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Abstract

This paper explores the impact of surface area, volume, curvature and Lennard-Jones po-

tential on solvation free energy predictions. Rigidity surfaces are utilized to generate robust

analytical expressions for maximum, minimum, mean and Gaussian curvatures of solvent-

solute interfaces, and define a generalized Poisson-Boltzmann (GPB) equation with a smooth

dielectric profile. Extensive correlation analysis is performed to examine the linear dependence

of surface area, surface enclosed volume, maximum curvature, minimum curvature, mean cur-

vature and Gaussian curvature for solvation modeling. It isfound that surface area and surfaces

∗To whom correspondence should be addressed
†Department of Mathematics

Michigan State University, MI 48824, USA
‡Department of Electrical and Computer Engineering

Michigan State University, MI 48824, USA
¶Department of Biochemistry and Molecular Biology

Michigan State University, MI 48824, USA

1

http://arxiv.org/abs/1606.03422v1
wei@math.msu.edu


enclosed volumes are highly correlated to each others, and poorly correlated to various curva-

tures for six test sets of molecules. Different curvatures are weakly correlated to each other

for six test sets of molecules, but are strongly correlated to each other within each test set of

molecules. Based on correlation analysis, we construct twenty six nontrivial nonpolar solva-

tion models. Our numerical results reveal that the Lennard-Jones (LJ) potential plays a vital

role in nonpolar solvation modeling, especially for molecules involving strong van der Waals

interactions. It is found that curvatures are at least as important as surface area or surface en-

closed volume in nonpolar solvation modeling. In conjugation with the GPB model, various

curvature based nonpolar solvation models are shown to offer some of the best solvation free

energy predictions for a wide range of test sets. For example, root mean square errors from

a model constituting surface area, volume, mean curvature and LJ potential are less than 0.42

kcal/mol for all test sets.

Key Words: solvation, implicit solvent model, curvature

1 Introduction

All essential biological processes, such as signaling, transcription, cellular differentiation, etc.,

take place in an aqueous environment. Therefore, a prerequisite of understanding such biological

processes is to study the solvation process, which involvesa wide range of solvent-solute inter-

actions, including hydrogen bonding, ion-dipole, induceddipole, and dipole-dipole, hydropho-

bic/hydrophobic, dispersive attractions, or van der Waalsforces. The most commonly available

experimental measurement of the solvation process is the solvation free energy, i.e., the energy

released from the solvation process. As a result, the prediction of solvation free energy has been a

main theme of solvation modeling and analysis. Numerous computational models have been pro-

posed for solvation free energy prediction, including molecular mechanics, quantum mechanics,

statistical mechanics, integral equation, explicit solvent models, and implicit solvent models.1–3

Each approach has its own advantages, merits and limitations. Among these models, explicit4 and

quantum methods5,6 are ultimately for investigating the solvation of relatively small molecules;
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however, a great number of degrees of freedom for large systems may lead to unmanageable com-

putational cost. Implicit solvent models, on the contrary,can lower the number of degrees of

freedom by approximating the solvent by a continuum representation and describing the solute in

atomistic detail.7–9

In implicit solvent models, the total solvation free energyis divided into nonpolar and polar

contributions.10,11There is a wide range of implicit solvent models available todescribe the polar

solvation process; nonetheless, Poisson-Boltzmann (PB)7,9,12–14and generalized Born (GB) mod-

els15–21are commonly used. GB methods are very fast, but are only heuristic models for the polar

solvation analysis. PB methods can be derived from fundamental theories;22,23 therefore, can of-

fer somewhat of simple but satisfactorily accurate and robust solvation energy estimations when

handling large biomolecules.

