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Abstract

The conformational dynamics of a macromolecule can be modulated by a number of factors, 

including changes in environment, ligand binding and interactions with other macromolecules, 

among others. We present a method that quantifies the differences in macromolecular 

conformational dynamics and automatically extracts the structural features responsible for these 

changes. Given a set of molecular dynamics (MD) simulations of a macromolecule, the norms of 

the differences in covariance matrices are calculated for each pair of trajectories. A matrix of these 

norms thus quantifies the differences in conformational dynamics across the set of simulations. 

For each pair of trajectories, covariance difference matrices are parsed to extract structural 

elements that undergo changes in conformational properties. As a demonstration of its 

applicability to biomacromolecular systems, the method, referred to as DIRECT-ID, was used to 

identify relevant ligand-modulated structural variations in the β2-adrenergic (β2AR) G-protein 

coupled receptor. Micro-second MD simulations of the β2AR in an explicit lipid bilayer were run 

in the apo state and complexed with the ligands: BI-167107 (agonist), epinephrine (agonist), 

salbutamol (long-acting partial agonist) or carazolol (inverse agonist). Each ligand modulated the 

conformational dynamics of β2AR differently and DIRECT-ID analysis of the inverse-agonist vs. 

agonist-modulated β2AR identified residues known through previous studies to selectively 

propagate deactivation/activation information, along with some previously unidentified ligand-

specific microswitches across the GPCR. This study demonstrates the utility of DIRECT-ID to 

rapidly extract functionally relevant conformational dynamics information from extended MD 

simulations of large and complex macromolecular systems.
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Introduction

Knowledge about macromolecular conformational dynamics is essential for understanding 

biological function.1 Molecular dynamics (MD) simulations are extremely powerful towards 
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this understanding in that they provide high-resolution details of spatial arrangement of 

particles in a system over time. Atomistic MD simulations spanning a wide range of time-

scales have been employed extensively in the past to understand different aspects of 

dynamics and functions of biomacromolecules of different sizes.2-5 However, the 

overwhelming amount of information in MD trajectories detailing the time-evolution of the 

system is often under-utilized.6 Thus, it is beneficial to refine analysis methods to optimize 

the extraction of functionally relevant conformational information.

Covariance matrices quantify coupling between atomic displacements and provide a detailed 

means of extracting comprehensive information from MD trajectories. Information from the 

covariance matrices has been useful for quantifying configurational entropy,7,8 identifying 

quasi-harmonic modes,9 and extracting functionally relevant global motions.10 In Cartesian 

space, for an N-atom system, a covariance matrix contains 3N × 3N elements, making 

extraction of relevant information challenging for large systems, given the high 

dimensionality. In Principal Component Analysis (PCA),11 the covariance matrices are 

diagonalized to yield collective variables (eigenvectors) sorted according to their 

contribution to the total mean-squared fluctuation.6 In other words, the MD trajectory is 

projected onto principal components (collective variables), and it has been found that these 

collective coordinates constitute a low-dimensional subspace that represents a significant 

part of the macromolecular motion.12 Collective coordinates thereby drastically reduce the 

number of descriptors that are required to characterize the dynamics of the 

macromolecule.13

In certain cases, large-amplitude functionally relevant deformations are harmonic, aligning 

with the macromolecular intrinsic normal modes.14,15 Consequently, several studies have 

attempted to project macromolecular dynamics using elastic network models (ENM),16,17 

where the macromolecule is defined as a set of nodes connected by harmonic springs.18 

Normal modes/collective coordinates are then derived from this simplistic harmonic 

approximation of the potential energy function near equilibrium. Covariance-based methods 

delineating modes from ENM have been used to identify domains within a macromolecule 

that cluster structural features with concerted structural fluctuations.19-21 While this is 

functionally relevant information,22,23 ENM-based methods suffer from two major 

limitations. First, by either treating the macromolecule in isolation, or using implicit solvent 

schemes to screen inter-atomic interactions, the methods likely fail to account for 

configurational entropy of the surrounding environment. Second, given the ruggedness of 

the potential energy surface and anharmonicity of the energy barriers for conformational 

transitions, harmonic approximations tend to lose critical information relevant for 

characterizing macromolecular conformational behavior.14,24

A number of factors modulate the conformational dynamics of a macromolecule. These 

include changes in ion25,26 or osmolyte27,28 concentration, ligand binding or 

dissociation,29-31 and interactions with other macromolecules,32-34 to list a few. While some 

of these factors modulate large domain motions,35,36 others are more subtle.37,38 Often there 

is a large overlap in the low-frequency global motions across these different conformational 

equilibria, with only small changes occurring in the high frequency motions. All of these 
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effects are likely to be missed when characterizing the dynamics through ENM or normal 

mode analysis.

