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Abstract 
The ground-state 4f fine-structure levels in the intrinsic optical transition gaps between the 2p 

and 5d orbitals of lanthanide sesquioxides (Ln2O3, Ln=La…Lu) were calculated by a two-way 
crossover search for the U parameters for DFT+U calculations. The original 4f-shell potential 
perturbation in the linear response method were reformulated within the constraint volume of the 
given solids. The band structures were also calculated. This method yields nearly constant 
optical transition gaps between Ln-5d and O-2p orbitals, with magnitudes of 5.3~5.5 eV. This 
result verifies that the error in the band structure calculations for Ln2O3 is dominated by the 
inaccuracies in the predicted 4f levels in the 2p-5d transition gaps, which strongly and non-
linearly depend on the on-site Hubbard U. The relationship between the 4f occupancies and 
Hubbard U is non-monotonic and is entirely different from that for materials with 3d or 4d 
orbitals, such as transition metal oxides. This new linear response DFT+U method can provide a 
simpler understanding of the electronic structure of Ln2O3 and enables a quick examination of 
the electronic structures of lanthanide solids prior to hybrid functional or GW calculations. 

Introduction 
Solids based on the f-electron-containing rare earth lanthanide (4f) and actinide (5f) elements 

are widely used in such applications as catalysis, luminescence (up-conversion), oxygen and 
hydrogen storage and permanent magnets. Their advantageous properties for these applications 
are closely related to the complicated low energy differences between the f-electron levels in 
either the ground or excited states. Each of the lanthanide and actinide elements in the periodic 
table has attracted considerable interest in the past decades. 

For instance, materials with fully filled 4f orbitals, such as Lu2O3, are good candidates for 
super-persistent red and green luminescent/phosphor applications when doped with Eu3+ and 
Tb3+.1,2 As is well known, the major application of these materials is in lasers and as phosphors, 
which requires the precise electronic spectra of lanthanide ions (Ln3+). Knowledge of these 
spectra requires a high degree of accuracy for both experimental instruments and theoretical 
calculation methodologies, as the assignment of the 4fN energy levels are described by the J-
multiplets 2S+1LJ (recalling the Russell-Saunders scheme), where S, L and J denote the electron 
spin, orbital, and total (i.e., vector sum of S and L) angular momenta, respectively in units of the 
Plank constant  . For each J value, there are (2J+1) possible microstates.3 For example, for Ce3+, 
4f1, there are two multiplets, 2F5/2 and 2F7/2 (where S = 1/2, L = 3, and J = 5/2 or 7/2), and for 
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Eu3+, the lowest multiplet is 7FJ (J = 0–6), where S = 3, L = 3 and J can take integral values 
between 0 and 6, with J = 0 being the ground state.3 Therefore, we call the 4fN energy levels the 
4f fine-structure levels (or 4f fine levels). Based on band theory, the 4f fine levels are assigned 
variously below, above and within the 2p-5d optical transition gap in lanthanide oxides across 
the periodic table from La to Lu.  

 
Elucidation of the electronic properties of these materials using theoretical methods is 

challenging because most of these materials are mixed valence or heavy fermion systems.4,5 In 
addition to exhibiting strong correlation, the f-electrons also couple with the s, p, and d (mainly 
5d) electrons. This imposes stringent requirements for an accurate description of the electronic 
states. In this work, to treat the electronic structures of f-electron solids using a simpler model, 
we focus on the relative energy differences between the 4f energy levels and the occupied 
valence band maximum (VBM), which is one of the possible sources of error in density 
functional theory (DFT) electronic structure calculations for 4f- or 5f-based solids. We use 
lanthanide oxides as an example to demonstrate our new linear response method, which 
improves the accuracy of the 4f orbital energies using a simple DFT+Hubbard U technique.  
 

The electronic properties of lanthanide sesquioxide (Ln2O3, Ln=La,…, Lu) have been well 
studied, with Prokofiev et al demonstrating a periodic-like variation of the optical band gaps.6 
However, local density approximation (LDA) or generalized gradient approximation (GGA) has 
been found to vastly underestimate the band gaps,7,8 and the results obtained using the DFT+U 
method with U for 4f orbitals only deviate greatly from the experimental values.9-11 The origin of 
this difference may be the incomplete counteraction of self-interaction induced by the localized 
hole states, as mentioned in previous work.12 Advanced methods, such as GW13,14 or hybrid 
functionals15 based on fixed experimental lattice constants, substantially improve band structure 
calculations and reproduce the variation behavior found by Prokofiev et al, as reported in our 
previous work and that of Jiang et al.13,14 Additionally, our previous work found that the use of 
such methods as hybrid functionals in conjunction with pseudopotential methods can also 
introduce errors in the DFT-predicted lattice parameters and defect levels.12,16 

 
    Another issue is whether pseudopotential-based DFT can describe the 4fN spectra of 
lanthanides. In LDA/GGA, the ultrasoft or normconserving pseudopotential cannot distinguish 
between 4fN and 4fN-15d well. This shortcoming is a result of the fact that the current self-
consistent pseudopotential is established by an orbital eigen energy that is relatively low but 
similar to that of the 5s-5p-5d-6s shells. Thus, the valence charge density does exhibit 
considerable overlaps, especially between the 5d-6s orbitals. Although the non-linear core 
correction helps to screen the core-valence charge density, the 4f orbital is difficult to distinguish 
energetically within valence charge densities.  
 
