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Abstract

Persistent homology has emerged as a popular technique for the topological simplification of big 

data, including biomolecular data. Multidimensional persistence bears considerable promise to 

bridge the gap between geometry and topology. However, its practical and robust construction has 

been a challenge. We introduce two families of multidimensional persistence, namely pseudo-

multidimensional persistence and multiscale multidimensional persistence. The former is 

generated via the repeated applications of persistent homology filtration to high dimensional data, 

such as results from molecular dynamics or partial differential equations. The latter is constructed 

via isotropic and anisotropic scales that create new simiplicial complexes and associated 

topological spaces. The utility, robustness and efficiency of the proposed topological methods are 

demonstrated via protein folding, protein flexibility analysis, the topological denoising of cryo-

electron microscopy data, and the scale dependence of nano particles. Topological transition 

between partial folded and unfolded proteins has been observed in multidimensional persistence. 

The separation between noise topological signatures and molecular topological fingerprints is 

achieved by the Laplace-Beltrami flow. The multiscale multidimensional persistent homology 

reveals relative local features in Betti-0 invariants and the relatively global characteristics of 

Betti-1 and Betti-2 invariants.
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1 Introduction

The rapid progress in science and technology has led to the explosion in biomolecular data. 

The past decade has witnessed a rapid growth in gene sequencing. Vast sequence databases 

are readily available for entire genomes of many bacteria, archaea and eukaryotes. The 

human genome decoding that originally took 10 years to process can be achieved in a few 

days nowadays. The Protein Data Bank (PDB) updates new structures on a daily basis and 

has accumulated more than one hundred thousand tertiary structures. The availability of 
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these structural data enables the comparative study of evolutionary processes, gene-sequence 

based protein homology modeling of protein structures and the decryption of the structure-

function relationship. The abundant protein sequence and structural information makes it 

possible to build up unprecedentedly comprehensive and accurate theoretical models. One of 

ultimate goals is to predict protein functions from known protein sequences and structures, 

which remains a fabulous challenge.

Fundamental laws of physics described in quantum mechanics (QM), molecular mechanism 

(MM), continuum mechanics, statistical mechanics, thermodynamics, etc. underpin most 

physical models of biomolecular systems. QM methods are indispensable for chemical 

reactions, enzymatic processes and protein degradations.1, 2 MM approaches are able to 

elucidate the conformational landscapes of proteins.3 However, both QM and MM involve 

an excessively large number of degrees of freedom and their application to real-time large-

scale protein dynamics becomes prohibitively expensive. For instance, current computer 

simulations of protein folding take many months to come up with a very poor copy of what 

Nature administers perfectly within a tiny fraction of a second. One way to reduce the 

number of degrees of freedom is to employ time-independent approaches, such as normal 

mode analysis (NMA),4–7 flexibility-rigidity index (FRI)8, 9 and elastic network model 

(ENM),10 including Gaussian network model (GNM)11–13 and anisotropic network model 

(ANM).14 Another way is to incorporate continuum descriptions in atomistic representation 

to construct multiscale models for large biological systems.1, 2, 15–19 Implicit solvent models 

are some of the most popular approaches for solvation analysis.20–29 Recently, differential 

geometry based multiscale models have been proposed for biomolecular structure, solvation, 

and transport.30–33 The other way is to combine several atomic particles into one or a few 

pseudo atoms or beads in coarse-grained (CG) models.34–37 This approach is efficient for 

biomolecular processes occurring at slow time scales and involving large length scales.

All of the aforementioned theoretical models share a common feature: they are geometry 

based approaches38–40 and depend on geometric modeling methodologies.41 Technically, 

these approaches utilize geometric information, namely, atomic coordinates, angles, 

distances, areas40, 42, 43 and sometimes curvatures44–46 as well as physical information, such 

as charges and their locations or distributions, for the mathematical modeling of 

biomolecular systems. Indeed, there is an increased importance in geometric modeling for 

biochemistry,39 biophysics47, 48 and bioengineering.49, 50 Nevertheless, geometry based 

models are typically computationally expensive and become intractable for biomolecular 

processes such as protein folding, signal transduction, transcription and translation. Such a 

failure is often associated with massive data acquisition, curation, storage, search, sharing, 

transfer, analysis and visualization. The challenge originated from geometric modeling call 

for game-changing strategies, revolutionary theories and innovative methodologies.

Topological simplification offers an entirely different strategy for big data analysis. 

Topology deals with the connectivity of different components in a space and is able to 

classify independent entities, rings and higher dimensional holes within the space. Topology 

captures geometric properties that are independent of metrics or coordinates. Indeed, for 

many biological problems, including the opening or closing of ion channels, the association 

or disassociation of ligands, and the assembly or disassembly of proteins, it is the qualitative 
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topology, rather than the quantitative geometry that determines physical and biological 

functions. Therefore, there is a topology-function relationship in many biological 

processes51 such that topology is of major concern.

In contrast to geometric tools which are frequently inundated with too much structural 

information to be computationally practical, Topological approaches often incur too much 

reduction of the geometric information. Indeed, a coffee mug is topologically equivalent to a 

doughnut. Therefore, topology is rarely used for quantitative modeling. Persistent homology 

is a new branch of topology that is able to bridge the gap between traditional geometry and 

topology and provide a potentially revolutionary approach to complex biomolecular 

systems. Unlike computational homology which gives rise to truly metric free or coordinate 

free representations, persistent homology is able to embed additionally geometric 

information into topological invariants via a filtration process so that “birth” and “death” of 

isolated components, circles, rings, loops, voids or cavities at all geometric scales can be 

measured.52–54 As such, the filtration process create a multiscale representation of important 

topological features. Mathematically these topological features are described by simplicial 

complexes, i.e., topological spaces constructed by points, line segments, triangles, and their 

higher-dimensional counterparts. The basic concept of persistent homology was introduced 

by Frosini and Landi55 and Robins,56 independently. The first realization was due to 

Edelsbrunner et al.52 The concept was genearlized by Zomorodian and Carlsson.53 Many 

efficient computational algorithms have been proposed in the past decade.57–61 Many 

methods have been developed for the geometric representation and visualization of 

topological invariants computed from persistent homology. Among them, the barcode 

representation62 utilizes various horizontal line segments or bars to describe the “birth” and 

“death” of homology generators over the filtration process. Additionally, persistent diagram 

representation directly displays topological connectivity in the filtration process. The 

availability of efficient persistent homology tools63, 64 has led to applications in a diverse 

fields, including image analysis,65–68 image retrieval,69 chaotic dynamics,70, 71 complex 

network,72, 73 sensor network,74 data analysis,75–79 computer vision,67 shape recognition,80 

computational biology,51, 81–83 and nano particles.84, 85

The most successful applications of persistent homology have been limited to topological 

characterization identification and analysis (CIA). Indeed, there is little persistent homology 

based physical or mathematical modeling and quantitative prediction in the literature. 

Recently, we have introduced persistent homology as unique means for the quantitative 

modeling and prediction of nano particles, proteins and other biomolecules.51, 84 Molecular 

topological fingerprint (MTF), a recently introduced concept,51 is utilized not only for the 

CIA, but also for revealing topology-function relationships in protein folding and protein 

flexibility. Persistent homology is found to provide excellent prediction of stability and 

curvature energies for hundreds of nano particles.84, 85 More recently, we have proposed a 

systematical variational framework to construct objective-oriented persistent homology 

(OPH),85 which is able to proactively extract desirable topological traits from complex data. 