In the present work, we describe a method called DIRECT-ID (Dimensionality Reduction 

through Covariance matrix Transformation for Identification of Differences in dynamics) 

that quantifies changes in the macromolecular conformational dynamics using the norm of 

the differences in the covariance matrices calculated from multiple MD trajectories. The MD 

simulations can be independent runs under different conditions to gain insight into the 

modulation of macromolecular conformational dynamics. For each pair of trajectories, 

structural features with the largest changes in atomic motions are identified. The covariance 

matrices are constructed from non-hydrogen atoms of the macromolecule, thus the method is 

sensitive to both global motion changes as well as smaller higher frequency mode changes. 

Given that the bonds involving hydrogen atoms are generally constrained in most 

biomolecular MD simulations, their dynamics are dominated by the associated non-

hydrogen atoms and thus not included in the current implementation of DIRECT-ID.

The ability of DIRECT-ID to identify functionally relevant features is evaluated by probing 

the modulation of conformational dynamics of the β2-adrenergic G-protein coupled receptor 

(β2AR) by ligands of different functions. Studies have shown that instead of a previously 

hypothesized two state active-inactive model, GPCRs have multiple, distinct active-inactive 

conformations.39 Ligands of different efficacies modulate the conformations of GPCRs 

differently,40 ultimately affecting the downstream functional signaling profiles. 

Consequently, a number of computational41,42 and experimental31 studies have probed the 

effect of ligand binding on β2AR. Thus, the β2AR is a good system to validate the ability of 

DIRECT-ID to quantify changes in the conformational dynamics and identify structural 

features that are sensitive to these changes.

Method

1) Multiple MD simulations of the macromolecule of interest are initially performed. These 

simulations may vary in any manner dictated by the user. Each of these simulations is 

recommended to span similar time-scales and should be tested for convergence with any of 

the conventionally used metrics (e.g., RMSD of the backbone atoms) or using our 

convergence analysis (see below). From the trajectories, the Cartesian coordinates of the 

atoms of interest are used for the calculation of the covariance matrices and the analysis as 

follows.

2) In the Cartesian space, the covariance between two atoms, along an axis x, is calculated as 

⟨r1x · Δr2x⟩, where Δr1x = r1x – r10x, and Δr2x = r2x – r20x, r1x and r10x, r2x and r20x are 

the positions at a time t and in a reference conformation along an axis x for atoms 1 and 2, 

respectively. Angle brackets denote ensemble average. For a system containing N atoms 

being analyzed, the covariance matrix is symmetric with 3N × 3N elements,
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3) Given a set of MD simulations, i,j,…, M of the N-atom system, the covariance matrices 

Ci, Cj,…,CM are calculated with respect to a single reference configuration, r0.

4) Differences between two covariance matrices Ci and Cj are calculated as

It is important that the same reference configuration r0 be used for the calculation of the 

covariance matrices from the different simulations, instead of the mean structures from 

within the simulations. This is because, when the same r0 is used in calculation of Ci, and Cj 

across two trajectories i and j, then elements of the Di–j matrix, 

, (where p and q refer to a 

row and column, respectively) characterize the differences in the atomic displacements 

between the two trajectories. On the other hand, when the mean structures from the 

simulations are used in Ci, then , 

characterize the differences in the variance of the motion.

5) Differences in conformational dynamics across two trajectories are quantified using the 

norm of the difference matrix. Norm, ∥Di–j∥1, is the maximum absolute column sum of the 

difference matrix and can be considered as the magnitude of the matrix. A higher norm 

signifies a greater difference between the two corresponding covariance matrices. Given the 

symmetric nature of the covariance and difference matrices, calculations are invariant 

between ∥Di–j∥1 and ∥Di–j∥∞, the maximum absolute row sum. Thus, for M trajectories, we 

have a matrix of norms,

that is a triangular matrix with diagonal elements equal to 0.
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6) Thus, differences across M covariance matrices of 3N × 3N elements are transformed into 

a single norm matrix containing M × M elements. NM×M can be parsed to identify 

trajectories with the biggest differences in their conformational dynamics. Difference 

matrices, Di–j, between each pair of trajectories, i and j, can be parsed to identify elements 

with the highest magnitude. The elements correspond to pairs of non-hydrogen atoms in the 

macromolecule with largest changes in the correlated motions between the two trajectories. 