    It is well known that the band gaps of approximately 5.5-6.0 eV for Ln2O3 materials are 
predominantly due to optical transitions from the O 2p to Ln 5d orbitals.6,17-20 We also found that 
the lattice parameters predicted using either local density approximation or generalized gradient 
approximation (LDA/GGA) or DFT+U levels are essentially identical. An example of this 
similarity can be found for CeO2 in our previous work.12 Moreover, Lany and Zunger have 
shown that the localized hole states are actually induced by O or similar anion elements of d-
orbital based compounds;21,22 this was confirmed by Keating et al for f-orbital based materials23 
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and by our previous work.12 The basis of the present work is the finding that the localized hole 
states from 2p orbitals induced nearly the same repulsive Coulomb potential of approximately 
5.5-5.6 eV, and the localized 5d orbitals also exhibit nearly constant Coulomb potentials of 
approximately 2 eV. This leads us to believe that the 2p-5d gaps of Ln2O3 are actually constant 
optical transitions regardless of both the identity of the elements in Ln2O3 and the lattice 
parameters of the particular structures. Recalling the previous hybrid functional calculations15 
and the GW work by Jiang et al,13,14 these DFT+Hubbard U results further support this deduction. 
In the present work, we attribute the main errors in the electronic structure calculations to the 4f 
relative energy levels at the top of occupied valence band. 
 

To predict the on-site Coulomb potential energy (Hubbard U), one can simply use a 
Cococcioni-type linear response method to obtain the localized f orbitals.24 However, the strong 
coupling between the 4f and 5d-6s orbitals leads to unintentional overlapping, such that the 
difference in the electron wavefunction occupancies contains not only the 4f electrons but also 
overlaps with a portion of the anti-directional perturbed 5d-6s orbitals. This is due to similar 
orbital eigen energies among 4f, 5d, and 6s orbitals, and the perturbed charge occupation of 4f 
orbitals in practical linear response processes consequently follows sdf nnnn 654 ∆+∆+∆=∆ . As 
observed in this relationship, because the practical fnn 4∆>∆ , the )/()/( 4 fpp nn ∆<∆ αα  or 

realcalculated UU <  for a given orbital potential perturbation pα  in conventional linear response 
method (explaining why the 4f electrons are screened in the solids), giving a large error in the 
Hubbard U predictions. Thus, the simple estimation of the U parameter through the inverse of 
the small perturbation by linear response yields unphysical values. This also results in band gap 
values that are either too small or too large for both partially and fully filled 4f solids. This 
phenomenon can be seen in the data summarized in Table 6 in the book chapter by Bendavid et 
al.25 The values show that the U for the f orbital has been fixed at approximately 5 eV, while the 
resulting electronic band gaps are in the 2-3 eV range, showing an approximately 40% error 
compared to the experimental data.6 Thus, the DFT+U formalism can give nearly self-
interaction-free results if the charge occupation overlapping induced potential relaxation and 
self-energy of the originally given charge occupation on the targeted orbitals can be well offset 
or quantitatively described. In this case, both the forward (orbital relaxation) and backward 
(original self-energy) errors are counteracted in the linear response process. We therefore 
reformulate the procedure of Cococcioni et al24 for the determination of the U parameter by 
linear response and explore the intrinsic properties of self-consistent Hubbard U determination 
calculations. 
 
Methodology 

(1) Physical model 
    As described above, the Hubbard U for f-electrons cannot be simply predicted by the one-way 
Cococcioni linear response method due to the spontaneous overlap of the 5d and 6s orbitals. To 
address this issue, we use a two-way perturbation within a certain volume V of the solids. The 
nearby orbital spontaneous charge overlapping is a systematic error that rigorously exists for any 
given charge occupancy level for a one-way linear response. This is actually a complicated 
physical effect in which the polarization of the anions by the 4f or 5d valence electron and 
dynamical correlation with the valence electrons of the anions both contribute to the shift. This 
shift has been found to be difficult to calculate ab initio. Dorenbos and coworkers have explored 
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the effects using a Hartree-Fock Møller-Plesset method.26 However, we focus on a simplified 
method based on DFT for the orbitals in this work.  

 
For partially filled f-orbital lanthanide elements, especially for light lanthanides from La to Eu, 

the large fraction of empty components of f-orbital projections easily accommodates the 
fluctuating f electrons. Simply using a U for a linear response disturbs the highly sensitive 
original charge occupancy due to the self-induced dipole effect of dynamic polarization with 
neighboring ions.27 Therefore, the essential mechanism is due to the relaxation-polarization from 
the residual orbital self-energy arising from the improper choice of U.  