To approximate the nonpolar solute-solvent interactions in implicit solvent models, a common

way is to assume the nonpolar solvation free energy being correlated with the solvent-accessible

surface area (SASA),24,25based on the scaled-particle theory (SPT) for nonpolar solutes in aqueous

solutions.26,27 However, recent studies indicate that solvation free energy may depend on both

SASA and solvent-accessible volume (SAV), especially in large length scale regimes.28,29 It was

pointed out that, unfortunately, SASA based solvation models do not capture the ubiquitous van

der Waals (vdW) interactions near the solvent-solute interface.30 Indeed, the use of SASA, SAV

and solvent-solute dispersive interactions to approximate nonpolar energy significantly improves

the accuracy of solvation free energy prediction.31–34

One of the most important tasks in handling the implicit solvent models is to define the solute-

solvent interface. Many solvation quantities such as surface area, cavitation volume, curvature

of the surface and electrostatic energies significantly depend on the interface definition. The vdW

surface, solvent accessible surface,35 and solvent excluded surface (SES)36 have shown their effec-

tiveness in biomolecular modeling. However, these surfacedefinitions admit geometric singulari-

ties37,38which result in excessive computational instability and algorithmic effort.39–41As a result,

throughout the past decade, many advanced surface definitions have been developed. One of them

3



is the Gaussian surface description.42–44 Another approach is by means of differential geometry.

The first curvature induced biomolecular surface was introduced in 2005 using geometric partial

differential equations (PDEs).45 The first variational molecular surface based on minimal surface

theory was proposed in 2006.46,47 These surface definitions lead to curvature controlled smooth

solvent-solute interfaces that enable one to generate a smooth dielectric profile over solvent and

solute domains. This development leads to differential geometry based solvation models1,2 and

multiscale models.48–50These models have been confirmed to deliver excellent solvation free en-

ergy predictions.33,34 Recently, a family of rigidity surfaces has been proposed inthe flexibility-

rigidity index (FRI) method, which significantly outperforms the Gaussian network model (GNM)

and anisotropic network model (ANM) in protein B-factor prediction.51–54 Flexibility is an in-

trinsic property of proteins and is known to be important forprotein drug binding,55 allosteric

signaling56 and self-assembly.57 It must play an important role in the solvation process because of

entropy effects. Therefore, FRI based rigidity surfaces, which can be regarded as generalizations

of classic Gaussian surfaces,42–44may have an advantage in solvation analysis as well.

In molecular biophysics, curvature measures the variability or non-flatness of a biomolecular

surface and is believed to play an important role in many biological processes, such as membrane

curvature sensing, and protein-membrane and protein DNA interactions. These interactions may

be described by the Canham-Helfrich curvature energy functional.58 Due to its potential contribu-

tion to the cavitation cost, curvature of the solute-solvent surface is believed to affect the solvation

free energy.59 By using SPT, the surface tension is assumed to have a Gaussian curvature depen-

dence.59 The curvature in such cases is locally estimated and is a function of the solvent radius.

Nevertheless, the quantitative contribution of various curvatures to solvation free energy prediction

has not been investigated.

The objective of the present work is to explore the impact of surface area, volume, curvature,

and Lennard-Jones potential on the solvation free energy prediction. We are particularly interested

in the role of Hadwiger integrals, namely area, volume, Gaussian curvature and mean curvature, to

the molecular solvation analysis. Therefore, we consider Gaussian curvature and mean curvature,
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as well as minimum and maximum curvatures in the present work. For the sake of accurate and

analytical curvature estimation, we employ rigidity surfaces that not admit geometric singularities.

Unlike the geometric flow surface in our previous work,1,34 the construction of rigidity surfaces

does not require a surface evolution; accordingly, does notneed parameter constraints to stabilize

the optimization process. In the current models, instead oflocal curvature considered in other

work,59–61 total curvatures that are the summations of absolute local curvatures are employed to

measure the total variability of solvent-solute interfaces. We show that curvature based nonpolar

solvation models offer some of the best solvation predictions for a large amount of molecules.