These atom pairs are then used to establish a list of residues/nucleotides (depending on the 

nature of the macromolecule) associated with the corresponding non-hydrogen atoms; an 

example is shown in Table 1. Thus, the final output is a table that lists macromolecular 

residues with the most prominent changes in their dynamics between the two trajectories.

DIRECT-ID is written as a C++ program that can handle covariance matrices outputted 

from CHARMM43 or the GROMACS44 utility “gmx covar.” The code extracts structural 

features using these matrices. Note that in general any molecular simulation software can be 

used to generate the trajectories and calculate the covariance matrices, as the C++ code only 

requires as ASCII covariance matrix of the form shown above in step 2.

Simulation Details

One micro-second MD simulations of the β2AR were run in both the apo form and in 

complex with ligands: BI-167107 (BIA),35 epinephrine (EPNE),45 salbutamol (SALB),46 

and carazolol (CARA).47 The active conformation of β2AR from PDB 3P0G35 was used to 

initiate the MD simulations. The region of the structure corresponding to T4 lysozyme, 

which was inserted between TM5 and TM6 to facilitate crystallization, was deleted and the 

third intracellular loop (ICL3) was built in its place using MODELLER48. In total, 100 

models were generated and ranked using the Discrete Optimized Protein Energy (DOPE) 

method49 and the highest ranking model was used as a starting structure. Binding poses of 

ligands EPNE and CARA were obtained from PDB 4LDO and 2RH1, respectively. SALB 

was docked using Autodock-Vina,50 and the top scoring binding pose used in the simulation 

had an orientation similar to that of EPNE. Disulphide bridges between residues 106-191 

and 184-190 were maintained. All simulations were initiated from the same starting 

conformation which was also used as the reference in the DIRECT-ID analysis.

Empirical force field parameters for β2AR and lipids were taken from CHARMM36,51-53 

ligand topologies and parameters were derived from CGenFF54 and water was treated using 

the TIP3P model.55,56 β2AR was inserted into a rectangular palmitoyl oleoyl phosphatidyl 

choline (POPC) membrane containing ~252 lipids, including 10% cholesterol using 

CHARMM-GUI;57 the remainder of the unit cell volume was filled with ~0.15 M NaCl 

aqueous solution including sufficient counterions to neutralize the system. All systems were 

energy minimized in two steps, first by 1500 steps of steepest descent (SD)58 and the next 

1500 steps with the adopted basis Newton-Raphson (ABNR) algorithm.59 During 

minimization, the non-hydrogen atoms of the protein backbone and side chains were 

harmonically restrained using force constants of 10 kcal/mol/Å2 and 5 kcal/mol/Å2, 

respectively. Influx of water molecules into the hydrophobic core of the TM region was 

prevented using a harmonic restraining potential of 2.5 kcal/mol/Å2 along the x-y plane at 

positions of ±11 Å along the z-axis from the center of the receptor. The same force was also 
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used to keep the heads and tails of the lipids in place, and configurations of the lipids were 

maintained with harmonic dihedral restraints with a force constant of 250 kcal/mol/rad2. The 

same restraints were used during the 375 ps of equilibration with a 1-fs time step, and the 

restraint forces were gradually reduced as described in our previous work.60 The first 50 ps 

of equilibration was performed using Langevin dynamics with a friction coefficient of 3 

ps−1 on all non-hydrogen atoms. The remaining 325 ps of the equilibration used constant 

pressure-temperature (NPT) dynamics using the Langevin Piston integrator.61 Covalent 

bonds involving hydrogens were fixed at the equilibrium length by the SHAKE algorithm.62 

Lennard-Jones (LJ) interactions were switched to zero from 10 to 12 Å and the non-bonded 

pair list was generated out to 14 Å and updated heuristically.63 Electrostatic interactions 

were calculated by the particle-mesh Ewald64 summation method with a real space cutoff of 