An example realization of the OPH is achieved via differential geometry and Laplace-

Beltrami flow.85 Most recently, we have developed persistent homology based topological 

denoising method for noise removal in volumetric data from cryo-electron microscopy 
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(cryo-EM).86 We have shown that persistent homology provides a powerful tool for solving 

ill-posed inverse problems in cryo-EM structure determination.86

However, one dimensional (1D) persistent homology has its inherent limitations. It is 

suitable for relatively simple systems described by one or a few parameters. The emergence 

of complexity in self-organizing biological systems frequently requires more comprehensive 

topological descriptions. Therefore, multidimensional persistent homology, or 

multidimensional persistence, becomes valuable for biological systems as well as many 

other complex systems. In principle, multidimensional persistence should be able to 

seamlessly bridge geometry and topology. Although multidimensional persistence bears 

great promise, its construction is non-trivial and elusive to the scientific community.87 A 

major obstacle is that, theoretically, it has been proved there is no complete discrete 

representation for multidimensional persistent module analogous to one dimensional 

situation.87 State differently, the persistent barcodes or persistent diagram representation is 

only available in one dimension filtration, no counterparts can be found in higher 

dimensions. Therefore, in higher dimensional filtration, incomplete discrete invariants that 

are computable, compact while still maintain important persistent information, are being 

considered.87 Among them, a well-recognized one is persistent Betti numbers (PBNs),52 

which simply displays the histogram of Betti numbers over the filtration parameter. The 

PBN is also known as rank invariant87 and size functions (0th homology).55 A major merit 

of the PBN representation is its equivalent to the persistent barcodes in one dimension, 

which means that this special invariant is complete in 1D filtration. Also, it has been proved 

that PBN is stable in the constraint of certain marching distance.88 A few mathematical 

algorithms have been proposed.88–90 Multi-filtration has been used in pattern recognition or 

shape comparison.55, 91, 92 Computationally, the realization of robust multidimensional 

persistent homology remains a challenge as algorithms proposed have to be topologically 

feasible, computationally efficient and practically useful.

The objective of this work is to introduce two classes of multidimensional persistence for 

biomolecular data. One class of multidimensional persistence is generated by repeated 

applications of 1D persistent homology to high-dimensional data, such as those from protein 

folding, molecular dynamics, geometric partial differential equations (PDEs), varied signal 

to noise ratios (SNRs), etc. The resulting high-dimensional persistent homology is a pseudo-

multidimensional persistence. Another class of multidimensional persistence is created from 

a family of new simplicial complexes associated an isotropic scale or anisotropic scales. In 

general, scales behave in the same manner as wavelet scales do. They can focus on the 

certain features of the interest and/or defocus on undesirable characteristics. As a 

consequence, the proposed scale based isotropic and anisotropic filtrations give rise to new 

multiscale multidimensional persistence. We demonstrate the application of the proposed 

multidimensional persistence to a number of biomolecular and/or molecular systems, 

including protein flexibility analysis, protein folding characterization, topological denoising, 

noise removal from cryo-EM data, and analysis of fullerene molecules. Our 

multidimensional filtrations are carried out on three types of data formats, namely, point 

cloud data, matrix data and volumetric data. Therefore, the proposed methods can be easily 

applied to problems in other disciplines that involve similar data formats.
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Our algorithm for multidimensional persistence is robust and straightforward. In a two-

dimensional (2D) filtration, we fix one of the filtration parameters and perform the filtration 

on the second parameter to obtain PBNs. Then we systematically change the fixed parameter 

to sweep over its whole range, and stack all the PBNs together. This idea can be directly 

applied to three dimensional (3D) and higher dimensional filtrations. Essentially, we just 

repeat the 1D filtration over and over until the full ranges of other parameters are sampled. 

The PBNs are then glued together. This multidimensional persistent homology method can 

be applied to any other high dimensional data. In this work, point cloud data and matrix data 

are analyzed by using the JavaPlex.63 Volumetric data are processed with the Perseus.64

The rest of this paper is organized as follows. In Section 2, we explore the multidimensional 

persistence in point cloud data for protein folding. We model the protein unfolding process 

by an all-atom steer molecular dynamics (SMD). We consider both an all-atom 

representation and a coarse-grained representation to analyze the SMD data. From our 

multifiltration analysis, it is found that PBNs associated with local hexagonal and 

pentagonal ring structures in protein residues are preserved during the unfolding process 

while those due to global rings and cavities diminish. Coarse-grained representation is able 

to directly capture the dramatic topological transition during the unfolding process. In 

Section 3, we investigate the multidimensional persistence in matrix data. The GNM 

Kirchhoff (or connectivity) matrix and FRI correlation matrix are analyzed by 

multidimensional persistent homology. The present approach is able to predict the optimal 

cutoff distance of the GNM and the optimal scale of the FRI algorithm for protein flexibility 

analysis. Section 4 is devoted to the multidimensional persistence in volumetric data. We 

analyze the multidimensional topological fingerprints of Gaussian noise and demonstrate the 

multidimensional topological denoising of synthetic data and cryo-EM data in conjugation 

with the Laplace-Beltrami flow method. Finally, we construct multiscale 2D and 3D 

persistent homology methods to analyze the intrinsic topological patterns of protein 2YGD 

and fullerene C60 molecule. This paper ends with a conclusion.

2 Multidimensional persistence in the point cloud data of protein folding

In this section, we reveal multidimensional persistence in point cloud data associated with 

protein folding process. It is commonly believed that after the translation from mRNA, 

unfolded polypeptide or random coil folds into a unique 3D structure which defines the 

protein function.93 However, protein folding does not always lead to a unique 3D structure. 

Aggregated or misfolded proteins are often associated with sporadic neurodegenerative 

diseases, such as mad cow disease, Alzheimer’s disease and Parkinson’s disease. Currently, 

there is no efficient means to characterize disordered proteins or disordered aggregation, 

which is crucial to the understanding of the molecular mechanism of degenerative disease. 

In this section, we show that multidimensional persistence provides an efficient tool to 

characterize and visualize the orderliness of protein folding.

2.1 Protein folding/unfolding processes

The SMD is commonly used to generate elongated protein configurations from its nature 

state.94–96 Our goal is to examine the associated changes in the protein topological 

invariants induced by SMD. There are three approaches to achieve SMD: high temperature, 
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constant force pulling, and constant velocity pulling.94–96 Both implicit and explicit 

molecular dynamics can be used for SMD simulations. The mechanical properties of protein 

FN-III10 has been utilized to carefully design and valid SMD. Appropriate treatment of 

solvent environment in the implicit SMD is crucial. Typically, a large box which can hold 

the stretched protein is required, although the computational cost is relatively high.97 In our 

study, a popular SMD simulation tool NAMD is employed to generate the partially folded 

and unfolded protein conformations. The procedure consists of two steps: the relaxation of 

the given structure and unfolding simulation with constant velocity pulling. In the first step, 

the protein structure is downloaded from the Protein Data Bank (PDB), which is the major 

reservoir for protein structures with atomic details. Then, the structure is prepared through 

the standard procedure, including adding missed hydrogen atoms, before it is solvated with a 

water box which has an extra 5Å layer, comparing with the initial minimal box that barely 

hold the protein structure.98 The standard minimization and equilibration processes are 

carried out. We employ a total of 5000 time steps of equilibration iterations with the 

periodic boundary condition after 10000 time steps of initial energy minimization. In our 

simulations, we use a time increment of 2 femtoseconds (fs). We set SMDk=7. The results 

are recorded after each 50 time steps, i.e., one frame for each 0.1 picosecond (ps). We 

accumulate a total of 1000 frames or protein configurations, which are employed for our 

persistent homology filtration.