 
    Using the approximation of Zunger and Freeman,21,28 we updated the realistic electron 
addition energy in the current DFT+U theory scheme according to 

)()()()()1( UUNeNENE iii ℜ+∑+=−+    (1) 
where )(Nei  are the ith orbital eigenvalues of the N-electron system, )(Ui∑  is the spurious self-
energy of the ith orbital related to U, and )(Uiℜ  contributes the orbital wavefunction relaxation 
energy in excited states, which can be simplified as the difference between the relaxed and 
unrelaxed self-consistent excitation energy solutions in the DFT+U scheme. This contribution is 
treated as the relaxation-polarization of self-energy at the ith orbital mentioned above. 

)()( UU ii ℜ+∑  has a nonlinear relationship with the U correction, as empirical tuning of U for 
correcting the orbital eigenvalues )(Nei  led to a non-zero contribution of the )()( UU ii ℜ+∑  
such that the Janak theorem29 has a inequality. Solving this relation requires considerable 
mathematical effort; therefore, we choose a simplified physical model. 
 

We accordingly treat the self-energy and orbital wavefunction relaxation as functionals of the 
charge density of the system such that ][][][][ 0 ρρρρ RSE EEEE ++= , where SEE  and RE  are 
the self-energy and orbital wavefunction relaxation, respectively; ρ  is the constructed charge 
density based on Fermi-Dirac distribution; and ][ 0ρE  is the total energy of the system in the real 
world with the true charge density.  

 
In another publication, we provided a simplified model of the self-energy and orbital 

wavefunction relaxation in the orbitals. We proposed a simple physical idea that, the 
perturbations of self-energy and wavefunction relaxation with related to the occupation number 
in the orbital should follow the behavior of Hubbard-type interaction, regardless the absolute 
values of both. We approximate this model within the framework of local density (LD) 
formalism and model the self-energy projected on the orbital by components as follows: 

∑=
i

iiSE nE σρ][
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jjR rnE ][ρ    (2) 

The wavefunction has to be orthonormal by a linear combination of atomic orbital (LCAO). 
This pre-condition is easily achieved by the packages VASP, CASTEP, or PWScf. This model is 
advantageous because the on-site orbital self-energy projection on the other orbital is zero, i.e., 
the self-energies on the orbitals do not affect one another. To maintain the Janak theorem,29 
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Because we can choose a simplified model with only one orbital component in an atomic site, 
the total energy functional to the orbital charge occupation of the Ith atomic site is 

])(][min[][ ∑ +−=
I

IIIII rnnEnE σρ    (4) 

To solve the Eq. (4) by DFT using the one-electron Kohn-Sham equation, we have to choose a 
perturbation method. According to the approximation in Eq. (4) (i.e., no crystal-field splitting 
effect), the on-site orbital self-energy part can be expanded as a perturbation, 

IIIII o ασσσσ +=+= )0()()0( . The term )0(Iσ  is the Ith atomic site original self-energy 
potential induced by the localized orbital, and )( Io σ  or Iα  is the first-order perturbation of the 
eigenvalue of the on-site self-energy Iσ . We model the orbital wavefunction relaxation in terms 
of the change of occupation from In  to )( II nn δ+  under the LDA+ IU  local potential 
environment. By Maclaurin series expansion (a simplified form of Taylor expansion), we obtain 
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The above term inδ  is therefore described by )()0()(
U

nnn i
iiii

α
αδ −=−= , acting as a 

Lagrange multiplier. The one-electron effective self-energy potential and relaxation potential are 
approximated as quadratic functions of the self-energy and orbital relaxation according to Eq. (4): 
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Accordingly, there is a competition (shown as IRSEI UU )( −=∆  in Eq. (6) above) between 
two different types of on-site Hubbard-type30 one-electron potentials (note: despite having the 
same type of interactions, these potentials are not the same as the Hubbard parameter U) 
obtained by the gradient of self-energy and orbital relaxation with respect to an orbital 
occupation. As shown in Eq. (6), SEU  and RU  are the obtained Hubbard-type potential 
contribution considered in the LDA+U calculation, which are derived from the linear response 
calculation of the first-order perturbation of the self-energy and orbital wavefunction relaxation 
in the orbitals. Therefore, we self-consistent proved our physical idea that the perturbations of 
self-energy and wavefunction relaxation with related to the occupation number in the orbital 
should follow the behavior of Hubbard-type interaction. 

 
From the perspective of LDA+U within the framework of Cococcioni’s linear response 

method,24 the corresponding IIU ∆+  is thus the self-consistently determined Hubbard-type 
potential parameter used in the LDA+USCF calculations to correct the self-energy error and 
orbital relaxation error, which is originally expressed as a Lagrange multiplier. However, UI is 
the degenerated value, as we only consider the degenerated orbital. If 0=∆ I , the Hubbard-type 
potential contributions have been well counteracted in the filled shell, as shown in a previous 
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study on self-interaction of the atom with fully occupied valence orbitals by Perdew and 
Zunger.31 If 0>∆ I , there is a residue for partially filled orbitals.  