12 Å. These minimization and equilibration simulations were performed using 

CHARMM.59

Following equilibration, production runs were performed using GROMACS44 and with the 

leapfrog integrator (GROMACS integrator “md”) with a time step of 2 fs. The Nosé–Hoover 

method65,66 was used to maintain the temperature at 300 K with the protein and the 

remainder of the system separately coupled to heat baths. Pressure was maintained at 1 bar 

using the Parrinello–Rahman67 barostat. The time constant used for temperature and 

pressure coupling were both set to 1 ps. The LINCS68,69 algorithm was used to constrain all 

covalent bonds involving hydrogen atoms and water geometries were kept rigid with 

SETTLE.70 LJ interactions were switched off smoothly in the range of 10–12 Å, and the 

particle mesh Ewald (PME) method64,71 was used to treat long-range electrostatics with 

cubic B-spline interpolation and a maximum grid spacing of 1.2 Å. Long-range dispersion 

correction was applied to the energy and pressure terms. No restraints were applied during 

the production.

Results

Across the five 1-μs MD simulations, the overall structure of the β2AR was stable, with the 

root mean square deviation (RMSD) of the backbone atoms across the helices H1-H8 

(excluding the loops), plateauing at around 0.4 μs (SI, Fig. S1). Ligands were also stable in 

the β2AR binding pocket, maintaining interactions with the residues in helices H3, H5, H6 

and H7 (SI, Fig. S2). EPNE was slightly more flexible, with a deviation from the 

crystallographic conformation modulated by a break in its hydrogen bonding with N3127.38 

(superscript indicates Ballesteros-Weinstein numbering), while preserving interactions with 

the rest of the binding pocket (SI, Fig. S2C). Despite the similarity in the backbone RMSD, 

important differences were noted in the conformational dynamics across the five 

simulations, as detailed below.

Ligand Modulated G-protein Binding Cavity in β2AR

Structural studies have identified two distinct conformations of β2AR, in which the opening 

and closing of this cavity are correlated with the activation and inactivation of the GPCR, 

respectively.35,72 Helix α5 in Gαs of the G-protein heterotrimer enters into this cavity which 

is located at the intracellular side of the GPCR, and interactions between α5 and the GPCR 
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are known to initiate the subsequent intracellular signaling downstream.73,74 To probe the 

heterogeneity in the conformational dynamics of β2AR in the apo state and with the different 

ligands, this G-protein binding cavity was traced using the distances between the center of 

mass of intracellular side of helices H2-H6 and H3-H7. Residues considered for the center 

of mass calculation were: V67-Y70(H2), S120-V129(H3), C265-H269(H6) and G320-

S329(H7). Using these two distances as reaction coordinates, approximate free energy 

surfaces were calculated as F(n) = −kBT ln(Nn), where kB is the Boltzmann constant 

(kcal/mol/K), T is the temperature (300 K), and Nn is the number of times the grid point is 

visited during the length of a simulation. These reaction coordinates were based on previous 

conformational dynamics studies that probed GPCR-G-protein coupling specificity75 and 

passage of water through a GPCR channel.76

As shown in Fig. 1, conformational dynamics of β2AR are clearly different between its apo 

state and when in complex with different ligands. Apo and CARA-bound β2AR transitioned 

to distinct “inactive-like” conformations, in which the cavity that accommodates α5 of Gαs 

is not formed (Fig. 1B and C). Agonists, on the other hand, retained the G-protein cavity, but 

the size of this cavity was smaller than that found in the active crystal structures (Fig. 1D-F), 

in agreement with recent studies.75,76 Conformational sampling was also distinct between 

the agonists, such that BIA-bound β2AR more frequently sampled “active-like” 

conformations with bigger cavities, than when bound to EPNE or SALB. SALB-bound 

β2AR also visited more inactive-like conformations, indicating a need for a second ligand or 

a G-protein to stabilize the active conformation in the presence of this partial agonist. 

Consistent with previous studies,42 the opening of the cavity is found to be correlated with a 

break in the bond between R131 of H3 and E268 of H7 SI, Fig. S3). This ionic-bond formed 

most predominantly in the APO state of β2AR and not observed in the agonist-bound 

simulations. Notably, although R131-E268 can characterize the transitions between the end-

states of β2AR, at least two reaction coordinates are needed to delineate heterogeneity in 

ligand modulated changes to conformational dynamics of β2AR. For instance, cavity 

opening can also be traced using distances between H3-H6 and H3-H7 (SI, Fig. S4). These 

surfaces also depict the conformational heterogeneity similar to that shown in Fig. 1.