2.2 All-atom and coarse-grained representations

Persistent homology analysis of proteins can be carried out either in an all-atom 

representation or in CG representations.51 For the all-atom representation, various types of 

atoms, including O, C, N, S, P, etc., are all included and regarded as equally important in our 

computation. We deliberately ignore the Hydrogen atoms in our structure during the 

filtration analysis, as we found that they tend to contaminate our local protein fingerprints. 

The all-atom representation gives an atomic description of a given protein frame or 

configuration and is widely used in molecular dynamic simulation. In contrast, CG 

representations describe the protein molecule with the reduced number of degrees of 

freedom and are able to highlight important protein structure features. CG representations 

can be constructed in many ways. A standard coarse-grained representation of proteins used 

in our earlier topological analysis is to represent each amino acid by the corresponding Cα 

atom.51 CG representations are efficient for describing large proteins and protein complexes 

and significantly reduce the cost of calculating topological invariants.51

Figure 1 demonstrates the persistence information for the all-atom representation and the Cα 

coarse-grained representation of 1UBQ relaxation structure (i.e., the initial structure for the 

unfolding process). Figures 1a and b are topological invariants from the all-atom 

representation without hydrogen atoms. In Fig. 1a, it can be observed that β1 and β2 

barcodes are clearly divided into two unconnected regions: local region (from 1.6 to 2.7 Å 

for β1 and from 2.4Å to 2.7Å for β2) and global region (from 2.85Å to 6.7Å for β1 and from 

3.5Å to 6.7Å for β2). Local region appears first during the filtration process and it is directly 

related to the hexagonal ring (HR) and pentagonal ring (PR) structures from the residues. As 

indicated in the zoomed-in regions enclosed by dotted red rectangles, there are 7 local β1 

bars and 3 β2 bars, which are topological fingerprints for phenylalanine (one HR), tyrosine 
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(one HR), tryptophan (one HR and one PR), proline (one PR), and histidine (one PR). In 

Fig. 2a, we have 3 hexagonal rings (red color) corresponding to 3 local β1 bars and 3 local 

β2 bars. It is well known that hexagonal structures produce β2 invariants in the Vietoris–

CRips complex based filtration.51 The other 4 local β1 bars are from pentagonal structures 

(blue color). Figures 2 c and d are results from the coarse-grained representation. It can be 

seen that there is barely any β2 information for the initial structure. As protein unfolds, 

almost no cavities or holes are detected. Therefore, we only consider β0 and β1 invariants in 

the coarse-grained model.

2.3 Multidimensional persistence in protein folding process

In our protein folding analysis, we extract 1000 configurations over the unfolding process. 

For each configuration, we carry out the point cloud filtration, i.e., systematically increasing 

the radius of ball associated with each atom, and come up with three 1D PBN graphs for β0, 

β1, and β2. We then stack 1000 PBN graphs of the same type, say all β0 graphs, together. In 

this way, the final result can be stored in a 2D matrix with the row number indicating the 

filtration radius, the column number indicating the configuration, and the elements are PBN 

values. Figures 2 a, b and c demonstrate the unfolding of protein 1UBQ in the all atom 

representation without hydrogen atoms and the corresponding 2D persistence diagrams. In 

these subfigures, we highlight residual pentagonal rings and hexagonal rings in blue and red, 

respectively. These ring structures correspond to the local topological invariants as indicated 

in Fig. 1a. Figures 2 d, e and f depict 2D persistent homology analysis of the protein 

unfolding process. Because all the bond lengths are around 1.5 to 2.0 Å and do not change 

during the unfolding process, the 2D β0 persistence shown in Fig. 2 d is relatively simple 

and consistent with the top panel in Fig. 1b. The 2D β1 persistence shown in Fig. 2 e is very 

interesting. The local rings occurred from 1.6 to 2.7 Å are due to pentagonal and hexagonal 

structures in the residues and are persistent over the unfolding process. However, the 

numbers of β1 invariants for global rings in the region from 2.85 to 6.7 Å vary dramatically 

during the unfolding process. Essentially, the SMD induced elongation of the polypeptide 

structure reduces the number of rings. Finally, the behavior of the β2 invariants in Fig. 2 f is 

quite similar to that of the β1. The local β2 invariants occurred from 2.4 to 2.7 Å induced by 

the hexagonal structures51 remain unchanged during the unfolding process, while the 

number of global β2 invariants occurred from 3.5 to 6.7 Å rapidly decreases during the 

unfolding process. Especially, at 750th configuration and beyond, the number of β2 

invariants in global region has plummeted. The related PBNs for β2 drop to zero abruptly, 

indicates that the protein has become completely unfolded. Indeed, there is an obvious 

topological transition in multidimensional β1 persistence around 750th configuration as 

shown in Fig. 2 e. The global β1 PBNs are dramatically reduced and their distribution 

regions are significantly narrowed for all configurations beyond 75 picosecond simulations, 

which is an evidence for solely intraresidue β1 rings.

Having analyzed the multidimensional persistence in protein folding via the all-atom 

representation, it is interesting to further explore the same process and data set in the coarse-

grained representation. Figure 3 illustrates our results. In Fig. 3 a, protein 1UBQ is plotted 

with all atoms except for hydrogen atoms. We use different colors to label different types of 

residues. The same structure is illustrated by the Cα based CG representation in Fig. 3 b. An 
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advantage of the CG model is that it simplifies topological relations by ignoring intraresidue 

topological invariants, while emphasizing interresidue topological features. Figures 3 c and 

d respectively depict 2D β0 and β1 invariants of the protein unfolding process. Compared 

with the all-atom results in Figs. 2 d and e, there are some unique properties. First, the CG 

analysis only emphasizes the global topological relations among residues and their evolution 

during the protein unfolding. Additionally, the 2D β0 profile of the all-atom representation 

was a strict invariant over the time evolution as shown in Fig. 2 d, while that of CG model in 

Fig. 3 c varies obviously during the SMD simulation. The standard mean distance between 

two adjacent Cα atoms is about 3.8 Å, which can be enlarged under the pulling force of the 

SMD. The deviation from the mean residue distance indicates the strength of the pulling 

force. Finally, Fig. 3 d displays a clear topological transition from a partially folded state to 

a completely unfolded state at 75 picoseconds or 750th configuration.

As demonstrated in our earlier work,51 one can establish a quantitative model based on the 

PBNs of β1 to predict the relative folding energy and stability. The β1 PBNs computed from 

the present CG representation are particularly suitable for this purpose. A similar 

quantitative model can be established to describe the orderliness of disordered proteins.51 In 

Figure 4, we demonstrate the prediction of bond and total energies using β0 and β1 

accumulated bar lengths, respectively. Basically, the PBNs for each individual configuration 

are added to deliver the accumulated bar lengths, which are then used to fit with the 

simulated results in a total of 1000 frames. It can be seen that the accumulated bar lengths of 

β0 give a nice prediction of the bond energy, and the accumulated bar lengths of β0 capture 

the essential properties of the total energy. For these two fittings, Pearson’s correlation 

coefficients are 0.924 and 0.990, respectively. It can been seen these topological 

measurements capture the essential properties of the bond and total energies, and thus can be 

used to characterize the unfolding process.