The rest of this paper is organized as follows. Section 2 presents the theory and formulation

of new solvation models. We first briefly introduce the rigidity surface for the surface defini-

tion. A generalized PB equation using a smooth dielectric function is formulated. We provide

an advanced algorithm for the evaluation of surface area andsurface enclosed volume. Analyt-

ical presentation for calculating various curvatures, namely Gaussian curvature, mean curvature,

minimum and maximum principal curvatures are presented. Finally, we introduces a parameter

learning algorithm to solvation energy prediction. Section 3 is devoted to numerical studies. First,

we discuss the dataset used in this work. Over a hundred molecules of both polar and nonpolar

types are employed in our numerical tests. We then discuss the models and their abbreviations to

be used in this study. The numerical setups for nonpolar and polar solvation free energy calcu-

lations are described in detail. We explore the correlations between area, volume, and different

types of curvatures. Based on the root mean square error (RMSE) computed between experimental

and predicted results, we reveal the impact of each interested nonpolar quantities on solvation free

energy prediction. The final part of Section 3 is devoted to the investigation of the most accurate

and reliable solvation model. This paper ends with a conclusion.
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2 Models and algorithms

2.1 Solvation models

The solvation free energy,∆G, is calculated as a sum of polar,∆Gp, and nonpolar,Gnp, components

∆G= ∆Gp+Gnp. (1)

Here,∆Gp is modeled by the Poisson-Boltzmann theory. For the nonpolar contribution, we con-

sider the following nonpolar solvation free functional

∆Gnp = γA+ pV+∑
j

λ jCj +ρ0

∫

Ωs

UvdWdr , (2)

where A and V are, respectively, the surface area and surface enclosed volume of the solute

molecule of interest. Additionally,γ is the surface tension andp is the hydrodynamic pressure

difference. We denoteCj andλ j respectively curvatures and associated bending coefficients of

the molecular surface. Thus, the indexj runs from maximum curvature, minimum curvature,

mean curvature to Gaussian curvature. Hereρ0 is the solvent bulk density, andUvdW is the van

der Waals (vdW) interaction approximated by the Lennard-Jones potential. The final integral is

computed solely over solvent domainΩs. One can turn off certain terms in Eq. (??) to arrive at

simplified models.

2.2 Rigidity surface

Flexibility-rigidity index (FRI) has been shown to significantly outperform other methods, such

the Gaussian network model (GNM) and anisotropic network model (ANM), in protein flexibility

analysis or B-factor prediction over hundreds of molecules.51–54Given a molecule withN atoms,

we denoter j the position ofjth atom,‖r − r j‖ the Euclidean distance between a pointr and atom

r j . In our FRI method, commonly used correlation kernels or statistical density estimators51,52,62
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include generalized exponential functions

(

‖r − r j‖;η j
)

= e−(‖r−r j‖/η j)
κ
, κ > 0, (3)

and generalized Lorentz functions

(

‖r − r j‖;η j
)

=
1

1+
(

‖r−r j‖
η j

)ν , ν > 0, (4)

whereη j is a scale parameter. An atomic rigidity functionµ(r) for an arbitrary pointr on the

computational domain can be defined as

µ(r) =
N

∑
j=1

w j(r)
(

‖r − r j‖;η j
)

, (5)

wherew j(r) is a weight function. The atomic rigidity functionµ(r) measures the atomic density

at positionr . This intepretation can be easily verified since if we choosew j(r) such that

∫

µ(r)dr = 1.

Then the atomic rigidity functionµ(r) becomes a probability density distribution such thatµ(r)dr

is the probability of finding all theN atoms in an infinitesimal volume elementdr at a given point

r ∈ R
3. For

(

‖r − r j‖;η j
)

= e−(‖r−r j‖/η j)
2

, one can analytically choosew j(r) = 1
N

(

1
πη2

j

)
3
2

to

normalize atomic rigidity functionµ(r).

