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Abstract

One of the main challenges in Computational Protein Design (CPD) is the huge size of the protein 

sequence and conformational space that has to be computationally explored. Recently, we showed 

that state-of-the-art combinatorial optimization technologies based on Cost Function Network 

(CFN) processing allow to speed up provable rigid backbone protein design methods by several 

orders of magnitudes. Building up on this, we improved and injected CFN technology into the 

well-established CPD package Osprey to allow all Osprey CPD algorithms to benefit from 

associated speedups. Because Osprey fundamentally relies on the ability of A* to produce 

conformations in increasing order of energy, we defined new A* strategies combining CFN lower 

bounds, with new Side Chain Positioning (SCP)–based branching scheme. Beyond the speedups 

obtained in the new A*-CFN combination, this new branching scheme enables a much faster 

enumeration of sub-optimal sequences, far beyond what is reachable without it. Together with the 

immediate and important speedups provided by CFN technology, these developments directly 

benefit to all the algorithms that previously relied on the DEE/A* combination inside Osprey and 

make it possible to solve larger CPD problems with provable algorithms.

Introduction

Computational Protein Design (CPD) has become a valuable tool for creating proteins with 

desired biophysical and functional properties and for assessing our understanding of protein 

sequence-structure-function relationships. By combining physico-chemical models 

governing relations between protein amino-acid composition and the protein three-
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dimensional structure with advanced computational algorithms, CPD seeks to identify one or 

a set of amino-acid sequences that fold into a given 3D-scaffold and that will bestow the re-

designed protein with targeted properties. Such rational protein design approaches have been 

successfully applied to alter intrinsic properties (stability, binding affinity…) of existing 

proteins or to endow them with new functionalities, leading to the generation of novel 

enzymatic catalysts, therapeutic proteins, protein-protein interfaces and self-assembling 

protein structures [1]–[6]. The applications of this technology is broad, ranging from 

medicine, biotechnology, and synthetic biology to nanotechnologies [7].

Despite notable results, substantial methodological advances are still needed to improve 

CPD performances and extend its effective application. The success of CPD predictions 

depends on several elements, which include the biologically meaningful modelling of the 

design problem, the accuracy of the energy and objective functions used to assess fitness of 

the predicted sequence-structures, and the efficiency of the search algorithms to find 

solutions in a timely manner. However, to face the exponential size of the search space 

defined by the composition of protein sequences and conformations, CPD approaches have 

to strike a compromise between speed and accuracy. Most of the CPD methods rely on: 1) a 

coarse-graining of the structure as a sequence of discrete side chain rotamers, 2) an 

assumption of modest backbone conformational flexibility, where often a fixed backbone or 

a set of possible backbones are used, and 3) an approximation of the energy model as a 

pairwise decomposition. Since the problem of searching for an optimal solution (GMEC : 

Global Minimum-Energy Conformation) over the conformational space of rotamers and 

possibly backbones is NP-hard [8], a variety of methods, both meta-heuristics (Monte Carlo 

simulated annealing [9], [10], genetic algorithms, [11]) and provable algorithms (Dead-End 

Elimination (DEE), Branch-and-Bound algorithms (BB), Integer Linear Programming (ILP), 

Dynamic Programming (DP), [11]–[16]) have been proposed over the years. However, there 

is still a need for more efficient optimization techniques, capable of exploring vaster 

combinatorial spaces, representing more realistic and flexible protein models.

This paper focuses on exact optimization and enumeration techniques. As provable methods 

know when a global optimum is reached, the search can be stopped with confidence and an 

exact solution obtained, sometimes in significantly less time than with meta-heuristics. It has 

also been observed that the accuracy of meta-heuristic approaches tends to degrade in 

unpredictable ways as the problem size increases [9]. Finally, exact methods are the only 

methods which offer a provable basis for improving biophysical models. Indeed, they ensure 

that discrepancies between CPD predictions and experimental results come exclusively from 

modelling inadequacies and not from the algorithm. These properties are crucial to rationally 

tune the energy function, eg. on the basis of a fixed-composition full redesign [17]. 

Currently, the most usual provable and deterministic methods for CPD rely on the Dead-End 

Elimination theorem and the A* algorithm [12]. DEE is used as a pre-processing method. It 

removes rotamers which are energetically dominated by other rotamers and therefore useless 

to identify a global optimum. This idea has later been extended to prune pairs or higher 

order combinations of rotamers at different residues in order to improve the pruning power 

[18]–[20]. However, because CPD is NP-hard, the polynomial time DEE algorithms usually 

cannot identify a unique sequence-conformation model. DEE preprocessing is therefore 

followed by an A* search (a provable Best-First search strategy) which expands a sequence-
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conformation tree by tentatively assigning rotamers to residues. A* is originally a path 

planning algorithm, and it has a worst-case exponential time and memory consumption. This 

means that it can easily choke on problems with many undominated rotamers. However it 

has the capacity to not only identify the GMEC but to also produce an arbitrary long energy-

sorted list of solutions. Thus the same DEE/A* can be used to find the GMEC and to 

produce an energy-sorted stream of sequence-conformations.