In summary, multidimensional persistent homology analysis provides a wealth of 

information about protein folding and/or unfolding process including the number of atoms 

or residues, the numbers of hexagonal rings and pentagonal rings in the protein, bond 

lengths or residue distances, the strength of applied pulling force, the orderliness of 

disordered proteins, the relative folding energies, and topological translation from partially 

folded states to completely unfolded states. Therefore, multidimensional topological 

persistence is a powerful new tool for describing protein dynamics, protein folding and 

protein-protein interaction.

3 Multidimensional persistence in biological matrices

Having illustrated the construction of multidimensional topological persistence in point 

cloud data, we further demonstrate the development of multidimensional topological 

analysis of matrix data. To this end, we consider biomolecular matrices associated flexibility 

analysis. The proposed method can be similarly applied to other biological matrices.

3.1 Protein flexibility prediction

Geometry, electrostatics, and flexibility are some of the most important properties for a 

protein that determine its functions. The role of protein geometry and electrostatics has been 
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extensively studied in the literature. However, the importance of protein flexibility is often 

overlooked. An interesting argument is that it is the protein flexibility, not disorder, that is 

intrinsic to molecular recognition.99 Protein flexibility can be defined as its ability to deform 

from the equilibrium state under external force. The external stimuli are omnipresent either 

in the cellular environment and in the lattice condition. In response, protein spontaneous 

fluctuations orchestrate with the Brownian dynamics in living cells or lattice dynamics in 

solid with its degree of fluctuations determined by both the strength of external stimuli and 

protein flexibility. It has been shown that the Gaussian network model (GNM) and the 

flexibility-rigidity index (FRI) are some of most successful methods for protein flexibility 

analysis.8, 9 However, the performance of these methods depends on their parameters, 

namely, the cutoff distance of the GNM and the characteristic distance or the scale of the 

FRI. In this work, we develop matrix based multidimensional persistent homology methods 

to examine the optimal scale of FRI and optimal cutoff distance of the GNM. Brief 

descriptions are given to both methods to facilitate our persistent homology analysis.

Flexibility rigidity index—The FRI have been proposed as a matrix diagonalization free 

method for the flexibility analysis of biomolecules.8, 9 The computational complexity of the 

fast FRI constructed by using the cell lists algorithm is of O(N), with N being the number of 

particles.9 In FRI, protein topological connectivity is measured by a correlation matrix. 

Consider a protein with N particles with coordinates given by {rj|rj ∈ ℝ3, j = 1, 2, ⋯, N}. 

We denote ‖ri – rj‖ the Euclidean distance between ith particle and the jth particle. For the 

ith particle, its correlation matrix element with the jth particles is given by Φ(‖ri – rj‖; σj), 

where σj is the scale depending on the particle type. The correlation matrix element is a real-

valued monotonically decreasing function satisfying

(1)

(2)

The Delta sequences of the positive type discussed in an earlier work100 are suitable choices. 

For example, one can select generalized exponential functions

(3)

and generalized Lorentz functions

(4)

We have defined the atomic rigidity index μi for the ith particle as8

(5)

where wj is a particle type dependent weight function. The the atomic rigidity index has a 

straight forward physical interpretation, i.e., a strong connectivity leads to a high rigidity.
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We also defined the atomic flexibility index as the inverse of the atomic rigidity index,

(6)

The atomic flexibility indices {fi} are used to predict experimental B-factors or Debye-

Waller factors via a linear regression.8 The FRI theory has been intensively validated by a 

set of 365 proteins.8, 9 It outperforms the GNM in terms of accuracy and efficiency.8

When we only consider one type of particles, say Cα atoms in a protein, we can set wj = 1. 

Additionally, it is convenient to set σj = σ for Cα based CG model. We use σ as a scale 

parameter in our multidimensional persistent homology analysis, which leads to a 2D 

persistent homology.

Elastic network model—The normal mode analysis (NMA)4–7 is a well developed 

technique and is constructed based on the matrix diagonalization of MD force field. It can be 

employed to study, understand and characterize the mechanical aspects of the long-time 

scale dynamics. The computational complexity for the matrix diagonalization is typically of 

O(N3), where N is the number of matrix rows or particles. Elastic network model (ENM)10 

simplifies the MD force field by considering only the elastic interactions between nearby 

pairs of atoms. The Gaussian network model (GNM)11–13 makes a further simplification by 

using the coarse-grained representation of a macromolecule. This coarse-grained 

representation ensures the computational efficiency. Yang et al.101 have demonstrated that 

the GNM is about one order more efficient than most other matrix diagonalization based 

approaches. In fact, GNM is more accurate than the NMA.9 It should be noticed that the 

GNM models can be further improved by the incorporation of information from crystalline 

structure, residual types, and co-factors.

The performance of GNM depends on its cutoff distance parameter, which allows only the 

nearby neighbor atoms within the cutoff distance to be considered in the elastic 

Hamiltonian. In this work, we construct multidimensional persistent homology based on the 

cutoff distance in the GNM. We further analyze the parameter dependence of the GNM by 

our 2D persistence.

3.2 Persistent homology analysis of optimal cutoff distance

Protein elastic network models, including the GNM, usually employ the coarse-grained 

representation and do not distinguish between different residues. Let us denote N the total 

number of Cα atoms in a protein, and ‖ri – rj‖ the distance between ith and jth Cα atoms. To 

analyze the topological properties of protein elastic networks, we have introduced a new 

distance matrix D = {Dij |i = 1, 2, ⋯, N; j = 1, 2, ⋯, N}51

(7)

where d∞ is a sufficiently large value which is much larger than the final filtration size and 

rc is a given cutoff distance. Here d∞ is designed to ensure that atoms beyond the cutoff 
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distance rc do not form any high order simplicial complex during the filtration process. 

Therefore, the resulting persistent homology shares the same topological connectivity with 

elastic network models. By systematically increasing the cutoff distance rc, one can analyze 

the topological connectivity and performance of the GNM. Additionally, the cutoff distance 

(rc) in Eq. (7) is also employed as the filtration parameter in our 2D persistent homology 

analysis of the GNM.

The performance of the GNM for the B-factor prediction and the multidimensional 

persistent homology analysis of protein 1PZ4 are plotted in Fig. 5. In Fig. 5 a, we compare 

the experimental B-factors and those predicted by the GNM with a cutoff distance 6.6 Å. 