 
We consider the orbital eigenvalue described by the LDA+U per Anisimov32 and expressed 

using the Janak theorem:29 







 −+=∂∂= iLDAii nUnE

2
1/ εε    (7) 

Here, ni is the orbital occupation. For fully filled orbitals )1( =in , the orbital eigenvalue is 

shifted by )
2

( U
− , while for empty shells )0( =in , this value is shifted by )

2
(U . For lanthanides 

with partially filled f-orbitals )10( << in , we cannot simply use the empirical ni from the 
valence electron configuration to determine which orbital should be shifted downward or upward. 
The value of ni should be calculated ab initio and should satisfy the condition of Eq. (6). For 4f 
fine levels in particular, some of the occupied 4f states need to be shifted downward below the 
valence band, while some of 4f empty states need to be shifted upward into the forbidden gap or 
the conduction band on a case-by-case basis. Therefore, Eq. (6) goes the empirical valence 
electron configuration to give the conditions of the assignment of ni in the orbitals. 
 

Figure 1 (a)-(c) show examples to clarify the condition set by Eq. (6). For La3+ in La2O3 

(Figure 1 (a)), the non-crossover feature reveals a positive residue 0>∆ I , which means it is 
actually a partially filled shell with 4fδ (0<δ<1). The Lu3+ in Lu2O3 (Figure 1 (b)) exhibits a 
perfect crossover feature, meaning that 0=∆ I  for the 4f14 orbital. Interestingly, for the example 
of Ho3+ (4f10, ni=10/14) in Ho2O3, the crossover of two lines described by two Hubbard-type 
contributions of self-energy and orbital relaxation indicates a tendency of fully filled orbital 
effects through the conditions of Eq. (6), which implies a greater downward shift than dictated 
by Hund’s Rule. This phenomenon will be discussed in a future study.   
 

In crystalline solids, how can we recover the on-site multi-components of orbitals instead of 
the single-components from the simplified model above? We simply consider the crystal-field 
splitting (CF) effect, the main effect influencing the Hamiltonian of atoms in crystalline solids. 
As we know, d orbitals split into two sets, t2g and eg orbitals, under the influence of CF. Similarly, 
f orbitals split into three sets: a2u(fxyz), t2u(fx(y2-z2), fy(z2-x2), fz(x2-y2)), and t1u(fx3, fy3, fz3). 
Regardless of the detailed assignment of electrons among such orbital components, we simply 
consider the possibilities of the orbital charge occupation perturbation. For f-orbital based 
lanthanides, the partially filled f-electrons have three sites that may be perturbed due to the CF 
effect. Therefore, the perturbed number is 03 nn ∆=∆ . Meanwhile, for the fully filled shell, there 
is only one perturbed possibility that is resonant for all three components: 0)3/1( nn ∆=∆ .  
 

(2) Actualization in linear response 
Therefore, the second direction of the linear response has been proposed to annihilate the self-

induced on-site Hubbard U dipole effects with an elaborately devised Lagrange multiplier for the 
orbital potential shift for perturbation without any change to the framework of Cococcioni linear 
response24 and Janak theorem;29 this is advantageous for implementation in plane-wave basis set 
based pseudopotential DFT calculations. This treatment in the present work is l-degenerate, 
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where l is the maximum angular momentum of the targeted electron orbital. When the effects of 
these two perturbations are equivalent, the input on-site Coulomb potential Ueff is the equivalent 
self-energy of the electron located in its orbital. 
  

We first refer to the work of Kulik et al.,33 who used an improved method to eliminate the 
zero-point error of the linear response of the original procedure of Cococcioni et al.24 Such 
perturbation on a given orbital should be independent of the on-site Hubbard U energy. However, 
the correlated error cannot be strongly reduced in the current method of Kulik et al.33 This is due 
to the linear behavior of the output U (Uout) and input (Uin), which results in another complicated 
functional relationship among the variables of the linear response method in terms of orbital 
perturbation, charge occupancy, and Uin because ∂Uout/∂Uin=∂2αI/∂n∂Uin=constant. Here, αI and n 
are the original orbital perturbation and occupancy, respectively. We proposed splitting the 
original perturbation into two parts: (1) the perturbation per on-site Coulomb energy and (2) the 
perturbation of different occupancy levels by the same orbital at the zero on-site Coulomb energy. 
The two different Lagrange potential shifts applied are given in Eqn. 2, where the details are 
described in a previous work:34 
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From the above, the unit potential is given as eVa 10 = . We then have two different Lagrange 
multipliers, one denoting the local-ranged electronic charge occupancy perturbation and another 
denoting the non-local-ranged magnetic moment perturbation. The Lagrange multipliers are 
related by 
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Using the equations proposed by Kulik et al.33 and the above (Eq. (7)) perturbation, we can 
reformulate Cococcioni’s linear response as 
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Borrowing the concept of variation theory, we write 

0
00

0
12 ≥
















+








−=−

in

in

U

ininin

in
scfUoutout m

U
a

U
a

U
U
a

UUU    (11) 