In a recent work, we have shown that the already highly challenging usual description of the 

CPD problem, based on rigid backbone and discrete rotamers, could be formulated and 

efficiently solved as a Cost Function Network (CFN) [21]–[23]. CFN algorithms are able to 

handle complex CPD combinatorial spaces which are out of reach of a broad range of 

combinatorial optimization technologies including the usual DEE/A*, 0/1 Linear and 

Quadratic Programming, 0/1 Quadratic Optimization, Weighted Partial MaxSAT and 

Graphical Model optimization methods [21]–[23]. The toulbar2 CFN solver provides 

speedups of several orders of magnitude both to provably find the GMEC and to 

exhaustively enumerate unsorted ensembles of near-optimal solutions (within a threshold of 

the GMEC), offering an attractive alternative method for CPD.

The outperformance of CFN methods opens new avenues to integrate further molecular 

flexibility in CPD which inevitably leads to a tremendous expansion of the conformational 

search space to be considered. CPD methods capable to tackle different levels of molecular 

flexibility have raised a growing interest [24], [25] as this has been identified as being one 

major cause of design failures. Indeed, the lack of molecular flexibility may lead to a 

significant loss of sequence space accessible to properly folded and functional proteins thus 

introducing some biases in sequence selection. However, in spite of its crucial importance, 

incorporation of more realistic (macro)molecular flexibility into CPD remains a major 

challenge.

Herein, we integrated the CFN technology in the well-established Osprey software 

(modified version of Osprey 2.0) [26], [27]. Beyond traditional energy functions, Osprey 
includes models and provable algorithms that capture macromolecular flexibility and enable 

reliable biophysical modelling, making it a target of choice to dissiminate CFN technology 

inside the CPD community. It is noteworthy that this CPD-dedicated software has been 

prospectively used, with experimental validation, to redesign enzymes toward non-cognate 

substrates [1], [28], [29], design new drugs [30], predict drug resistance mutations [2], 

design peptide inhibitors of protein-protein interactions [31], and design epitope-specific 

antibody probes [32]. All provable methods inside Osprey intimately depend on the capacity 

of A* to produce an energy-sorted stream of solutions, something that the toulbar2 solver 

does not directly provide. We therefore injected the CFN bounding technology inside A* so 

that all Osprey algorithms, including those with flexible modelling and affinity estimation, 

directly benefit from the enhanced bounding, leading to better efficiency.

To further improve this new CFN-based method [21]–[23], we integrated other essential 

components of CFN technology, such as ordering heuristics and branching schemes. 

Inspired by the specific nature of the CPD problem, we further developped a new branching 

scheme that provides further speedups. This new branching scheme can avoid the expensive 
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enumeration of all conformations for a given sequence, allowing to directly produce an 

ensemble of near-optimal sequences. Thanks to this, exhaustive libraries of near-optimal 

sequences and energy-sorted lists of sequences can be directly produced with a much higher 

efficiency.

The performances of these methods have been assessed on the design of more stable proteins 

and cofactor-bound proteins, as well as protein-ligand and protein-protein interfaces. The 

results obtained for both the GMEC identification and the enumeration of near-optimal 

sequence-conformations were compared to those obtained using the DEE/A* approach 

implemented in Osprey1 in terms of speedup of the combinatorial optimization and 

enumeration step.

To make this paper more self-contained, we provide hereafter a short description of the CPD 

underlying concepts and methods.

Background

The CPD problem formulation

The rigid backbone and discrete rotamer CPD problem is defined by: i) a fixed backbone of 

a protein structure; ii) a set of amino-acid residues to be designed, called ‘designable 

residues’; iii) a group of allowed amino-acids for each designable residue and their 

respective set of discrete low energy side chain conformations, called rotamers and iv) 

pairwise atomic energy functions to evaluate the model. Rotamers correspond to cluster 

centers of well represented amino-acid side chain conformations mined from a database of 

3D protein structures. In the case of protein-ligand systems, the conformational flexibility of 

peptide ligands is also described by discrete rotamer libraries. In the case of non-peptide 

ligands, the treatment of organic molecule flexibility is often left to the user to pre-calculate 

an ensemble of low energy conformers for the ligand (used as a rotamer library) [4].

A sequence-conformation model is defined by the choice of one specific amino-acid with 

one associated conformation (rotamer) for each designable residue. Its total energy (Etotal) is 

defined by:

(1)

where Ec is a constant energy contribution capturing interactions between fixed parts of the 

model, E(ir) depends on rotamer r at position i (and its reference energy) and E(ir, js) is the 

pairwise interaction energy between rotamer r at position i and rotamer s at position j.

The combinatorial optimization problem is to find, in the space of all complete rotamer 

assignments (each defined by a sequence and a conformation), one assignment that provably 

minimizes Etotal.

1The modified Osprey source code consistent with this work is available at http://www.cs.duke.edu/donaldlab/
osprey.versions.php#CFNosprey
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Modelling CPD as a Cost Function Network

The problem of finding the set of rotamers that will minimize the total energy (Etotal) can be 

easily formulated as a Cost Function Network problem (CFN) [21]–[23].

A CFN is defined by a set of variables which are connected by a set of local cost functions 

[33]. Formally, a CFN is a quadruple (X, D, C, k) where X = {x1, x2, . . , xn} is a set of n 
variables indexed by I = {1, … n}. Each variable xi ∈ X has a discrete domain di ∈ D that 

defines the set of values that it can take. A set of local cost functions C defines a network 

over X. Each cost function cS ∈ C is defined over a subset of variables indexed by S ⊆ I 
(called its scope), has a domain Πxi∈S di and takes integer values in {0,1,2, . . , k}. The cost 

k represents a maximum (intolerable) cost. It can be infinite or set to a finite upper bound. 

