
PES for all the hexopyranose monosaccharides, as summarized in table 3 and discussed in 

section 4.2.3. The different PES are aligned as discussed in section 2.1. The initial guess 

data was taken from reference 25, including the “old” electrostatic parameters for a fair 

comparison. Nevertheless, the initial guess RMSE is significantly higher than in the 

reference (1.18 kcal/mol); this is to a small extent because of the different QM level of 

theory and to a bigger extent due to the fact that group fitting was used in the reference. 

Accordingly, it can clearly be seen in the picture that the initial guess poorly reproduces the 

energy difference between some groups of points.
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Figure 6. 
Charge RMSD versus the number of zero increments for the following series of bias 

fractions σ (or restraints b for the constant bias): 1 × 10−22, 2 × 10−22, 5 × 10−22, 1 × 10−21, 

2 × 10−21, 5 × 10−21, …, 5 × 10−1. Consecutive points in this series are connected by lines. 

In this context, a zero increment is defined as an increment that is rounded to zero by the 

rounding scheme described reference 21; essentially, increments on hydrogen atoms are 

rounded to zero if they are smaller than 0.0025 e in absolute value, while increments 

involving only nonhydrogen atoms need to be smaller than 0.0005 e. As described in the 

reference, additional rounding is performed on select parameters, but this is of little 

consequence to the relative locations of the points. Figure 6b is a magnification of the lower 

right corner of figure 6a.
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