8 
 

1outU  and 2outU  are found to be equivalent if the minimum value of zero is obtained for Eq. (10). 
We then have  
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In this way, we obtain scfU  in relation to inU  at the crossover point between the ( )inout UU 1  and 
( )inout UU 2  plots. 
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If Eq. (12) does not reach zero, such as in the case of a partially filled shell, there may exist a 
rigid difference between the two different types of perturbation:  
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In this case, the first variation of the equation Eq. (14)=0 and its second variation need to be 
positive, according to 
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We therefore further obtain 
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If we choose the constant of above Eq. (16) for a non-fully filled shell, we then obtain a 
simplified representation of scfU  given by: 
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Then, considering two different effective degeneracies ( 1m  and 2m ) for fully filled and partially 
filled shells, we summarize the two cases above for a self-consistent determination and set the 
input inU  to determine scfU  in the DFT+U calculations: 
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We straightforwardly determine m1 and m2 in a simple form, such as that described above. The 
occ  is the self-consistent determined electron occupancy in the localized orbital at the zero point 
energy before the perturbation. According to Eq. (18), the effective degeneracy is changed for 
the cases of crossover and non-crossover. We therefore divide the physical or chemical problems 
of fully filled and partially filled orbitals into crossover and non-crossover scenarios. These 
scenarios do not necessarily correspond to each other, making the linear-response perturbation 
calculations more convenient. The crossover can occur for a fully filled orbital, such as the 4f14 
orbital of Lu, or a partially filled orbital, such as 2p4 for O or even 2p3 for N. We illustrate this 
point using two examples shown in Figures 1(a) and 1(b). We also demonstrate the influence of 
this new linear response method for the fully filled and partially filled orbitals, as shown in 
Figure 1(c).  

 
Lany and Zunger have studied the problem of localized oxygen hole states35-37 in wide band 

gap semiconductor oxides and proposed treating the problem using a method based on an 
approach similar to Koopmans’ theorem.21,22,28 We follow their approach and examine the basic 
determination of the relationship between the system electron energy and its integer occupation 
number. As shown in Figure 1(d), a correct description of the localized states depends crucially 
on d2E/dn2.38,39 This second derivative of E with respect to the continuous occupation number is 
concave (d2E/dn2 < 0) for HF theory but convex for LDA/GGA (d2E/dn2 > 0). However, the 
behavior is actually linear,38-40 such that d2E/dn2 =0. Therefore, our proposed method can be 
described as 

02

2

12 ==−
dn

EdUU
inUoutout    (19) 

The E in Eq. (19) is not the system total energy. Rather, it is the electronic energy for integer 
occupation numbers.  
 
Calculation setup 

The proposed method can be efficiently implemented if the structure is treated as a periodic 
unit cell for use with the plane-wave basis set. We modeled all 15 lanthanide sesquioxides using 
the hexagonal (A-type) lattice with the  space group. We used the CASTP code to 
perform our DFT+U calculations.41 The Ln and O norm-conserving pseudopotentials are 
generated using the OPIUM code in the Kleinman-Bylander projector form,42 and the non-linear 
partial core correction43 and a scalar relativistic averaging scheme44 are used to treat the spin-
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orbital coupling effect. We treated the (4f, 5s, 5p, 5d, 6s) states as the valence states of the Ln 
atoms. The RRKJ method is chosen for the optimization of the pseudopotentials.45 

The PBE functional was chosen for PBE+U calculations with a kinetic cutoff energy of 750 
eV, with the valence electron states expressed in a plane-wave basis set. The ensemble DFT 
(EDFT) method of Marzari et al.46 is used for convergence. Reciprocal space integration was 
performed using k-point grids of 7 × 7 × 4 k points in the Ln2O3 Brillouin zone. For this k-point 
density, the total energy is converged to less than 5.0x10-7 eV per atom. The Hellmann-Feynman 
forces on the atom were converged to less than 0.01 eV/Å.  

We use the Anisimov type DFT+U method32 and the Hubbard U parameter self-consistently 
determined for the Ln 4f orbital by our new linear response method. To stabilize the hole states 
that lie in the O 2p orbitals, we also apply a self-consistently determined Hubbard U potential 
(method used above) to the O 2p states following the approach of Lany21,22, Morgan et al.,47 and 
Keating et al.23 Accordingly, both the f- and p-orbital electrons of the rare earth and oxygen 
atoms should be considered when using DFT+U.12 

As is well-known, norm-conserving pseudopotentials can reflect all-electron behavior for 
outer shell valence electrons for |S-matrix|=1, unlike the ultrasoft pseudopotentials.48,49 
Therefore, the non-linear core corrected norm-conserving pseudopotential can provide a better 
response in DFT+U calculations, especially for the calculations of defects.12 We note that our 
method actually provides almost identical values of the U parameter for both norm-conserving 
and ultrasoft pseudopotentials. This means that the obtained value has an intrinsic physical 
meaning for the studied materials.  