Values or combinations of values that are forbidden by a cost function are simply mapped to 

k. The global cost of a complete assignment A is defined as the sum of all cost functions on 

this assignment (or k if this sum is larger than k). The problem of finding an assignment of 

all variables that minimizes this global cost is called the Weighted Constraint Satisfaction 

Problem defined by the CFN. It is usually assumed that C contains one constant cost 

function, with an empty scope, denoted as c∅. Since all cost functions in a CFN are non-

negative, this constant cost function c∅ ∈ C defines a lower bound on the cost of an optimal 

solution. When cost functions involve at most two variables, the CFN is said to be binary 

and the Cost Function Network defines a graph where variables are vertices and binary 

scopes are edges.

As an example, we describe a simple CFN defined by a set of three variables X = {x1, x2, 

x3} each with the same boolean domain d1 = d2 = d3 = {0,1} and a set of four cost functions 

C = {c∅, c{1,2}, c{1,3}, c{2,3}}. The cost functions are defined as c∅ = 1, c{1,2} = |x1 − x2|, 

c{1,3} = x1x3 while c{2,3} is defined by a specific cost matrix. The upper bound k = 9. The 

graph of this CFN is represented in Figure 1, together with the cost matrix defining c{2,3}. 

This CFN, denoted as P, defines a joint cost function P(x1, x2, x3) = min (c∅ + c{1}(x1) + 

c{1,2}(x1, x2) + c{1,3}(x1, x3) + c{2,3}(x2, x3), k). On the triple of values x1 = 0, x2 = 2, x3 = 

0, this function has cost 1 + 1 + 0 + 3 = 5.

The CPD optimization problem, in its pairwise-decomposed form, can be easily formulated 

as a binary CFN. Every designable amino-acid residue i is represented by a variable xi and 

the set of rotamers available to the residue defines its domain di. Then, each energy term in 

Etotal is represented as a cost function [21]–[23]. The constant term Ec is captured as the 

constant cost function with empty scope (c∅) and terms E(ir) and E(ir, js) are represented by 

unary and binary cost functions c{i} and c{i,j} respctively, each involving the variables of the 

corresponding designable positions. These cost functions are defined cost matrices defined 

from pre-computed energy matrices. Floating point energy terms can be mapped to positive 

integers through shifting and scaling according to desired precision [21]–[23]. Such 

operations preserve the set of optimal solutions and an optimal solution of the CFN is an 

assignment that defines a GMEC for the CPD problem. In this model, it becomes possible to 

interchangeably use the notions of CFN variable and CPD designable position, the notions 

of value of a CFN variable and CPD rotamer, the notions of complete CFN variable 

assignment and of CPD sequence-conformation as well as the notions of CFN cost and CPD 

energy.
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Solving the optimization and enumeration of CPD problems

Existing approaches to provable CPD rely on the combination of several techniques. In the 

most usual CPD approach, DEE is first used to prune rotamers and if needed, an A* 

algorithm is used to find the GMEC or enumerate sequence-conformations. The A* 

algorithm is a famous path-planning search algorithm which belongs to the larger family of 

Branch and Bound algorithms. The idea of Branch & Bound is to split the space of all 

complete assignments in disjoint subspaces in some way (branching). Then a specific lower 

bounding mechanism is used to quickly compute an underestimation of the energy of the 

best assignment in each subspace. By comparing this lower bound to the energy of any 

complete assignment (defining an upper bound on the optimum), it is possible to prove that 

some subspaces do not need to be explored, because the best assignment they contain has a 

worst cost than the available upper bound. This way, it is possible to avoid the exhaustive 

exploration of all subspaces.

Because of the recursive nature of spliting spaces in subspaces through branching, all the 

possible subspaces can be organized in a rooted tree where the root node is the space of all 

possible sequence-conformations and the children of a node which is not reduced to a 

singleton can be obtained by applying the branching scheme. In the usual A* algorithm used 

in CPD, the branching scheme is a standard n-ary branching. A yet unfixed designable 

position xi is chosen. Then, for each possible rotamer at this position in the considered node, 

one child is created where the position xi is set to this rotamer. Notice that this branching 

scheme alone does not define a unique tree as the branching scheme must choose a 

designable position each time a subspace is split. In CPD, it is usual to choose the same 

variable at each level of the tree (a static variable ordering), in their protein sequence order. 

A leaf node defines a complete assignment of amino-acid rotamers. An internal node defines 

a partial protein conformation assignment. In Figure 2, we show the structure of such a n-ary 

branching tree for a very simple CPD problem (see caption), using an arbitrary dynamic 

variable ordering. But other more powerful branching schemes exist. Algorithms that aim at 

producing a provable GMEC or enumerating complete near-optimal assignments must 

traverse the defined tree in some order. A simple strategy is to use Depth-First Search and 

always explore the deepest node, leading to a Depth-First Branch and Bound (DFBB) 

algorithm. Because there are typically many nodes at the same depth, a secondary criteria, 

called the value ordering heuristics can be used to choose the next explored node. The lower 

bound of an explored node is immediately computed. If this lower bound is larger than or 

equal to the cost of the best known solution (the current upper bound), the branch below this 

node can be safely pruned and search proceeds in the rest of the tree. Thanks to the very 

ordered exploration of the tree defined by depth first search, remembering the current 

position of the search requires only polynomial space. Ultimately, the order in which the 

search will proceed in the tree, whose shape is defined by the branching scheme and the 

variable ordering heuristics, is conditionned only by the value ordering heuristics, the lower 

bounding mechanism and the initial value of the upper bound k. Indeed it may be easy to 

produce an initial non naïve complete assignment that will provide a hopefully tight initial 

upper bound k, leading to more abundant pruning. Then, when only the GMEC is sought, 

each time a new complete assignment is explored (a sequence-conformation), its energy is 
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used to tighten the upper bound k and improve pruning. In this case, the last encountered 

leaf will be optimal. If instead one whishes to enumerate all solutions within a Δ threshold of 

the GMEC, a two step process is followed: first the GMEC, with energy e*, is sought using 

the above algorithm. Then, the upper bound k is set to (e* + Δ) and the search restarted but 

without updating k when a solution is found. This is guaranteed to enumerate all sequence-

conformations within Δ of the GMEC.