For simplicity, in this work we just employ the Gaussian kernel, i.e., generalized exponential

kernel withκ = 2, η j = rvdW
j (i.e., the vdW radius of atomj), andw j = 1 for all j = 1,2, · · · ,N.

Other FRI kernels are found to deliver very similar results.Our rigidity surfaces can be regarded

as a generalization of Gaussian surfaces.18,63
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2.3 Smooth rigidity function-based dielectric function

We denoteΩ the total domain, andΩ is divided into two regions, i.e., aqueous solvent domainΩs

and solute molecular domainΩm. Our ultimate goal is to construct a smooth dielectric function in

a similar way to that of differential geometry based solvation models as follows1,2,48

ε(µ) = (1−µ)εs+µεm, (6)

whereεs andεm are the dielectric constants of the solvent and solute, respectively. However the

total atomic density described in (??) exceeds 1 in many cases. As a result, we normalize the

atomic rigidity function as

µ̄(r) =
1

max
r∈Ω

µ(r)
µ(r). (7)

Nonetheless, the dielectric function (??) is still not applicable since the characteristic function

1− µ̄ may not capture the commonly defined solvent domain. This is due to the fact that the value

of µ̄(r) could be less than 1 inside the biomolecule. As a result, we define the molecular domain as

{r ∈Ω|µ(r)≥ β}, whereβ is a cut-off value defined in the protocol to attain the best fitting against

other PB solvers, such as MIBPB.64 By doing so, the dielectric function (??) will be modified as

the following

ε(µ̄(r)) =











εm, if µ̄(r)≥ β ,
(

1−
µ̄
β

)

εs+
µ̄
β

εm, if µ̄(r)< β .
(8)
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2.4 Generalized Poisson-Boltzmann (GPB) equation

With smooth dielectric profile being defined in (??), we arrive at the GPB equation in an ion-free

solvent

−∇ · (ε(µ̄)∇φ(r)) = µ̄ρm(r), (9)

whereφ is the electrostatic potential,ρm(r) = ∑Nm
i Qiδ (r − r i) represents the fixed charge density

of the solute. HereQ(r i) is the partial charge atr i in the solute molecule, andNm is the total

number of partial charges.

Let Ω be the computational domain of the GPB equation. Without considering the salt molecule

in the solvent, we employ the Dirichlet boundary condition via a Debye-Hückel expression for the

GPB equation

φ(r) =
Nm

∑
i=1

Qi

εs‖r − r i‖
, ∀r ∈ ∂Ω. (10)

The electrostatic solvation free energy,∆Gp, is calculated by

∆Gp =
1
2

Nm

∑
i=1

Q(r i)(φ(r i)−φ0(r i)) , (11)

whereφ and φ0 are, respectively, the electrostatic potential in the presence of the solvent and

vacuum. In other words,φ is a solution of the GPB equation (??), and homogeneous solutionφ0 of

the GPB equation is obtained by setting dielectric functionε(µ̄) = εm in the whole computational

domainΩ.
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2.5 Surface area and surface-enclosed volume

The surface integral for a density functionf overΓ in the domainΩ with a uniform mesh can be

evaluated by65–67

∫

Γ
f (x,y,z)dS≈ ∑

(i, j ,k)∈I

(

f (x0,y j ,zk)
|nx|

h
+ f (xi ,y0,zk)

|ny|

h
+ f (xi ,y j ,z0)

|nz|

h

)

h3, (12)

where(x0,y j ,zk) is the intersecting point between the interfaceΓ and thex mesh line going through

(i, j,k), andnx is thex component of the unit normal vector at(x0,y j ,zk). Similar definitions are

used for they andz directions. We only carry out the calculation (??) in a small set of irregular

grid points, denoted asI . Here, the irregular grid points are defined to be the points associated

with neighbor point(s) from the other side of the interfaceΓ in the second order finite difference

scheme.39 In this case,I will contain the irregular points near interfaceΓ. Finally,h is the uniform

grid spacing. The volume integral can be simply approximated by

∫

Ωm

f dr ≈ ∑
(i, j ,k)∈J

f (xi,y j ,zk)h
3, (13)

whereΩm is the domain enclosed byΓ, andJ is the set of all grid points insideΩm. By considering

the density functionf = 1, Eqs. (??) and (??) can be respectively used for the surface area and

volume calculations.