Result and Discussion  
    Lanthanide sesquioxides have three stable structures in the ambient environment, namely, a 
hexagonal structure (A-type) with 13mP  symmetry, monoclinic structure (B-type) with C12/m1 
symmetry, and cubic bixbyite structure with 3Ia  symmetry.20 Light lanthanide sesquioxides 
usually have A-type lattices, such as La2O3, Ce2O3, Pr2O3, and Nd2O3, while heavy lanthanide 
sesquioxides prefer C-type structures. The ground states of all lanthanide sesquioxides exhibit 
anti-ferromagnetic (AFM) orderings that occur below the Neel temperature (4 K). To simplify 
our calculations and conclusions for such oxides, we constrain them to A-type lattice structures 
with AFM ordering to more clearly demonstrate the f-level variation behaviors. The crystal 
structures used in our modeling are in fact the same as in the work by Gillen et al.15 and Jiang et 
al.14 Prior to our linear response determination of the Hubbard U, the geometries and lattice 
parameters of all lanthanide sesquioxides were optimized using PBE functional calculations. 
This procedure reduces the computational cost and ensures the reliability of the Hubbard U value 
obtained by our self-consistent iterative calculations. We use this procedure prior to the Hubbard 
U determination because DFT has been already verified to be reliable for the structural 
optimization of compound solids with 4f or 5f orbitals.50 This may be due to the well-developed 
pseudopotential technique12,50 and, more importantly, to the fact that f-electrons have a small 
influence on the lattice parameters when treated as valence electrons, as shown by the small 
difference of the DFT and DFT+U calculated lattice parameters.12,23,51 Nevertheless, the U 
parameter must be determined more carefully.12,23,51 
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   Figure 2(a) summarizes the calculated band gaps across the Ln2O3 (Ln=La,…,Lu) series and 
compares these values to the experimental data of Prokofiev et al. This comparison shows the 
flexibility of the Hubbard U calculations for DFT+U in band structure calculations, as the hybrid 
functional and GW methods exhibit some deviation from the experimental values. However, the 
errors in the values obtained using hybrid functionals are in fact acceptable.15 Checking our 
benchmark diagram (Figure 2), we found that with the exception of such oxides as Ce2O3, Pr2O3, 
Eu2O3, Dy2O3 and Lu2O3, the GW0@LDA+U results are quite close to the experimental values.14 
We attribute the errors for these oxides to the inability of the GW0@LDA+U method to perfectly 
describe the highest occupied and lowest unoccupied f-levels. This is supported by the presence 
of states that deeper in the forbidden gap, which is the signature of the f1-2 (early light 
lanthanides), half-filled and fully filled lanthanide solids. To improve these results, more 
computational effort is required to perform self-consistent GW calculations instead of combining 
GW with LDA+U, as the empirical LDA+U simply cannot give the correct f-levels, which are 
then hardly improved by the GW calculations.  
 

We next consider the results obtained using hybrid functionals, such as sX-LDA,15 shown in 
Figure 2 (a), with the electronic band gaps calculated for a series of materials from La2O3 to 
Gd2O3 and for Yb2O3 and Lu2O3. Comparison of the GW and experimental data shows that sX-
LDA with 100% of the HF matrix and a 0.76 bohr-1 screening length (Thomas-Fermi) can give 
satisfactory results for the light lanthanide sesquioxides. However, for materials with heavier 
elements, such as Gd2O3, larger errors are obtained. For Lu2O3, the error even reaches 13%. We 
note that the sX-LDA results will be improved because the calculations described above were 
conducted on the basis of the simplest Thomas-Fermi screening model, in which the electrons in 
the solids are treated as a homogenous electron gas. The constant, 0.76 bohr-1 screening length is 
actually the value for conventional s-p valence electron based semiconductors. However, the 
enhance-function in the sX-LDA is actually based on Eq. (4) of the Kleimann-Bylander type 
empirical function in Ref. 39.52 Therefore, the DFT+U method can be used for precursor 
calculations to provide a theoretical data reference for further evaluation by advanced sX-LDA 
methods, as mentioned in previous work.12 On the other hand, a lower percentage of HF with a 
smaller screening length, such as that used in the HSE06 function in the work of Gillen et al.,15 
actually provides better results than sX-LDA. This finding suggests that efforts should be made 
to combine the parameters of the HF matrix and Thomas-Fermi screening length obtained from 
the “mass-center” of the contour in Figure 2(b) to improve the electronic structure calculation 
results for lanthanide sesquioxides.  
 
    The DTF+U predicted unit cell volumes for the Ln2O3 series shown in Figure 3 provide a clear 
confirmation of the “lanthanide contraction”. The reduction of the ionic radius of the solids 
induced by the 4f screening effect is apparent in the contraction of the total unit cell volume from 
lanthanum (La) to lutetium (Lu). It is interesting that there are actually three jumps in the data in 
Figure 3 for La, Gd, and Lu, corresponding to empty, half-filled, and fully filled occupancies. 
This orbital energy trend is similar to that given by the empirical predictions of Nugent,53 which 
provide the ground-state interelectronic-repulsion-stabilization energy for all Ln3+ (Ln=La,…, Lu) 
configurations. For the optimized A-type lattice constants, we obtained errors of less than 1% for 
La2O3 and Ce2O3 compared to the experimental data.54,55 Therefore, our method is a reliable tool 
for correctly determining the lanthanide crystal structures under extreme physical environments.  
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We further show that the Hubbard U of the 4f orbital actually exhibits a trend similar to the 
experimental band gaps. However, the energy differences are too large. Therefore, we use 
numerical fitting to relate the Hubbard U and experimental band gaps, as shown in Figure 4. The 
numerical fitting formula is given by: 

( ) ( ) ( )[ ]UllUE lnln
42

12 2

+
+

=    (15) 

The value of l  in the Eq. (15) is actually 3=l . This value may be a good reference for future 
semi-empirical fitting procedures for other theoretical modeling studies.  
 