The Pearson correlation coefficient for the prediction is 0.89. The GNM provides very good 

predictions except for the first three residues and the high flexibility around the 42nd 

residue. Figure 5 b shows the relation between correlation coefficient and cutoff distance. It 

can be seen that the largest correlation coefficients are obtained in the region when cutoff 

distance is in the range of 6Å to 9Å. Figures 5 c and d illustrate 2D β0 and β1 persistence, 

respectively. The x-axises are the cutoff distance rc in filtration matrix (7), which is the 

major filtration parameter. The y-axises are the cutoff distance rc in the GNM Kirchhoff 

matrix. The resulting β0 and β1 PBNs in the matrix representation have unique patterns 

which are highly symmetric along the diagonal lines. This symmetry, to a large extent, is 

duo to the way of forming the GNM Kirchhoff matrix. The 2D β0 persistence has an obvious 

interpretation in terms of 113 residues. Interestingly, patterns in Fig. 5 d can be employed to 

explain the behavior of the correlation coefficients under different cutoff distances. To this 

end, we roughly divide Fig. 5 d into four regions according to the cutoff distance, i.e., (0Å, 

4.5Å), (4.5Å, 5.8Å), (5.8Å, 9Å) and (9Å, 12Å). In the first region, the network is not well 

constructed. As the distance between two Cα atoms is around 3.8Å, there is only a cluster of 

isolated atoms when cutoff distance is smaller than 4.5 Å. Therefore, the corresponding 

GNMs do not give any reasonable prediction. In the second region, network structures begin 

to form. The number of 1D ring structures within these networks increases dramatically. It 

reaches its maximum when cutoff is about 5Å, and then drops quickly. This behavior means 

that many local small-sized loops are developed. The corresponding GNMs can capture 

certain local properties, however, they neglect the global networks and are unable to grab 

the essential characteristics of the protein. As a consequence, the correlation coefficients are 

quite poor. In the third region, constructed networks incorporate more and more large-sized 

loops or rings and the corresponding GNMs improve predictions. In the last region, local 

rings disappear while global rings are included in the network models. It is natural to assume 

that only when the constructed network includes all essential topological invariants that the 

corresponding GNM delivers the best prediction. However, this assumption turns out to be 

incorrect. As indicated in Fig. 5 b, the largest correlation coefficient is actually in the third 

region. The best cutoff distances are around 7Å to 9Å. This happens because in the GNM, 

equal weights are assigned to all elastic springs once spring lengths are within the cutoff 

distance. Thus, there is no discrimination between local and global ring structures.

3.3 Persistent homology analysis of the FRI scale

Unlike GNM which utilizes a cutoff distance, the FRI theory employs a scale or 

characteristic distance σ in its correlation kernel. The scale has a similar function as the scale 
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in wavelet theory, and thus it emphasizes the contribution from the given scale. The FRI 

scale has a direct impact in the accuracy of protein B-factor prediction. Similar to the 

optimal cutoff distance in the GNM, the best FRI scale varies from protein to protein, 

although an optimal value can be found based on a statistical average over hundreds of 

proteins.8, 9 In the present work, we use the scale as an additional variable to construct 

multidimensional persistent homology.

In our recent work, we have introduced a FRI based filtration method to convert the point 

cloud data into matrix data.51 In this approach, we construct a new filtration matrix M = 

{Mij |i = 1, 2, ⋯, N; j = 1, 2, ⋯, N}

(8)

where 0 ≤ Φ(‖ri – rj‖; σ) ≤ 1 is defined in Eqs. (1) and (2). To avoid any confusion, we 

simply use the exponential kernel with parameter κ = 2 in the present work.

The performance of the FRI B-factor prediction and the multidimensional persistence of 

protein 2MCM are illustrated in Fig. 6. The filtration matrices are constructed as 

. The comparison of experimental B-factors and predicted B-

factors with the scale σ = 9.2Å is given in Fig. 6 a. The Pearson correlation coefficient is 

0.81 for the prediction. Figure 6 b, shows the relation between the correlation coefficient 

and the scale. It is seen that the largest correlation coefficients are obtained when the scale is 

in the range of 5Å to 15Å. Figures 6 c and d demonstrate respectively β0 and β1 2D 

persistence. Unlike the GNM results shown in Fig. 5 where different cutoff distances lead to 

dramatic changes in network structures, the FRI connectivity shown in Fig. 6 c increases 

gradually as σ increases. For all σ > 3Å, the maximal β1 values can reach 40 as shown in 

Fig. 6 d. However, in the region of 5Å< σ <15Å, 1D rings are established over a wide range 

of the matrix values, which implies a wide range of distances. The balance of the global and 

local rings gives rise to excellent FRI B-factor predictions.

In fact, a persistent homology based quantitative model can be established in terms of 

accumulated bar length.51 Essentially, if all the PBNs are added up at each scale, the 

accumulated PBNs give rise a good prediction of the optimal scale range. State differently, 

the plot of the accumulated PBNs versus the scale will have a similar shape as the curve in 

Fig. 6 b.

4 Multidimensional persistence in volumetric data

Volumetric data are widely available in science and engineering. In biology, density 

information, such as the experimental data from cryo-EM,86, 102 geometric flow based 

molecular hypersurface31, 33, 42, 85 and electrostatic potential,44, 103 are typically described 

in volumetric form. These volumetric data can be filtrated directly in terms of isovalues in 
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persistent homology analysis. Basically, the locations of the same density value form an 

isosurface. The discrete Morse theory can then be used to generate cell complexes. 

Additionally, we have developed techniques51 to convert point cloud data from X-ray 

crystallography into the volumetric form by using the rigidity function or density in our FRI 

algorithm.86 Specifically, the atomic rigidity index μi in Eq. (5) can be generalized to a 

position (r) dependent rigidity function or density8, 9

(9)

Volumetric multidimensional persistence can be constructed in many different ways. 

Because wj and σj are 2N independent variables, it is feasible to construct 2N + 1-

dimensional persistence for an N-atom biomolecule. Here the additional dimension is due to 

the filtration over the density μ(r). If we set wj = 1 and σj = σ, we can construct genuine 2D 

persistence by filtration over two independent variables, i.e., σ and density.

In this work, we also demonstrate the construction of pseudo-multidimensional persistence. 

Since noise and denoising are two important issues in volumetric data, we develop methods 

for pseudo-multidimensional topological representation of noise and pseudo-

multidimensional topological denoising.

4.1 Multidimensional topological fingerprints and topological denoising

To analyze the topological signature of noise, we make a case study on Gaussian noise, 

which is perhaps the most commonly occurred noise. The Gaussian white noise is a set of 

random events satisfying the normal distribution

(10)

where An, μn and σn are the amplitude, mean value and standard deviation of the noise, 

respectively. The strength of Gaussian white noise can be characterized by the signal to 

noise ratio (SNR) defined as SNR = μs / σn, where μs is the mean value of signal. We 

generate noise polluted volumetric data by adding different levels of Gaussian white noise to 

the original data.

We employ fullerene C20 as an example to illustrate the multidimensional topological 

fingerprints of noise. The rigidity density of C20 is given by

(11)

The noisy data and multifiltration results are demonstrated in Fig. 7. We plot the noisy data 

of C20 with three SNRs, 1, 10 and 100 in Figs. 7 a1–a3. The persistent barcodes of C20 have 

20 β0 bars, 11 β1 bars and one β2 bar. Figures 7 b1–b3 are respectively 2D β0, β1 and β2 

persistent homology. In these figures, the vertical axises are the SNR values, which are 

varied over the range of 1.0 to 100.0. The horizontal axises represent the density isovalues 
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(i.e., the main filtration parameter). In these cases, the designed filtration goes from the 

highest density value around 2.0 to the lowest density about −1.0. The negative values are 

introduced by the Gaussian noise. The resulting PBNs are plotted in the natural logarithm 

scale as indicated by the color bars.