2.6 Curvature calculation

The evaluation of the curvatures for isosurface embedded volumetric data,S(x,y,z), has been re-

ported in the literature.47,68,69In general, there are two approaches for the curvature evaluation.

The first method is to invoke the first and second fundamental forms in differential geometry, the

another one is to make use of the Hessian matrix method.70 Since both of these algorithms yield

the same results as shown in our earlier work,69 only the first approach is employed in the present

work. To this end, we immediately provide the formulation for Gaussian curvature (K) and mean
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curvature (H) by means of the first and second fundamental forms68,69

K =
2SxSySxzSyz+2SxSzSxySyz+2SySzSxySxz

g2

−
2SxSzSxzSyy+2SySzSxxSyz+2SxSySxySzz

g2

+
S2

zSxxSyy+S2
xSyySzz+S2

ySxxSzz

g2

−
S2

xS2
yz+S2

yS2
xz+S2

zS2
xy

g2 , (14)

and

H =
2SxSySxy+2SxSzSxz+2SySzSyz− (S2

y +S2
z)Sxx− (S2

x+S2
z)Syy− (S2

x+S2
y)Szz

2g
3
2

, (15)

whereg = S2
x +S2

y +S2
z. With determined Gaussian and mean curvatures, the minimum, κ1, and

maximum,κ2, can be evaluated by

κ1 = min{H −
√

H2−K,H +
√

H2−K}, κ2 = max{H −
√

H2−K,H +
√

H2−K}. (16)

We apply the formulations (??), (??) and (??) for curvature calculations of rigidity surfaces. Again,

we only consider generalized exponential kernel withκ = 2 andw j = 1 for all j = 1,2, ·,N in this

paper. As a result, the atomic rigidity functionµ(r), defined in (??) and (??), become

µ(r) =
N

∑
j=1

e
−

(

‖r−r j‖
η j

)2

=
N

∑
j=1

e
−

(x−xj )
2+(y−yj )

2+(z−zj )
2

η2
j . (17)

Note that derivatives ofµ can be analytically attained. Therefore, by replacingS with µ in

various curvature formulas, we obtain analytical expressions for different curvatures of FRI based

rigidity surfaces. As a result, the calculation of various curvatures is very simple and robust for

rigidity surfaces.
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2.7 Optimization algorithm

In this section, we present an algorithm, inspired by the algorithm 2 in our earlier work,34 to

optimize the parameters appearing in the nonpolar component. In this work, we utilize the 12-6

Lennard-Jones potential to model the van der Waals interactionUvdW
i regarding an atom of typei

UvdW
i (r) = εi

[

(

σi +σs

‖r − r i‖

)12

−2

(

σi +σs

‖r − r i‖

)6
]

, (18)

whereεi is the well-depth parameter,σi andσs are, respectively, the radii of the atom of typei and

solvent. Herer is the location of an arbitrary point in the solvent domain, and r i is the location of

the atom of typei. Since the integral of the Lennard-Jones potential term involves in the solvent

bulk densityρ0, the fitting parameter for the van der Waals interaction of the atom of typei will be

ε̃i
.
= ρ0εi. Assume that we have a training group containingn molecules, the process of calculating

solvation free energy will give us the following quantitiesfor the jth ( j = 1,2, · · · ,n) molecule