    The observed electronic band gap variation exhibits very similar trends for both the first and 
second half of the series from La to Lu. Compared to the electronic band gaps, the Hubbard U 
values show more variation (Figure 4). There is an obvious periodic feature for the U of 4f 
orbitals, with periodic dips at Ce2O3, Tb2O3, and Yb2O3, except for La2O3 and Lu2O3. The 
Sm2O3-Eu2O3-Gd2O3 and Tm2O3-Yb2O3-Lu2O3 transitions exhibit nearly identical behavior to 
the Hubbard U variations, and the electronic band gaps also display similar trends. The Ce2O3-
Sm2O3 and Tb2O3-Yb2O3 transitions are slightly different for the Hubbard U trends, as shown in 
Figure 4, with the light lanthanide sesquioxides having larger values on average than the heavy 
sesquioxides from Tb2O3 to Yb2O3. This latter finding can be interpreted based on the valence 
electron configurations. Due to the increased 4f electron occupancies among the heavy 
lanthanide sesquioxides, the 4f electrons actually penetrate deeper into the core shells due to the 
“lanthanide contraction”, and the 4f electron perturbations of the occupancies cannot be higher 
because of the larger attractive Coulomb interactions between the core and valence 4f electrons. 
This can be more accurately described using relativistic effects, but this approach is too 
complicated for our method.56 
 

Figure 5(a) shows that the electronic structures of the 4f-orbital based Ln2O3 are actually very 
complicated. There are many fine-structure energy levels for the 4f electron transitions. 
Therefore, it is reasonable that such fine-structure energy levels may play an important role in 
contributing to the up-conversion luminescence in Ln3+ (Ln=La,…, Lu) related materials. We 
note that Figure 5(a) reveals the fine-structure levels of Ln3+ (Ln=La,…, Lu) in the ground states 
in the A-type sesquioxide crystal lattice. Comparison to the work of Carnall et al.57 shows that 
our methods obtains very similar magnitude variation trends.  

 
However, for the electronic band gaps obtained from the band structure calculations, we only 

focus on the band edges contributed by 4f orbitals, as shown in Figure 5(b). We found that some 
occupied 4f levels enter into the forbidden band gap arising from the 2p-5d transitions in Ce2O3, 
Pr2O3, Tb2O3, and Dy2O3. In other cases, some of the unoccupied 4f levels fall into the 2p-5d 
transition gap, for example, in Nd2O3, Sm2O3, Eu2O3, and Yb2O3. The 4f unoccupied levels for 
Pr2O3, Pm2O3 (radioactive), and Ho2O3 are very close to the 5d band edges and are no more than 
0.2 eV higher; in particular, the Pm2O3 band edge lies just above the 5d edge. Another interesting 
finding is that Ce2O3, Pr2O3, and Tb2O3 exhibit similar electronic structures. The experimental 
measurements of Prokofiev et al. indicate four dips in the band gap. Based on the data in Figure 
5(b), we now confirm the presence of these dips for Ce2O3, Eu2O3, Tb2O3, and Yb2O3. We 
further verified that these gaps occur for Ce2O3 and Tb2O3 because the 4f occupied levels of 
these materials enter the 2p-5d gap; meanwhile, the 4f unoccupied levels for Eu2O3 and Yb2O3 
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fall into the 2p-5d gaps. Taken together, these effects lead to a lower optical transition band gap 
in optical absorption measurements, similar to the findings of Prokofiev et al.6  

 
Finally, we discuss the band structures obtained by our method for the A-type Ln2O3 

(Ln=La,…, Lu), as shown in Figure 6. We found that Lu2O3 has a direct band gap of 5.5 eV. 
This is promising for the use of these materials in luminescence applications due to the vertical 
optical excitation path. However, there is a lack of both theoretical and experimental data 
relating the optical properties to the defect states of these materials. The gap between the 
experimental and theoretical studies remains an open question that will be the subject of future 
studies. 
 