First of all, the topological fingerprints of C20 stand out in Figs. 7 b1–b3 and demonstrate 

some invariant features as the SNR increases. In Figure 7 b1, the rectangle-like region is due 

to the twenty isolated parts in C20. Similarly, the rectangle-like region in Figs. 7 b2 and b3 

represents the 12 rings and the central void of the C20 structure. These rectangle patterns are 

the intrinsic topological fingerprints of C20. In Figs. 7 b1–b3, noise topological signatures 

dominate the counts of Betti numbers, particularly when the SNR is smaller than 30. For 

example, β2 spectrum near the density value of 0.4 is essentially indistinguishable from 

noise induced cavities.

We have recently proposed topological denoising as a new strategy for topology-controlled 

noise reduction of synthetic, natural and experimental data.86 Our essential idea is to couple 

noise reduction with persistent homology analysis. Since persistent topology is extremely 

sensitive to the noise, the strength of noise signature can be monitored by persistent 

homology in a denoising process. As a result, one can make optimal decisions on number of 

deniosing iterations. It was found that contrary to popular belief, noise can have very long 

lifetimes in the barcode representation,86 while short lived features are part of molecular 

topological fingerprints.51 In the present work, we introduce 2D topological denoising 

methods. To this end, we present a brief review of the Laplace-Beltrami flow based 

denoising approach.

Laplace-Beltrami flow—One of efficient approaches for noise reduction in signals, 

images and data is geometric analysis, which combines differential geometry and 

differential equations. The resulting geometric PDEs have become very popular in applied 

mathematics and computer science in the past two decades.104–106 Wei introduced some of 

the first families of high-order geometric PDEs for image analysis107

(12)

where the nonlinear hyperux term jq is given by

(13)

where r ∈ ℝn, , u(r, t) is the processed signal, image or data, dq(u(r, t), |∇u(r, t)|, t) 

are edge or gradient sensitive diffusion coefficients and e(u(r, t), |∇u(r, t)|, t) is a nonlinear 

operator. Denote X(r) the original noise data and set the initial input u(r, 0) = X(r). There are 

many ways to choose hyperdiffusion coefficients dq(u, |∇u|, t) in Eq. (13). For example, one 

can use the exponential form
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(14)

where dq0 is chosen as a constant with value depended on the noise level, and σ0 and σ1 are 

local statistical variance of u and ∇u

(15)

Here the notation  represents the local average of Y (r) centered at position r. The 

existence and uniqueness of high-order geometric PDEs were investigated in the 

literature.108–111 Recently, we have proposed differential geometry based objective oriented 

persistent homology to enhance or preserve desirable traits in the original data during the 

filtration process and then automatically detect or extract the corresponding topological 

features from the data.85 From the point of view of signal processing, the above high order 

geometric PDEs are designed as low-pass filters. Geometric PDE based high-pass filters was 

pioneered by Wei and Jia by coupling two nonlinear geometric PDEs.112 Recently, this 

approach has been generalized to a new formalism, the PDE transform, for signal, image and 

data analysis.40, 113–115

Apart from their application to images,107, 116, 117 high order geometric PDEs have also 

been modified for macromolecular surface formation and evolution,43

(16)

where S is the hypersurface function, g(|∇∇2qS|) = 1+|∇∇2qS|2 is the generalized Gram 

determinant and P is a generalized potential term. When q = 0 and P = 0, a Laplace-Beltrami 

equation is obtained,42

(17)

We employe this Laplace-Beltrami equation for the noise removal in this work.

Computationally, the finite different method is used to discretize the Laplace-Beltrami 

equation in 3D. Suitable time interval δt and grid spacing h are required to ensure the 

stability and accuracy. To avoid confusion and control the noise reduction process 

systematically, we simply ignore the voxel spacing in different data sets and employ a set of 

unified parameters of δt = 5.0E – 6 and h = 0.01 in our computation. The intensity of noise 

reduction is then described by the duration of time integration or the number of iterations of 

Eq. (17).

Topological fingerprint identification—From Figures 7 b1–b3, it can been seen that, 

with the increase of SNR, the intrinsic topological properties emerge and persist. Persistent 
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patterns can be seen in the PBN representation. It is interesting to know whether the 

topological persistence of the signal is a feature in the denoising process.

Figures 7 c1–c3 depict the topological invariants of contaminated fullerene C20 over the 

Laplace-Beltrami flow based denoising process. The fullerene C20 rigidity density is 

generated by using Eq. (11). The noise is added according to Eq. (10) with the SNR of 1.0. 

The Laplace Beltrami equation (17) is solved with time stepping δt = 5.0E – 6 and spatial 

spacing h = 0.01. Figures 7 c1–c3 illustrate respectively the β0, β1 and β2 persistent 

homology analysis of the denoising process. The filtration goes from density 2.0 to −1.0 (the 

negative values are due to the added noise). A total of 200 denoising iterations is applied to 

the noisy data. The PBNs are plotted in the natural logarithm scale. It can be seen that after 

about 40 denoising iterations, the noise intensity has been reduced dramatically. Indeed, the 

intrinsic topological features of C20 emerge and persist. It appears that the bandwidths of 

C20 PBNs reduce during the denoising process. However, such a bandwidth reduction is due 

to the fact that there is a dramatic density reduction during the denoising precess, 

particularly at the early stage of the denoising. In fact, the accumulated Betti numbers of C20 

do not change and stay stable. It should be noted the color bar denotes the natural logarithm 

of PBNs values added by 1. The comparison between Figures 7 b1–b3 and c1–c3 

demonstrates clearly the noise reduction effect in various iteration steps. It provides a 

criteria to distinguish between the intrinsic topological properties and noise in denoising 

process.

Having demonstrated the construction of 2D persistence for topological denoising, we 

further apply this new technique for the analysis of noisy cryo-EM data of a microtubule 

(EMD 1129).102 Figures 8 a, b, and c are surfaces extracted from denoising data with the 

numbers of iterations of 1, 100 and 200, respectively. A common isovalues of 15.0 used to 

extract surfaces in these plots. It is seen that the denoising process reduces not only the 

noise, but also the density, which leads to the shift in the topological distribution. Figures 8 

d, e and f are respectively the 2D β0, β1 and β2 persistence. The filtrations in horizontal 

axises go from density 45 to 0. In Figures 8 d, e and f, vertical axises are the numbers of 

iterations. A total of 300 iterations is employed for integrating Eq. (10) with time stepping δt 

= 2.0E − 6 and spatial spacing h = 0.01. Color bar values represent the natural logarithm of 

PBNs. It can be seen that after about 100 denoising iterations, the noise intensity has been 

dramatically reduced. Persistent behavior can be observed in β0, β1 and β2. This persistent 

behavior is a manifest of the intrinsic topological features of the micortubule structure.

4.2 Multiscale multidimensional persistence

In this section, we demonstrate the construction of multiscale multidimensional persistent 

homology. To this end, we consider protein 2YGD in our multiscale 2D persistence 

analysis. The fullerene C60, whose topological properties have been analyzed in our earlier 

work,51 is used as an example to illustrate our multiscale high-dimensional persistence.

Multiscale 2D persistence—We generate volumetric density data of protein 2YGD by 

using the exponential kernel function
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(18)

where the resolution σ is utilized as a multiscale parameter and will be varied from 0.7Å to 

14.7Å. Weight wj is chosen as the atomic number of the jth atom. We linearly rescale the 

density value to region [0,1] using expression . Here μ(r)s is the rescaled 

density value. Here μmax is the largest density value in the original data. For each given 

scale, we carry out the density value based filtration of protein 2YGD. Our results are 

depicted in Fig. 9. The structure of protein 2YGD is plotted in Fig. 9 a.