DIRECT-ID Analysis

It is important to note that the choice of the reaction coordinates for the surfaces in Fig. 1 

was based on knowledge derived from previous structural studies. These surfaces describe 

the more global domain-like motions in the receptor without any information about 

conformational changes of individual residues. Recent studies have shown that 

conformational changes in a subset of residues, often called “microswitches”, manifest into 

macroscopic conformational changes indicative of activation/inactivation of the 

receptor.77,78 To characterize the changes in the conformational equilibria without prior 

knowledge of reaction coordinates, and to identify structural features such as the 

microswitches that are responsive to these changes, DIRECT-ID analysis was performed 

using the trajectories from the five MD simulations. For each simulation, covariance of the 

atomic displacements was calculated over the 1-μs trajectory for all the non-hydrogen atoms 

in the seven transmembrane helices (excluding loops), yielding five covariance matrices that 

each contained 3879 × 3879 elements. Differences between these covariance matrices 
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contain all the variations in conformational dynamics, but given the size of these systems, 

representation of these matrices becomes intractable (see Fig. 2A). Thus the differences are 

quantified using ∥Di–j∥1 as shown in Fig. 2B. The largest differences all involve the agonist 

BIA with the all other states, with the smallest difference occurring between the apo state 

and the inverse-agonist CARA, and the partial agonist SALB. The values of ∥Di–j∥1 are 

included in Table 1.

Ligand Efficacy using DIRECT-ID

As agonists maximally activate the receptor, and activation is coupled with conformational 

transition from the apo state, efficacy can be estimated from ∥Dagonist–apo∥1. As shown in 

Fig.2B, ∥DBIA–APO∥1 (403.1) > ∥DEPNE–APO∥1 (233.6) > ∥DSALB–APO∥1 (140.2). This 

outcome is consistent with previous observations that BIA has a greater efficacy than the 

natural ligand, EPNE, and the partial agonist induced submaximal activity even at saturating 

concentrations.35 Thus, DIRECT-ID is able to quantify the effect of changes to the global 

motion of the protein, which is critical to the understanding of effects of different ligands.

Atomic Details of Conformational Variations

Once the systems with the largest differences are identified using the NM×M matrix, the 

corresponding Di–j matrices may be parsed to identify structural features (residues) with the 

most prominent changes between the two trajectories. Table 1 lists the residues thus 

obtained across all the pairs of the trajectories. Notably, residues that respond to changes in 

ligand properties are not limited to the binding pocket or helices H5 and H6, rather they are 

distributed all across the receptor as described in the following sections.

Agonists Mediated Differences

Distinct differences were found between conformational dynamics of β2AR when in 

complex with agonists versus the inverse-agonist, CARA. This is particularly significant 

when comparing dynamics between BIA- and CARA-bound β2AR (Fig. 2A,B). Structural 

features with the biggest changes in their motion between these two simulations span helices 

H3, H4, H6 and H7 (Fig. 2C, Table 1). Several of these residues (E1223.41, T1644.56, 

Y3267.53) have been identified through previous network information analysis methods78,85 

and site-directed mutational studies (see Table 1) to behave as microswitches and participate 

in communication pathways that relay activation/inactivation information from the ligand 

binding pocket to the intracellular G-protein binding regions. In addition, DIRECT-ID 

identified residues that selectively responded to changes in conformational equilibria of the 

receptor mediated by only some of the ligands and not others. For instance, W1584.50 

underwent a conformational transition that involved a χ2-rotation, pushing it out of the 

largely hydrophobic cavity between the helices H2 and H3, only when β2AR was bound to 

BIA (Fig. 3A). Similarly, displacement of Q1975.37 that broke its interaction with H6 was 

also observed only in the BIA-bound β2AR (Fig. 3B). Y3267.53, is a known microswitch, 

whose conformational transition allows passage of water through another family A GPCR, 

the adenosine receptor, was modulated only by its agonist.76 Consistent with this 

mechanism, only in the BIA-bound β2AR did Y326 undergo a χ1-rotation that disrupted its 

hydrogen-bond network with H1, H2, and H6 and moved into an alternate rotameric 
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conformation that involved an aromatic stacking interaction with the conserved F3328.50 in 

TM8 (Fig. 3D).