In CPD, A* Best-First Search is used instead. As the name indicates, the next node to 

explore is always the known unexplored node with the best lower bound. This usually 

uniquely defines the node and no secondary value ordering criteria is needed. Because this 

requires to remember which nodes have been explored, Best-First search requires 

exponential space in the worst-case: upon exploration of a node, new children nodes are 

pushed in a priority list of “open” nodes (originally containing only the root) from which the 

smallest lower bound node will be successively extracted until a leaf is extracted. In this 

case, it is known that all other open nodes cannot lead to a better solution than this one: the 

first extracted leaf is the GMEC. Without any change in the algorithm, if the extraction of 

best nodes continues, the stream of leaves explored will be an energy-sorted list of 

sequence–conformations. The order of the exploration of the tree, whose shape is defined by 

the branching scheme and the variable ordering heuristics, depends on the lower bounding 

mechanism used. DEE/A* relies on a simple bound [34] which we denote in the rest of the 

paper as the “vanilla” bound. In A*, the lower bound is usually denoted as “the admissible 

heuritics”.

Cost Function Network processing

In contrast with the most usual exact CPD method, where dominance analysis through the 

DEE theorem is widely used, the fundamental idea in CFNs relies on so-called Local 
Consistencies. From a given CFN, it is always possible to define a family of small (local) 

subproblems. A Local Consistency property requires that each subproblem must be 

sufficiently explicit about local optimal costs. As an example, the node consistency of a 

variable xi with associated cost function ci requires that di contains at least one value v such 

that ci (v) = 0 and no value w such that that c∅ + ci (w) ≥ k (the forbidden cost). 

Equivalently, this means that there is at least one value that does not locally increase cost 

and no value that is locally infeasible. If a problem does not satisfy a given Local 

Consistency property, it is possible to transform it in an equivalent problem (defining the 

same joint cost/energy distribution) satisfying the property thanks to Equivalence Preserving 
Transformations (EPTs). An EPT is a local transformation of the CFN which can shift cost 

(or energy) between cost functions of intersecting scopes without changing the global energy 

distribution. These EPTs are iteratively applied in so-called Local Consistency enforcing 

algorithms that iterate EPTs until the CFN satisfies the Local Consistency property. For 

example, if a variable violates node consistency then by deleting infeasible values and by 

shifting costs to c∅ (i.e., by subtracting the minimum of all ci (v) from each ci (v) and adding 

it to c∅), the variable can be made node consistent. Beyond node consistency, many other 

Local Consistency properties and associated polynomial time enforcing algorithms have 

been defined [35]–[37]. Depending on the locality of the property, which may apply to one 

variable, one cost function or more, they are called Node, Arc or higher order consistencies. 
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In this paper, we only consider Node and Arc consistencies. The most desirable effects of 

enforcing Local Consistencies is that infeasible values, which can only lead to solutions of 

cost larger than k, may be pruned and that the constant cost function c∅, which remains a 

lower bound on the optimum, may be increased. The amount of pruning and the strength of 

the lower bound may increase as the upper bound k decreases. For a given upper bound, 

these effects are obtained without changing the global energy distribution. Compared to 

Local Consistency enforcing, DEE, which has also been studied in CFN under the name of 

substitutability ([23], [38], [39]) does not preserve the global energy distribution as it may 

remove feasible sub-optimal solutions. In CFN, the pruning and non-naïve lower bounding 

based on c∅ is done incrementally at each visited node during DFBB, using various 

branching schemes, variable and value ordering schemes as well as specialized upper 

bounding algorithms. Because the amount of pruning depends on the value of the upper 

bound k, it is important to have a reasonable upper bound at the beginning of the tree search. 

This can be obtained by doing bounded tree search using Limited Discrepancy Search [40].

Our recent studies [21]–[23] highlighted the power of these CFN-based method to efficiently 

solve various CPD problems and hence, spurred new developments to tackle more complex 

and challenging CPD problems. Novel CFN-based methodological advances are provided 

herein. In particular, a variant of the A* search algorithm which uses the CFN lower bound 

as its admissible heuristics instead of the usual CPD lower bound [41] is defined. It is named 

“A*-CFN”. The performances of this new search method were compared to those of the A* 

search commonly used in CPD, denoted as “A*-vanilla”. In addition, we enhanced CPD 

algorithms by injecting more CFN technology such as sophisticated variable ordering 

heuristics (for both A*and DFBB), value ordering heuristics, upper bounding and branching 

schemes. The specific nature of the CPD problems was specifically used to design a new 

family of branching strategies based on amino-acid types and Local Consistency 

enforcement. The open source CPD framework Osprey 2.0 [27] in which the CFN-based 

methods have been implemented, allows for discrete and continuous modelling of the 

protein conformation at the side-chain and backbone level [25], [42]. All those models 

(including the DEEPer flexibility models) enabling the consideration of more flexibility will 

benefit from CFN-based developments as they are ultimately based on the optimization of a 

pairwise energy matrix.