∆Gp
j ,A j ,Vj ,C1 j ,C2 j ,C3 j ,C4 j ,

(

Nm

∑
i=1

δ 1
i

∫

Ωs

UvdW
1 (r)dr

)

j

, · · · ,

(

Nm

∑
i=1

δ Nt
i

∫

Ωs

UvdW
Nt

(r)dr

)

j







,

(19)

whereNm and Nt are the number of atoms and the number of atom types in each individual

molecule, respectively andCi j denotes theith curvature for thejth molecule. Hereδ k
i is defined as

follows

δ k
i =











1, if atom i belongs to typek,

0, otherwise,
(20)

wherek = 1,2, · · · ,Nt and i = 1,2, · · · ,Nm. We denote the parameter set for the current training

group asP = {γ, p,λ1, · · · ,λ4, ε̃1, ε̃2, · · · , ε̃Nt}. The solvation free energy for moleculej will be
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then predicted by

∆G j =∆Gp
j + γA j + pVj +∑

i
λiCi j + ε̃1

(

Nm

∑
i=1

σ1
i

∫

Ωs

UvdW
1 (r)dr

)

j

+ · · ·+ ε̃Nt

(

Nm

∑
i=1

σNt
i

∫

Ωs

UvdW
Nt

(r)dr

)

j

. (21)

It is noted that the fitting parameter of corresponding vanishing term will set to 0 in the solva-

tion free energy calculation (??). We denote a vector of predicted solvation energies for the

given molecular group as∆G(P) = (∆G1,∆G2, · · · ,∆Gn) which depends on the parameter set

P. In addition, we denote a vector of the corresponding experimental solvation free energy as

∆GExp= (∆GExp
1 ,∆GExp

2 , · · · ,∆GExp
n ). We then optimize the parameter setP by solving the follow-

ing minimization problem

min
P

(

‖∆G(P)−∆GExp‖2
)

, (22)

where‖ ∗ ‖2 denotes theL2 norm of the quantity∗. Optimization problem (??) is a standard one

which can be solved by many available tools. In this work, we employ CVX software71 to deal

with it.

Unlike our previous work,34 we only need to generate the fixed molecular surface and solve

the GPB equation (??) one time. We will then utilize the optimization process (??) with obtained

quantities to achieve the optimized parameter setP.

3 Results and discussions

3.1 Data sets

To study the impact of area, volume, curvature and Lennard-Jones potential on the solvation free

energy prediction, we employ a large number of solute molecules with accurate experimental

solvation values. These molecules are of both polar and nonpolar types and are divided into
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six groups: the SAMPL0 test set72 with 17 molecules, alkane set with 35 molecules, alkene

set with 19 molecules, ether set with 15 molecules, alcohol set with 23 molecules, and phenol

set with 18 molecules sets.73 The charges of the SAMPL0 set are taken from the OpenEye-

AM1-BCC v1 parameters,74 while their atomic coordinates and radii are based on the ZAP-9

parametrization.72 The structural conformations for the other groups are adopted from FreeSolv73

with their parameter and coordinate information being downloaded from Mobley’s homepage

http://mobleylab.org/resources.html.

3.2 Model abbreviation

Table 1: Model terminologies

Symbols Meaning
A Gnp contains a area term
V Gnp contains a volume term
L Gnp contains a Lennard-Jones potential term
k1 Gnp contains a minimum curvature term
k2 Gnp contains a maximum curvature term
H Gnp contains a mean curvature term
K Gnp contains a Gaussian curvature term

It is noted that if we only consider area, volume and van der Waals interaction in nonpolar com-

ponent computations, we would arrive at the formulation already discussed in the literature.1,32

However, the nonpolar component in this work includes additional curvature terms. To investigate

the impact of area, volume, Lennard-Jones potential and curvature on the solvation free energy

prediction, we benchmark different models consisting of various terms in nonpolar free energy

functionals. To this end, we use the symbols listed in Table 1to label a model if it includes the cor-

responding terms in the nonpolar solvation free functional. For example, modelA only considers

the surface area term, whereas modelAVL incorporates area (A), volume (V) and Lennard-Jones

potential (L ) terms in nonpolar energy calculations.