In contrast, the presence of EPNE in the β2AR binding pocket modulated conformational 

transitions in N3187.45 that were not seen in BIA-bound β2AR (Fig. 3C). Specifically, 

interactions between N318 and helices H2, H3 and H6, and the N3187.45-N3227.49 (another 

known microswitch) hydrogen bond were broken. Although occurring at different locations 

along the receptor, each of these transitions allow for greater flexibility within the 

transmembrane helices, resulting in a larger opening of G-protein binding cavities (Fig. 1D-

F) that correlate with the activation of the receptor.

Partial-Agonist Mediated Differences

SALB is a long-acting partial agonist of β2AR. Functional studies have determined that 

SALB-mediated signaling is different from other agonists such as EPNE.86 These changes 

were attributed to conformational transitions that significantly reduced GRK-modulated 

phosphorylation at the ICL3 and C-terminal tail of β2AR.87,88 Both ICL3 and the C-terminal 

tail were missing in the crystal structures and not included in the current analysis. 

Nevertheless, DIRECT-ID identified residues along the receptor with changes in their 

conformational motions selectively mediated by SALB-bound β2AR (Table 1). For example, 

F1664.58 (Fig. 4A) and Q1975.37 (Fig. 3B) had transitions similar to those seen in β2AR 

bound to agonists but different from those in the apo state or the CARA-bound β2AR. 

Others, such as the F2175.56 (Fig. 4B) underwent conformational transitions that were 

different from the agonists. χ2-rotation of F217 in SALB-bound β2AR disrupted its 

interaction with Y1323.51 moving into a hydrophobic cluster with L2125.51, V2135.52 and 

V2165.55. This transition likely creates a strain in H5 that could propagate downstream and 

modulate the phosphorylation of ICL3, although additional studies are needed to confirm 

this hypothesis. Notably, DIRECT-ID correctly identified these changes in side-chain 

conformations in SALB-bound β2AR, despite similarity in the more “global” conformational 

motions of H6 and H7 to inactive-like conformations seen in the apo state and CARA-bound 

β2AR (Fig. 1B,C vs. F).

DIRECT-ID analysis with the different ligands revealed the existence of multiple allosteric 

communication pathways/microswitches that selectively propagate information depending 

upon the state of the receptor. Some residues such as the R1514.43, I1534.45, and T1644.56 

were consistently found to have differences in their conformational motion when comparing 

the apo state versus agonists bound β2AR. T164 is known to be polymorphic, with 

mutational changes modulating the receptor functional profile differently. T164V reduces 

basal activity and agonist-induced activation, while T164I was found to alter Salmeterol’s 

(agonist) exosite binding and conventional agonist-driven coupling between GPCR and Gαs 

of G-protein.81 Thus, changing the nature of the residue at a conserved position could 

modulate the communication pathway adopted and the consequent receptor functioning.

As a more thorough understanding of the effect of these residues on the signaling pathways 

emerges through future site-directed mutational studies, they (along with the others listed in 

Table 1) could be targeted using new allosteric modulators to bias the signaling profile of 

the receptor.
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Convergence Assessment using DIRECT-ID

Resetting a fully activated β2AR into the inactivated state requires at least 100 ns,41,76 

leading to recent MD simulations studies on the order of several microseconds in an effort to 

observe fully reversible transitions.76,89 To determine the time scales required to quantify 

the differences in conformational dynamics using DIRECT-ID, ∥Di–j∥1 was calculated over 

0.1-μs increments through the 1-μs trajectories. As shown in Fig. 5A, differences in ∥Di–j∥1 

converged at around 0.7 μs for all the trajectories. Differences in local conformational 

transitions for residues identified using DIRECT-ID, such as the W1584.50 also converged at 

these time-scales (Fig. 5B). Thus, while longer MD simulations may be useful for fully 

characterizing reversible transitions across different states of the receptor, DIRECT-ID 

analysis demonstrates that the present simulations are sufficient for quantifying differences 

in conformational dynamics.

Discussion

Biased agonism is a novel and emerging concept, particularly in GPCR research.90 Recent 

drug-design efforts have focused on developing ligands that stabilize a particular active 

conformation of the receptor and subsequently bias a beneficial signaling profile 

downstream. As the mechanistic link between macromolecular conformations and 

downstream signaling emerges, allosteric modulators could be developed to target residues 

identified using DIRECT-ID that selectively modulate a beneficial signaling profile. For 

instance, by targeting residues identified using DIRECT-ID to selectively respond to SALB, 

ligands could potentially reduce GRK-modulated phosphorylation of the ICL3 and the C-

terminal tail, and thereby reduce β2AR desensitization, a known problem with the current 

drugs targeting β2AR.91 Additionally, DIRECT-ID will be useful towards both 

quantification of efficacies of the new ligands and identification of unique structural features 

that are responsive to the changes in conformational dynamics associated with these ligands.