New CFN-based algorithms for CPD

The strategies offered in the CFN-based CPD framework developed in this work are 

described in Figure 3. They are defined through a customisable tree search algorithm that 

can rely on different branching strategies (n-ary, dichotomic, binary and a new SCP-based 

branching scheme), search strategies (Best First A* and DFBB) and variable/value orderings. 

This algorithm always relies on Local Consistency combined with a simple DEE pruning 

[23] to prune rotamers and compute a lower bound at preprocessing but also at each node of 

the tree search. Through the use of different combinations of branching schemes and rules 

for updating k in DFBB, it is possible to offer a larger variety of services than the usual 

DEE/A*combination.
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Tree search: strategies, heuristics and branching schemes

Tree search based exact optimization and enumeration of near-optimal solutions can be 

achieved by different combinations of basic ingredients. In the rest of the paper, we examine 

specific combinations for CPD, some of which include new ingredients. There are however 

some crucial features that will remain unchanged in all the considered combinations. First of 

all, we will always use Local Consistency at preprocessing and at each node of the search. 

By increasingly simplifying the problem and strengthening the lower bound c∅, Local 

Consistency provides information that can be used to prune and heuristically guide the 

search in a tree defined by branching schemes and variable and value ordering. Because the 

pruning strength of Local Consistencies depends on the tightness of the upper bound k, we 

also always perform an initial upper-bounding using Limited Discrepancy Search [40].

Best-First Search with a CFN lower bound: the A*-CFN—The completeness of the 

A* search method (A*-vanilla) used in the DEE/A* approach [41] relies on the use of a so-

called “admissible heuristic function”: this function must provide an optimistic estimate of 

the energy of all complete conformations below the current node i.e., must be a lower bound 

on the optimum of the current problem. Thus, the lower bound defined by c∅ and Local 

Consistency enforcing can be directly plugged in the A* algorithm and replace the existing 

heuristics.

The lower bound used in current DEE/A* implementations is equivalent to the CFN 

‘Directed Arc Consistency Counts’ bound [43]. This lower bound has been obsoleted by 

several Arc Consistency properties [44]. Hence, we expect that replacing A* lower bound 

with stronger Local Consistency based bounds will improve the pruning efficiency of A*. 

We use Existential Directed Arc Consistency (EDAC) [44], an Arc Consistency property 

with a fast incremental enforcing algorithm. When Local Consistency is enforced on an open 

node, domains may get pruned and the updated lower bound c∅ is used as a priority. Since 

upper bounding is always done as preprocessing, any developped node with a lower bound 

larger than the current upper bound k needs not be inserted in the queue, which saves space. 

This defines the A*-CFN algorithm. The systematic enforcement of Local Consisency at 

each node contrasts with DEE/A* where DEE is only used as a preprocessing pruning 

technique. Hence, A*-CFN has a permanent opportunity to reduce its search space and uses 

a stronger lower bound than the A* lower bound [44].

Variable and value ordering heuristics—Besides a search strategy, tree search 

methods also need to choose the next variable that will be used to branch. This is achieved 

using a variable ordering heuristics. Our algorithm supports dynamic variable ordering 

where a choice of variable is done at each node (and not just at each level of the tree). 

Variable ordering heuristics may have a tremendous effect on the efficiency of the search 

algorithm. They are all based on the ‘fail-first’ principle [45] : ‘To succeed, try first where 

you are most likely to fail’. Several measures have been used to try to evaluate the likelihood 

of failing by fixing a variable. One simple measure is the current size of the domain (dom) 

[45]. Under this measure, the variable which has the smallest domain should be assigned 

next. To take into account the number of cost functions that involve a variable (the so-called 

degree of the variable), more sophisticated heuristics select the variable that has the 
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minimum ratio of the domain size over the current degree (dom/ddeg 46]), over the degree 

weighted by the number of failures observed in the past for each cost function (dom/wdeg 
21], [47]) or by the sum of the median cost of cost functions involving the variable (dom/
cmed [22], [23]). Additionally, the last conflict heuristics [48] simply try to select the last 

variable that led to inconsistency during search (if any).

Once a variable is chosen, Depth-First search and different branching scheme need to choose 

the next value to consider. The effect of value ordering heuristics is often less dramatic than 

for variables. However, a good value ordering heuristics may help to quickly find a good 

solution (upper bound). The most usual value ordering heuristics in CFNs is to choose first a 

value a that has a unary cost ci (a) = 0. Such a value always exists thanks to EDAC [44].

Branching schemes—We already described n-ary branching, where branching consists 

in choosing a variable xi and all its available values to fix the variable value. Another 

branching scheme consists in selecting a variable xi and a value/rotamer a and branch on the 

fact that the variable xi either takes the value a, or not (and it must take one of its remaining 

values). This is called binary branching. By exploiting results in proof theory, binary 

branching has been previously shown to be more powerful than n-ary branching (with a 

given Local Consistency being maintained at each node, binary branching may explore an 

exponentially smaller number of nodes than n-ary branching, and the converse is impossible 

[49]. n-ary branching can however be polynomially better on some problems). In Figure 4, a 

search tree of the same toy CPD problem is shown using binary branching.