The structure of protein 2YGD exhibits dramatically different scales ranging from atom, 

residue, secondary-structure, domain to entire protein. Figure 9 illustrates the topological 

representation of this multiscale structure. Generally speaking, we can roughly divide results 

of β0, β1 and β2 into three parts according to the resolution parameter σ. The first part is 

when σ is smaller than 3 Å. In this region, the topological properties related to the local 

structures, i.e., atoms or intra-residues, are well captured. The second part is the region when 

σ is larger than 3 Å and smaller than 7 Å. With the increase of the resolution value, local 

structures gradually disappear, more global type of structures, i.e., inter-residual and 

domain, begins to emerge. The rest region belongs to the third part, in which, only the global 

backbone structure of the protein 2YGD is captured. We can seen that the PBNs in this 

region are comparably consistent. In β0, we have 4 individual components corresponding to 

the four major domains in the protein. In β1, the PBNs are majorly 9 and 4, representing the 

6 large ring and 4 small ring pattern in the structure. Finally the PBN is 1 for β2, this 

captures the central void in the protein.

Multiscale high-dimensional persistence—Having demonstrated the construction of 

2D topological persistence in a number of ways, we pursue to the development of 3D 

persistence. Obviously, there are a variety of ways that one can construct 3D or 

multidimensional persistent homology. For example, 3D persistent homology can be 

generated by the combination of scale, time and the matrix filtration, the combination of 

scale, time and density filtration, and the combination of scale, SNR and density filtration. 

In the present work, we illustrate 3D persistent homology by using anisotropic scales or 

anisotropic filtrations, which give rise to truly multidimensional simplicial complexes and 

truly multidimensional persistent homology. For simplicity, we take fullerene C60 as an 

example to illustrate our approach.

We define the density of the fullerene C60 by a multiscale function,

(19)

where (xj, yj, zj) are the atomic coordinates of C60 molecule and  and  are 180 

independent scales. Obviously, each of these scales can vary independently. Therefore, 
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together with the density, these scales are able to deliver 181-dimensional filtrations. 

However, the visualization of such a high-dimensional persistent homology will be a 

problem, not to mention its physical meaning. To reduce the dimensionality, we set 

 and , which leads to four-dimensional (4D) persistent homology. To 

further reduce the dimensionality, we set σx = σy to end up with 3D persistence.

Unlike the isotropic filtration created by an isotropic scale, the anisotropic filtration creates a 

family of distorted “molecules” for topological analysis. For the highly symmetry C60 

molecule, these distorted versions are not very physical by themselves. However, C60 is a 

good choice for illustrating and analyzing our methodology, because any distortion is due to 

the method. On the other hand, the method itself is meaningful due to the fact that most 

molecules are not symmetric and have anisotropic shapes or anisotropic thermal 

fluctuations. Figure 10 depicts anisotropic C60 molecules generated by different 

combinations of σx = σy and σz according to Eq. (19). Figures 10 a and b are obtained with 

σx = σy = 0.2 Å and σz = 0.5 Å at the isovalue of 0.4. There is an elongation along the z axis. 

Figures 10 c and d are generated with σx = σy = 0.5 Å and σz = 0.2 Å at the isovalue of 1.0. 

In this case, there is an obvious compression in the z-direction.

Topologically, the anisotropic filtration systematically creates a family of truly 

multidimensional simplicial complexes which would be difficult to imagine otherwise in the 

3D space. Figure 11 illustrates the multiscale 3D persistent homology of C60 molecule. The 

molecular structure is presented in Fig. 11 a with σx = σy = σz = 0.5 Å at the isovalue of 1.5. 

For the 2D persistent homology, the variation of PBNs over two axises can be represented 

by different color schemes. However, the visualization of PBNs in 3D is not trivial. Figures 

11 b, c and d are respectively multiscale 3D β0, β1 and β2 persistence. Here the x-axises 

represent the density value (i.e., the main filtration parameter). The y-axises denote σz and 

the z-axises are for σx = σy. The distributions of two PBNs, β0 = 4 and β0 = 50 are plotted 

with blue dots and red dots respectively in Fig. 11 b. It is seen that PBNs of β0 are mainly 

distributed at small fix and σz scales. In Fig. 11 c, we depict the distributions of β1 = 3 and β1 

= 20 with blue dots and red dots, respectively. As the scales increase, the PBNs of β1 first 

increase then decay. Finally, the distributions of β2 = 1 and β2 = 2 are illustrated with blue 

dots and red dots, respectively in Fig. 11 d. As the cavity of C60 is relatively global, the 

values of β2 = 1 is seen to locate at relatively large scales.

5 Conclusion

Recently, persistent homology, a new branch of topology, has gained considerable 

popularity for computational application in big data simplification. It generates a one-

parameter family of topological spaces via filtration such that topological invariants can be 

measured at a variety of geometric scales. As a result, persistent homology is able to bridge 

the gap between geometry and topology. However, one-dimensional (1D) persistent 

homology has its limitation to represent high dimensional complex data. Multidimensional 

persistence, a generalization of 1D persistent homology to a multidimensional one, provides 

a new promise for big data analysis. Nevertheless, the realization and construction of robust 

multidimensional persistence have been a challenge.
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In this work, we introduce two types of multidimensional persistence. The first type is called 

pseudo-multidimensional persistence, which is generated by the repeated applications of 1D 

persistent homology to high-dimensional data, such as results from molecular dynamics 

simulation, partial differential equations (PDEs), molecular surface evolution, video data 

sets, etc. The other type of multidimensional persistence is constructed by appropriate 

multifiltration processes. Specifically, cutoff distance and scale are introduced as new 

filtration variables to create multifiltration and multidimensional persistence. The scale of 

flexibility-rigidity index (FRI)8, 9 behaves in the same manner as the wavelet scale. It serves 

as an independent filtration variable and controls the formation of simplicial complexes and 

the corresponding topological spaces. As a result, the FRI scale creates truly multiscale 

multidimensional persistent homology, in conjugation with the matrix value variable or the 

density variable. We have developed genuine two-dimensional (2D) persistent homology. 

By using anisotropic scales, in which the scale in each spatial direction can vary 

independently, we can construct four dimensional (4D) persistent homology. A protocol is 

prescribed for the construction of arbitrarily high dimensional persistence. Concrete 

numerical example is given to three-dimensional (3D) persistence.

We have demonstrated the utility, established the robustness and explored the efficiency of 

the proposed multidimensional persistence by its applications to a wide range of 

biomolecular systems. First, we have constructed pseudo-multidimensional persistence for 

the protein unfolding process. It is shown that local topological features such as pentagonal 

and hexagonal rings in the amino acid residues are preserved during the unfolding process, 

whereas global topological invariants diminish over the unfolding process. Topological 

transition from folded or partially folded proteins to unfolded proteins can be clearly 

identified in the 2D persistence. We show that the β0 persistence also provides an indication 

of the strength of applied pulling forces in the steer molecular dynamics. Additionally, we 

have analyzed the optimal cutoff distance of the Gaussian network model (GNM) and the 

optimal scale of the FRI theory by using 2D persistence. We have revealed the relationship 

between the topological connectivity in terms of Betti numbers and the performance of the 

GNM and the FRI for the prediction of protein Debye-Waller factors. Moreover, we have 

utilized 2D persistence to illustrate the topological signature of Gaussian noise. The 

efficiency of Laplace-Beltrami flow based topological denoising is studied by the present 

2D persistence. We show that the topological invariants of C20, especially β2, persist during 

the denoising process, whereas the topological invariants of noising diminish during the 

denoising process. Similar results are also observed for the topological denoising of cryo-

electron microscopy (cryo-EM) data. Finally, we have employed multiscale 

multidimensional persistence to investigate the topological behavior of protein 2YGD. We 

reveal its multiscale structure properties in the our 2D persistence. We also consider the C60 

over anisotropic scale variations. This study unveils that β0 invariants are intrinsically local, 

while β1 and β2 invariants are relatively global.