Conclusion 

We have shown that our proposed two-way linear response method can accurately determine 
the on-site screened Coulomb potential for both cations and anions in the 4f orbital based rare 
earth metal oxides (Ln2O3, Ln=La,…, Lu). This method can also determine whether the orbital 
shell tends to be fully filled and whether it can approach 0 eV. Using this method, we applied our 
self-consistently determined on-site Coulomb potential for the determination of the Hubbard U 
parameters of the 4f, 5d and 2p orbitals for the cations and anions. We obtained results in close 
agreement with the experimental data for the electronic and atomic properties of lanthanide 
sesquioxides. This work will accelerate the pace of research and discovery in the electronic 
engineering of next-generation materials that form or are synthesized under extreme physical 
(new solid phase for materials under high-pressure synthesis process) or chemical environments.  
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Table 1. Comparison of the minimum electronic band gaps (eV) of the lanthanide sesquioxides 
obtained by theoretical calculations and experimental measurements.  
 
Ln2O3 LDA+Ua GW0a sX-LDAb HSE06b this work Exp.c 
La2O3 3.76 5.24 5.50 5.10 5.53 5.5 
Ce2O3 2.24 1.29 1.75 3.38 2.51 2.4 
Pr2O3 3.17 2.82 3.80 3.77 3.89 3.9 
Nd2O3 3.69 4.70 4.65 4.63 4.88 4.7 
Pm2O3 3.35 5.41 5.60 4.80 5.19   
Sm2O3 2.15 5.22 4.80 3.40 5.11 5.0 
Eu2O3 1.28 3.48 4.00 2.50 4.56 4.4 
Gd2O3 3.58 5.30 4.85 5.26 5.46 5.4 
Tb2O3 3.34 3.74   4.00 3.80 3.8 
Dy2O3 3.47 4.24   4.90 5.02 4.9 
Ho2O3 3.05 5.12   5.08 5.33 5.3 
Er2O3 2.69 5.22   5.30 5.50 5.3 
Tm2O3 1.73 5.15   4.80 5.40 5.4 
Yb2O3 1.25 4.70 4.50 3.24 4.82 4.9 
Lu2O3 3.18 4.99 4.85 5.14 5.58 5.5 

 
aReference 13. 
bReference 14. 
cReference 5. 
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Figure 1 
 

 
Figure 1. (a) Two different outputs of nearly empty 4f shell on-site screened Coulomb potential 
(La2O3). (b) Two different outputs of fully filled 4f shell on-site screened Coulomb potential 
(Lu2O3). (c) |Uout1-Uout2| vs Uin behavior variation for fully filled and non-fully filled shells. (d) 
Electronic energy vs integer/fractional occupation numbers with different theoretical models for 
many-body calculations.  

 
 
 
 

  

0 5 10 15
0

20

40

60

80

100

Uin

schematic diagram

∆fully
filled shell

 

 

|U
ou

t1
-U

ou
t2

| (
eV

)

Uin (eV)

non fully filled shell

Uin

HF
d2E/dni

2 <0
concave

LDA/GGA
d2E/dni

2 >0
convex

N N+1

|Uout1-Uout2|
= d2E/dni

2 =0En
er

gy
 E

N→ occupation number

(d) (e)

(a) (b)

-1 0 1 2 3 4 5 6 7 8
0.0

0.3

0.6

0.9

1.2

1.5

1.8  Uout1
 Uout2

La 4f: La2O3
Lmax=3
4fδ (0<δ<1)

 

 

O
ut

pu
t U

 (e
V)

Uin (eV)
0 1 2 3 4 5 6

0

5

10

15

20

25

30

35

 

 

O
ut

pu
t U

 (e
V)

Uin (eV)

 Uout1
 Uout2

Lu 4f: Lu2O3
Lmax=3
4f14

2.0 2.5 3.0 3.5 4.0

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5
Ho3+ 4f: Ho2O3
Lmax=3
4f10

 Uout1
 Uout2

 

 

O
ut

pu
t U

 (e
V)

Uin (eV)

(c)



19 
 

Figure 2 
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Figure 2. (a) Band gaps of Ln2O3 (from La to Lu) obtained from sX-LDA, GW0 and 
experimental results as well as the variation trend of the 4f Hubbard U parameters. (b) “Bow-
Stern-Contour” variation behavior of both the HF matrix and Thomas-Fermi screening length for 
sX-LDA methods. (This contour is similar to the bow of a ship). 
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Figure 3 
 

 
 
Figure 3. Ground-state relaxed A-type unit cell volumes of Ln2O3 (from La to Lu). The three 
jumps correspond to empty, half-filled, and fully filled occupancies. 
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Figure 4 
 

 
 
Figure 4. Band gap fitting functions (Eq. 30) for different Hubbard U energies and experimental 
data. The purple shaded area denotes the exclusion of La because its 4f orbital is basically empty, 
with a small predicted Hubbard U value. The La2O3 band gap is essentially only due to the O-2p 
to La-5d optical transitions. 
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Figure 5 
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Figure 5. (a) Fine-structure energy levels for both occupied and unoccupied 4f orbitals in the 
ground state. (b) 4f band edge levels for ground-state relaxed A-type Ln2O3 (from La to Lu). 
 

(b)



25 
 

Figure 6 

 
 

Figure 6. (a) Electronic band structures of light Ln2O3 (from La to Eu). (b) Electronic band 
structures of heavy Ln2O3 (from Gd to Lu). Blue dashed lines show the Fermi levels (EF). 
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