An even more general branching method is dichotomic branching where the domain of a 

chosen variable i is split in two chosen sets. The split can be done in the middle of the 

domain range or in the middle of the unary energy range (similarly to [50]) where low 

energy rotamers are part of the first set and high energy rotamers form the second set.

• A new SCP-based branching scheme

Compared to CFN, where all values are considered as uniform objects, the rotamers 

available at a designable position can be classified according to the chemical nature of the 

amino-acid they define. In CPD, ultimately, it is the nature of the amino-acid that matters 

more than its precise conformation (as far as the optimal energy is known). Using the amino-

acid nature of rotamers, it is possible to define a new branching scheme where a variable is 

chosen first among variables which have more than one possible amino-acid type in their 

available rotamers. In this case, a dichotomic split will be done between all rotamers 

corresponding to a chosen amino-acid and all other rotamers. If all variables already have 

rotamers with a single amino-acid identity (the protein sequence is fixed in the current 

node), then a simple binary branching strategy is followed. The n-ary branching counterpart 

of this search mechanism is achieved by simply creating a new SCP-subproblem for each 

amino acid and branch onto them using an amino-acid selection heuristic. As for binary 

branching, once all the identities are fixed, the SCP problem is solved by n-ary branching.

We propose two heuristics to select the amino-acid type (AA) that will be used to split the 

domain in SCP branching. The idea behind these heuristics is to try to select an amino-acid 

that leads to a very good solution quickly, thus allowing to tighten the upper bound k. 
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Inspired by the value ordering heuristics, the first heuristics selects the amino-acid 

associated to a rotamer v with a cost ci(v) = 0 (Zero-Cost−AA) which always exists because 

of EDAC enforcing. The second one selects the wild-type amino-acid if it is still available 

after Local Consistency enforcing (Wt−Zero-Cost−AA) and otherwise uses the Zero-Cost
−AA choice. This branching incrementally reduces CPD to SCP: each time a branching is 

done, the domain of a variable is restricted to a single amino-acid in the first branch. Once 

there is no mutable position left in a given node, either a binary or n-ary branching scheme is 

applied to select rotamers. This branching strategy is denoted as SCP-based branching in 

what follows.

Interestingly, thanks to the separation that SCP-branching creates between a top tree that sets 

sequences and a large number of subtrees that solve SCP problems, it becomes possible to 

address the problem of the enumeration of all unique sequences within an energy threshold 

of the GMEC together with their optimal conformation and associated energy. As the 

ultimate goal of CPD is to provide a set of unique sequences to experimentalists, the 

restriction of the enumeration to a single conformation per sequence makes sense [22] and 

should allow to drastically reduce the running time because of the exponential reduction in 

the number of enumerated solutions. In GMEC search, the upper bound k is updated each 

time a new solution is found. For enumeration, the upper bound is never updated. Since 

SCP-based branching defines the amino acid identity at all positions prior to conformation 

search, it becomes possible to update the upper bound locally only (in the current SCP 

subproblem) in order to just identify the best conformation for the current sequence, leading 

to additional pruning capabilities during enumeration. This defines two new search 

strategies: within a DFBB search strategy, the upper bound is locally updated once there is 

no mutable residue left in a given SCP branch. Similarly, for A*-CFN with SCP-branching 

scheme, each time there is no mutable residue left, we simply use a DFBB search to get the 

best solution for the current sequence before adding the node to the list of open nodes (with 

its optimal energy). This hybrid A*/DFBB strategy enables A*-CFN to automatically 

enumerate unique sequences in an energy sorted order (the SCP part being explored using 

depth first search).

Benchmark set for method performance assessment

The benchmark set of 30 CPD instances (including structural models and associated 

precomputed energy matrices using Osprey) previously prepared [22] (Table-S1) was used 

to assess the performances of the CFN-based methods in terms of runtime to provably 

identify the GMEC or enumerate sub-optimal solutions for each protein design case. This 

benchmark set includes a variety of protein structures, alone or in complex with a protein or 

a ligand, derived from high resolution structures deposited in the Protein Data Bank (PDB) 

[51]. These benchmarks vary by the number of designable residues (mutable or flexible) 

ranging from 23 to 97, leading to a wide range of sequence-conformation search spaces 

going from 4.36 1026 to 2.17 1094. The penultimate rotamer library was used [52]. All 

pairwise energy terms were pre-computed and stored using Osprey 2.0 [27]. The used 

energy functions consist in the sum of the Amber electrostatic terms (with a distance-

dependent dielectric constant), van der Waals and the EEF1 implicit solvation energy term 
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[53]. No cutoff was used for non-bonded interactions. A more detailed description of the 

benchmark set can be found in ref. [22].

All computations were performed on one core of an AMD OpteronTM Processor 6176@2.3 

GHz. We used 128GB of RAM and a 9,000 sec timeout. CPU times reported hereafter 

correspond to runtime from the pre-processing to the identification of the optimal or sub-

optimal solutions. Problems not solved within the time limit were considered as using 9,000 

seconds (a lower bound on the real time they would require). Unless specified otherwise, the 

EDAC Arc Consistency with incremental DEE (DEE1 option) pruning [21]–[23] was 

activated in all CFN-based experiments (both during preprocessing and during search), the 

median cost variable ordering heuristic (dom/cmed) was used in all the experiments (with 

the “last conflict” heuristics [48]) as well as the zero unary cost value ordering heuristic and 

initial upperbounding by Limited Discrepancy Search [40]. The statistic metrics reported 

hereafter ignore the few instances for which the difference in the time needed to solve the 

targeted problem was essentially similar (difference of less than 1 sec).