Multidimensional persistence techniques have been developed for three types of data 

formats, i.e., point cloud data, matrix data and volumetric data. We have also illustrated 

conversion of point cloud data to matrix and volumetric data via the FRI theory. Therefore, 

the proposed methodology can be directly applied to other biomolecular systems, biological 

networks, and diverse other disciplines.
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Figure 1. 
Persistent barcodes and PBNs of 1UBQ structure. a Persistent barcodes for the all-atom 

representation without hydrogen atoms; b PBNs for the all-atom representation without 

hydrogen atoms; c Persistent barcodes for the CG representation; d PBNs for the CG 

representation. In each subfigure, β0, β1 and β2 are displayed in the top, middle and bottom 

panels, respectively. In all subfigures, horizontal axises label the filtration radius (Å). 

Vertical axises in b and d are the numbers of topological invariants.
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Figure 2. 
The unfolding of protein 1UBQ and the corresponding multidimensional persistence. a All 

atom representation of the relaxed structure without hydrogen atoms; b All atom 

representation of the unfolded structure at the 300th frame; c All atom representation of the 

unfolded structure at the 500th frame; d 2D β0 persistence; e 2D β1 persistence; f 2D β2 

persistence. In subfigures d, e and f, horizontal axises label the filtration radius (Å) and the 

vertical axises are the configuration index. Color bars denote the natural logarithms of 

PBNs. We systematically add 1 to all PBNs to avoid the possible logarithm of 0.
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Figure 3. 
Coarse-grained representation of the unfolding of protein 1UBQ and the corresponding 

multidimensional persistence. a All atom representation of the relaxed structure without 

hydrogen atoms; b Coarse-grain representation of the relaxed structure without hydrogen 

atoms; c 2D β0 persistence; d 2D β1 persistence. The color in subfigure a denotes different 

residues. In subfigures c, and d, horizontal axises label the filtration radius (Å) and the 

vertical axises are the protein configuration index. Color bars denote the natural logarithms 

of PBNs. We systematically add 1 to all PBNs to avoid the possible logarithm of 0.
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Figure 4. 
The prediction of bond and total energy with β0 and β1 accumulated bar lengths, 

respectively. a The quantitative comparison of bond energies of β0 predictions and steered 

molecular dynamic results. The horizontal axis labels the configuration number and the 

vertical axis is the bond energy (kcal/mol). The Pearson’s correlation coefficient is 0.924. b 
The comparison of total energies of β1 predictions and steered molecular dynamic results. 

The horizontal axis labels the configuration number and the vertical axis is the total energy 

(kcal/mol). The Pearson’s correlation coefficient is 0.990. The accumulated bar length for 

each configuration is calculated by the summation of all the corresponding PBNs for the 

configuration. It can been seen these topological measurements capture the essential 

properties of the bond and total energies, and thus can be used to characterize the unfolding 

process.
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Figure 5. 
Performance of GNM and multidimensional persistence of protein 1PZ4. a Comparison of 

the GNM prediction at rc = 6.6Å and experimental B-factors; b Correlation coefficient vs 

cutoff distance (rc) for the GNM; c 2D β0 persistence; d 2D β1 persistence. In c and d, the 

horizontal axis is the cutoff distance rc in filtration matrix (7) and the vertical axis is the 

cutoff distance rc in the GNM. The color bars represent PBNs.
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Figure 6. 
Performance of the FRI and multidimensional persistence of protein 2MCM. a Comparison 

of the FRI prediction at σ = 9.2Å and experimental B-factors; b Correlation coefficient vs 

scale (σ) for the FRI; c 2D β0 persistence; d 2D β1 persistence. In c and d, the horizontal axis 

is in the FRI filtration matrix value Mij (8) and the vertical axis is the scale (σ) in terms of Å 

in the FRI. The color bars represent PBNs.
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Figure 7. 
Illustration of the Gaussian noise contaminated fullerene C20 data, their multidimensional 

persistence and multidimensional topological denoising. a1–a3: The noisy C20 at the SNRs 

of 1, 10, and 100, respectively; b1–b3: The 2D persistence representations of β0, β1, and β2 

respectively, for Gaussian noise contaminated fullerene C20 data. The horizontal axises 

represent the density values (i.e., the main filtration parameter). The vertical axises are the 

SNR. Color bars denote the natural logarithm of PBNs. We systematically add 1 to all PBNs 

to avoid the possible logarithm of 0; c1–c3: The 2D persistence representations of β0, β1, and 

β2 respectively, for denoising contaminated fullerene C20 data with SNR 1.0. The horizontal 
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axises represent the density values. The vertical axises represent the number of iterations. A 

total of 200 iterations is employed. Color bars denote the natural logarithm of PBNs added 

by 1.
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Figure 8. 
Multidimensional topological denoising for EMD 1129 data of a microtubule structure. a 
Denoising data after one iteration; b Denoising data after 100 iteration; c Denoising data 

after 200 iteration; d 2D β0 persistence; e 2D β1 persistence; f 2D β2 persistence. Isosurfaces 

in a, b and c are extracted at isovalue 15.0. In d, e and f, the horizontal axises are density 

isovalues (i.e., the main filtration parameter). The vertical axises represent the number of 

iterations. Color bars denote the natural logarithm of PBNs values added by 1.
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Figure 9. 
The multiscale multidimensional persistence of the protein 2YGD. a The structure of protein 

2YGD; b 2D β0 persistence; c 2D β1 persistence; d 2D β2 persistence. In b, c and d, the 

horizontal axises are the density isovalues (i.e., the main filtration parameter). The vertical 

axises represent the scale (Å). natural logarithm of PBNs values added by 1.
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Figure 10. 
Multidimensional anisotropic filtration of C60. a The z-direction view of C60 with σx = σy = 

0.2 Å and σz = 0.5 Å at the isovalue of 0.4; b The x-direction view of C60 with σx = σy = 0.2 

Å and σz = 0.5 Å at the isovalue of 0.4; c The z-direction view of C60 with σx = σy = 0.5 Å 

and σz = 0.2 Å at the isovalue of 1.0; d The x-direction view of C60 with σx = σy = 0.5 Å and 

σz = 0.2 Å at the isovalue of 1.0.
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Figure 11. 
The C60 molecule and its multiscale 3D persistence. a C60 molecule obtained with σx = σy = 

σz = 0.5 Å at the isovalue of 1.5; b 3D β0 persistence; c 3D β1 persistence; d 3D β2 

persistence. In b, c and d, the x-axises label the density value (i.e., the main filtration 

parameter), the y-axises denote σz and the z-axises represent σx = σy. The blue and red dots 

denote β0 = 4 and 50 respectively in b, β1 = 3 and 20 respectively in c, and β2 = 1 and 2 

respectively in d.
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