The present results with the β2AR demonstrate the utility of DIRECT-ID in linking the 

heterogeneity of free energy surfaces delineating “global” changes (such the G-protein 

binding cavity in Fig. 1) with the more specific changes in the “local” residues associated 

with the conformational transitions (Fig. 3,4) without any loss of information. Specifically, 

this procedure allows for rapid identification of residues that contribute to the selective 

conformational changes of the receptor. For the 1-μs trajectories, generation of covariance 

matrices using the gmx covar utility in GROMACS took ~6 min on a 12 core Xeon X5675 

3.07 GHz CPU workstation. Extraction of structural features from a pair of these covariance 

matrices each containing 3879 × 3879 elements took ~1 min using DIRECT-ID. As the 

method operates with covariance matrices from MD simulations, anharmonicity of the 

conformational differences are implicitly taken into account. Dynamics across simulations 

can be restricted to a single global minimum or can span multiple macrostates. As the 

covariance matrices are defined based on the non-hydrogen atoms, even small 

conformational transitions such as the side-chain displacements will be identified. For 

instance, akin to the SALB-bound vs apo state β2AR, conformational landscapes between 

CARA-bound β2AR and the apo state are also similar (Fig. 1B,C) with the β2AR visiting 

inactive-like conformations through both the simulations. Consequently, ∥DCARA–APO∥1 
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(194.1) is smaller than ∥Dagonists–APO∥1, thus quantifying the differences between the 

CARA-bound and the apo state β2AR. Despite these similarities in conformational 

landscapes, DIRECT-ID was still able to extract structural features with more subtle changes 

in conformational transitions (Table 1), demonstrating its power in connecting microscopic 

and macroscopic dynamics that might otherwise go unnoticed.

A caveat of the DIRECT-ID method is that, if there is a structural shift, such as a change in 

the tertiary structure, without a change in the local conformational motions of elements of 

the secondary structure, then these elements may rank low in Di–j. However, it is important 

to note that such large-scale structural changes are unlikely to be independent of local 

coupled changes such as breakage of an ionic or hydrogen bond, disruption of hydrophobic 

packing, etc. Often the structural shift allows for greater conformational variability of the 

elements in the secondary structure. Each of these events, on the other hand, will rank high 

in Di–j, and hence will be extracted. Thus, DIRECT-ID will invariably identify a subset of 

structural features with significant changes in their conformational variability, and as 

demonstrated in the case of β2AR, these structural features are likely to have critical roles in 

the modulating the function of the macromolecule.

Importantly, no prior knowledge of the reaction coordinates of the macromolecule is needed 

to study the modulation of its dynamics with DIRECT-ID. As the changes in the 

conformational motions across the non-hydrogen atoms of a macromolecule are reported, 

the method identifies structural features best suited for projecting the conformational 

dynamics of the macromolecule. It is important to note that the utility of DIRECT-ID is not 

restricted to GPCRs or even ligand-modulated changes in dynamics. The method is readily 

applicable to studying the modulation of conformational dynamics by a variety of factors 

and, as the results with the GPCR highlight, even very large systems can be analyzed. In its 

current implementation, from any set of M covariance matrices and a reference coordinate 

file in PDB format, the code outputs an NM×M matrix with ∥Di–j∥1 as its elements as shown 

in Fig. 2B, along with the list of residues as shown in Table 1. Given the overarching 

importance of characterizing the modulation of conformational properties of a 

macromolecule and the consequent implications on its functional profile, a wide 

applicability of this method is anticipated. Scripts and the code are made available at http://

mackerell.umaryland.edu.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A) View of the transmembrane helices (H1-H7) from the intracellular side. Structural 

studies indicate the largest conformational differences are between the inactive (green, PDB:

2RH1) and active (orange, PDB: 3P0G) states across helices H5 and H6, which 

consequently modulate the cavity between the helices H2-H6 and H3-H7. Approximate free 

energy surfaces (in kcal/mol) trace the change in the cavity in the B) absence of ligand 

(APO), presence of C) inverse agonist, carazolol (CARA), agonists (D) BI-167107 (BIA), 

E) epinephrine (EPNE) and F) salbutamol (SALB). H2-H6 and H3-H7 distances in the 

crystal structures are marked with black dots. Residues used for the calculation were: V67-

Y70(H2), S120-V129(H3), C265-H269(H6) and G320-S329(H7).
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Figure 2. 
A) Differences in the covariance matrices of β2AR bound to CARA vs. BIA ( DCARA–BIA ). 