Results and discussion

Effects of the CFN lower bound

Performances of the new A*-CFN method (using the CFN lower bound) were assessed 

against those of the A*-vanilla algorithm (usually used in CPD after a DEE pre-processing) 

for the provable GMEC identification problem. In order to ensure that the difference of 

performances between both methods is only due to the quality of the lower bound, a static 

variable ordering was used. The usual n-ary branching was used and no upper-bounding 

performed to stick to usual DEE/A*conditions (favoring this combination). The criteria used 

for comparison are the runtime, the number of visited nodes and the number of solved 

problems. To fairly compare the search methods, we performed a full DEE preprocessing 

(Osprey algOption=3) and a Local Consistency preprocessing step on each instance and then 

applied either A*-vanilla or A*-CFN. Thence, both strategies start with an identical search 

space for each of the 30 CPD instances.

A*-vanilla and A*-CFN solved, respectively, 22 and 23 CPD instances before timeout (Table 

1). A*-CFN outperforms A*-vanilla in terms of runtime for 15 out of 18 discriminating cases 

(with more than 1 sec. difference). If we assign an optimistic 9,000 sec to unsolved cases, 

A*-CFN allowed to save 978.9 sec in average. Except for 1MJC problem which was directly 

solved at the end of the preprocessing step, A*-CFN expanded fewer nodes than A*-vanilla 

in all cases solved by both methods. For example, A*-vanilla expanded 63,974 nodes to 

solve 1C9O case while A*-CFN expanded only 20 nodes (corresponding to 3,199 fold 

decrease in the number of expanded nodes). As expected, the inexpensive A*-vanilla lower 

bound led to a higher number of nodes expanded per minute than the A*-CFN lower bound, 

which is however not enough to compensate for the much higher number of nodes that A*-

vanilla needs to explore for solving the CPD problem.

We then compared the performances of the DFBB we implemented in Osprey against those 

of A*-CFN (Figure 6 and Supplementary Table S-2), both using the same lower bounding 

mechanism. Since both DFBB and A*-CFN allow for it, default value and variable ordering 
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heuristics were activated along with an initial upper bounding using Limited Discrepancy 

Search. n-ary branching was used.

Out of the 30 design cases, A*-CFN and DFBB managed to find 24 GMEC within the 

timeout. DFBB was faster than A*-CFN in 15 cases and saved in average 323.42 sec. It was 

also faster than A*-vanilla in 16 cases, saving in average 1,031.43 sec. Therefore, DFBB 

search with incremental Local Consistency enforcing algorithm and ordering heuristics 

remains overall more efficient than traditional A* search methods.

While A*, as a Best-First search method, is known to always explore less nodes than Depth-

First search when the same tree is explored with the same lower bound, DFBB can quickly 

improve its upper bound k and therefore pruning whereas A* cannot. This probably explains 

the performance gain of the Depth-First search strategy combined with the CFN lower 

bound. The polynomial space use of DFBB is also likely to help in the context of CPU 

processors using multiple levels of increasingly slow caches.

Branching schemes

Binary, n-ary, dichotomic and SCP-based branching strategies were assessed against each 

other (Figure 7). To select the amino-acid in SCP-based branching, the Zero-Cost−AA 
amino-acid heuristic was used. Supplementary Table S-3 reports results for all 30 CPD 

instances.

As expected, binary branching was faster than n-ary branching (by an average of 84.35 sec.) 

and solved more CPD problems (11 over 19 discriminating problems). Compared to the 

(unary cost-based) dichotomic branching, it also showed a favorable average runtime gain 

(400.63 sec). However, the number of problems solved faster does not increase (only 5 cases 

out of 18). In contrast, the SCP-based branching scheme is clearly better than all other 

branching schemes. Out of 20 cases and all other contenders, a minimum of 18/20 cases 

were solved more quickly by SCP-based branching with a minimum average runtime gain of 

328.25 sec per instance. Hence, these results show that SCP-based branching outperforms all 

the other branching schemes, both in terms of runtime and number of problems solved faster. 

The poor performance of dichotomic branching is somehow unexpected, since it splits apart 

rotamers at a given position into two groups depending on their energies.

Enumeration of near-optimal sequence-conformation ensemble

The problem of enumerating sub-optimal sequence-conformation models within a given 

energy range above the GMEC (arbitrarily set here to 2 kcal. mol−1) was considered for all 

30 CPD instances. First, we applied the A*-CFN and DFBB schemes using the binary 

branching scheme and with the SCP-based branching activated (default ordering heuristics 

and upper bounding activated in all cases).

For the A*-based strategies, the average runtime is 5959.4 sec and 4590.8 sec for, 

respectively, A* and A*-SCP (Figure 8). For the DFBB-based methods, the average runtime 

is 4432.3 sec and 3958.4 sec for, respectively DFBB and DFBB-SCP. As expected, SCP 

brings significant improvement to both A*-CFN and DFBB search strategies also in the 

context of enumeration. It is important to remind that A* based algorithms preserve their 
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natural advantage of being able to produce an energy-sorted stream of sequence-

conformations. Instead DFBB based algorithms produce an unsorted list that cannot be 

extended unless the algorithm is rerun.

Enumeration of near-optimal unique sequences

Finally, the performances of the CFN-based algorithms were also compared to enumerate 

ensembles of sub-optimal unique sequences using SCP-branching to separate sequence and 

conformation search. A comparison of runtime performances of all methods is shown in 

Figure 8 and more detailed results are included in Supplementary Table S-4; S-5 and S-6. 