B) DIRECT-ID analysis quantifies conformational differences across 1-μs MD trajectories 

of β2AR in the apo state and when bound to CARA, BIA, EPNE and SALB. C) β2AR 

structural elements identified as having biggest changes in conformational dynamics, 

retrieved from DCARA–BIA.
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Figure 3. 
RMSD distributions of A) W158, B) Q197, C) N318 and D) Y326. These residues were 

identified using DIRECT-ID to have significant differences in their conformational motions 

between β2AR bound to agonists (BIA or EPNE) vs. CARA. Snapshot at 400 ns (where the 

RMSD values are near the maximum of the probability distributions) reveal the differences 

in conformations for each of these residues of β2AR in the apo state (black), bound to 

CARA (blue), BIA (red), EPNE (orange) and SALB (green).
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Figure 4. 
RMSD distributions for A) F166 and B) F217, identified to have large differences in their 

conformational motion between the SALB-bound β2AR and apo state. Snapshots at 400 ns 

(where the RMSD values are near the maximum of the probability distributions) reveal the 

differences in conformations for these residues across the different simulations. Coloring 

scheme is the same as in Fig. 3.
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Figure 5. 
A) Convergence of ∥Di–j∥1 through 1-μs simulations. Values were calculated in 0.1- μs 

increments. B) RMSD distributions of W158 in β2AR from apo simulations (black) and 

when bound to CARA (blue), BIA (red), EPNE (orange) and SALB (green) calculated 

through 0.2, 0.6, 0.8 and 1 μs of the MD simulations.
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Table 1

β2AR residues with the biggest changes in conformational motions between two trajectories. Ballesteros-

Weinstein numbering of the residues is marked in the superscript.

Trajectories ∥ D i–j ∥ 1
Residues with biggest change in conformational
motions

Published mutations and
their effect on the receptor

APO-CARA 194.4 R1514.43, F1664.58, I1694.61 Q1704.62, Q1975.37,
L2756.37, C3277.54

APO-BIA 403.1 E1223.41, R1514.43-W1584.50, T1644.56, Y3267.53

E122W: inactivation,79

W158F: reduce agonist
affinity,80

T164I: reduce basal activity,81

Y326A: inactivation82

APO-EPNE 233.6
G351.34-M361.35, I381.37, L421.41, F2085.47, F2175.56,
Y2195.58, L2756.37, I2776.39, F2826.44, N3187.45,
Y3267.53-R3287.55

APO-SALB 140.2
G351.34, F491.48, F1664.58, Q1704.62, Q1975.37,
V2065.46, F2175.56, I2786.40, H2966.58, I2986.60,
E3067.32, L3107.36, I3257.52-R3287.55

CARA-BIA 415.1 E1223.41, R1514.43-V1604.52, L1634.55, T1644.56,
Y3267.53, C3277.54

T164V: reduce agonist-driven
activation81

CARA-EPNE 252.4 R1514.43, F1664.58, I1694.61, Q1704.62, Q1975.37,
F2175.56, L2756.37, E3067.32, N3187.45, C3277.54

L275A: reduce agonist
activation83

CARA-SALB 249.4 R1514.43, F1664.58, I1694.61 Q1704.62, Q1975.37,
F2175.56, L2756.37, E3067.32, C3277.54

EPNE-BIA 414.8 E1223.41, R1514.43, I1534.45-I1594.51, L1634.55, T1644.56,
F2175.56, N3187.45 Y3267.53

F217A: reduce activity,84

N318A: inactivation82

EPNE-SALB 209.4
G351.34-M361.35, I381.37, L421.41, F2085.47, F2175.56,
Y2195.58, L2756.37, I2776.39, T2816.43, N3187.45,
Y3267.53-R3287.55

SALB-BIA 425.0 E1223.41, R1514.43-L1554.47, V1574.49-I1594.51,
T1644.56, F2175.56, Y3267.53, C3277.54
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