Ensembles of unique sequences were generated using both A*-SCP and DFBB-SCP 

methods. More cases were solved and a significant gain in runtime was always obtained 

when unique sequence SCP is activated, leading to 1496.7 sec average runtime for A*-SCP-

unique and 2021.2 sec for DFBB-SCP-unique (Table S-6). Consequently, SCP-based 

branching schemes enable enumerating unique sequences over a much larger energy window 

above the GMEC. Indeed, taking as an illustration the 1MJC instance and an interval of 2 
kcal. mol−1, the A*-CFN required 232.6 sec to enumerate 2,110,737 sequence-

conformations (4,408,541 nodes). DFBB, A*-SCP and DFBB-SCP required, respectively, 

140.7 sec (4,537,935 nodes), 143.7 sec (4,415,342 nodes) and 178.7 sec (4,555,451 nodes) 

to handle the same instance. However, this ensemble corresponds to only 91 unique 

sequences. For a larger energy interval of 20 kcal. mol−1, using DFBB-SCP method 

restricted to the enumeration of unique sequences, 1,034 sequences were generated in 

295.85 sec (with a number of nodes lower than 50,489). Because of the sheer number of 

conformations per sequence, this energy interval is out of reach when all conformations have 

to be enumerated. SCP-branching is thus an effective solution to handle CPD problems and 

gives access to the enumeration of unique sequences within much larger energy windows 

than what can be achieved using standard branching schemes.

Conclusion

This work reports the introduction of Cost Function Network optimization techniques to 

solve Computational Protein Design problems. Compared to prior work [21]–[23], it 

introduces novel search strategies in order to speedup search methods, which have been 

implemented in the CPD-dedicated software Osprey. The presented search algorithms have 

shown to be more efficient than optimization methods based on the DEE/A* framework for 

both GMEC search and sub-optimal solutions enumeration (which is often performed in 

order to account for inaccuracies and approximations made in the modelling of the design 

problem and what is of interest to guide construction of experimentally manageable sizes of 

mutant libraries). In addition, the new SCP-based branching scheme makes it possible to 

generate unique sequences within a larger energy threshold than what was possible with 

other methods up to now. The implementation in Osprey of existing CFN algorithm together 

with these new methods enable novel opportunities. Indeed, these algorithms can be used in 

combination with all the other functionalities in this software, in particular for molecular 

flexibility modelling. Any macromolecular flexibility method that can be represented as an 

optimization problem with a single matrix can be performed with the presented CFN-based 

methods, even if they intrisically rely on an energy-sorted stream of solutions.
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Figure 1. 
The graph of our CFN example together with the cost matrix of the cost function c{2,3}.
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Figure 2. 
Tree Search using n-ary branching. We assume a trivial CPD problem with three designable 

positions denoted i, j, and k with respectively 3 (A1, A2, G1), 3 (G1, C1, C2) and 2 (A1, A2) 

rotamers. To expand a node in children nodes (branching), a yet unfixed designable position 

is chosen (indicated in the top left of each grey box). The children nodes (inside the grey 

box) correspond each to a subspace where the position is fixed to an available rotamer. A 

path in the tree, as shown in bold, corresponds to a complete rotamer assignment. Note that 

with a dynamic variable ordering, the same designable position needs not be chosen at a 

given level.
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Figure 3. 
CPD frameworks. By upgrading components of the usual DEE/A* combination (left) using 

Local Consistency (LC), new branching schemes and ordering heuristics, it is possible to 

increase efficiency for provably finding the GMEC and enumerating suboptimal sequence-

conformations within a Δ threshold of the GMEC. It also becomes possible to directly 

enumerate unique near-optimal sequences (right).
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Figure 4. 
Binary branching scheme applied to the same naïve CPD problem as in Figure 1. To 

properly define the tree shape, ordering heuristics must be defined.
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Figure 5. 
SCP-branching scheme illustrated on our toy example. Rotamer labels indicate the nature of 

the amino-acid and the number of the rotamer. Designable position with more than one 

amino-acid (i, j) are selected first. For each such choice, two nodes are added to the search 

tree: the node on the left restricts available rotamers to a preferred amino acid and the node 

on the right corresponds to the remaining rotamers. Once all designable positions have their 

amino-acid type set, search reduces to a SCP problem.
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Figure 6. 
Comparison of search strategies for solving the GMEC identification problem: the average 

runtime (in second) for respectively A*-vanilla; A*-CFN and DFBB. Cases unsolved by any 

method are excluded from the comparison. The average runtime is 1970.13; 1262.12 and 

938.70 sec for respectively A*-vanilla, A*-CFN and DFBB.
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Figure 7. 
Comparison of branching schemes for solving the GMEC identification problem. The 

average runtime is 930.83, 1015.18, 1331.46 and 602.58 sec for respectively Binary, N-ary, 

Dichotomic and SCP branching schemes.
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Figure 8. 
Boxplot of the runtime (in second) for respectively A*-CFN; A*-SCP; A*-SCP-unique; 

DFBB; DFBB-SCP and DFBB-SCP-unique. The bold horizontal lines indicate the median 

(as usual for boxplots). The points in red indicate the average runtimes. The SCP branching 

schemes significantly improve both A* and DFBB search strategies. This improvement is 

even more drastic when the unique sequence constraint is activated.
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