14
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3.3 Polar and nonpolar calculations

In this work, we employ rigidity surface,51,52discussed in Section 2.2, as the surface representation

of a solvent-solute interface. For simplicity, we implement the Gaussian kernel for all tests, while

other FRI kernels deliver similar results.

Polar part By following the paradigm for constructing a smooth dielectric function in differen-

tial geometry based solvation models,1,48 we propose a smooth rigidity-based dielectric function

as in Eq. (??). The generalized Poisson-Boltzmann (GPB) equation described in Eq. (??) is used.

For the current framework, we consider the solvent environment without salt and there is only one

solvent component, water. The polar solvation energy is then calculated as the difference of the

GPB energies in water and in a vacuum, and the detail of this representation is offered in Section

2.4. Similar results are obtained if we create a sharp interface and then employ a standard PB

solver to compute the polar solvation energy.

In all calculations, the rigidity surface is constructed based on the cut-off value beingβ = 0.09,

and the dielectric constants for solute and solvent regionsare set to 1 and 80, respectively. In

addition, the grid spacing is set to 0.2 Å. The computational domain is the bounding box of the

molecular surface with an extra buffer length of 3 Å. The changes in RMS errors are less than 0.02

kcal/mol when the buffer length is extended to 6 Å. Since the dielectric profile in the GPB equation

is smooth throughout the computational domain, one can easily make use of the standard second

order finite difference scheme to numerically solve the GPB equation. Then, a standard Krylov

subspace method based solver1,2 is employed to handle the resulting algebraic equation system.

Nonpolar part To estimate the surface area and surface enclosed volume fora rigidity surface,

we utilize a stand-alone algorithm based on the marching cubes method, and the detail of this

procedure is referred to Section 2.5. Thanks to the use of therigidity surface, the curvature of a

solvent-solute interface can be analytically determined instead of using numerical approximations

as in our earlier differential geometry model.69 To prevent the curvature from canceling each other
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Figure 1: The relations between the solvent radii and the RMSerrors for modelAVHL . Red circle:
SAMPL0 set; blue diamond: alkane set; black square: alkene set; green triangle: ether set ; pink
cross: alcohol set; cyan asterisk: phenol set.

at different grid points, we construct total curvatures defined as

Cj = ∑
r i∈I

|c j(r i)|h
2, (23)

wherer i is the position of theith grid point,I is a set of irregular grid points in the region of the

solvent-solute boundary39–41 andh is the mesh size of the uniform computational domain. Here

c j(r i) is the jth type of curvature at positionr i , and indexj runs through minimum, maximum,

mean and Gaussian curvatures. Since the full standard 12-6 Lennard-Jones potential improves

accuracy of the solvation free energy prediction,3,34 it is utilized to model the vdW interaction

UvdW in the current work.

Similar to our previous work,34 an optimization process as discussed in Section 2.7 is applied

to determine the optimal parameters for the nonpolar free energy calculations. Unfortunately, the

involvement of the solvent radius in the Lennard-Jones potential term features a high nonlinear-

ity. Consequently, it cannot be incorporated into the parameter optimization. Instead, we resort

to a brute force approach to determine the most favorable solvent radius for six molecular sets

including SAMPL0, alkane, alkene, ether, alcohol, and phenol groups. The value ofσs that mostly
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produces the smallest RMS error between predicted and experimental solvation free energies will

be employed in all numerical calculations. By considering modelAVHL , we depict the relations

between RMS errors and the solvent radii varying from 0.5 Å to 3.5 Å with the increment of 0.5

Å in Fig. 1. This figure reveals that the use ofσs = 1 Å will give us the smallest RMS errors in

all test sets except alkane and alkene sets. Therefore, we utilize solvent radius 1 Å for the current

work.

3.4 Correlations between area, volume and curvatures

Understanding the correlation or non-correlation betweendifferent modeling components is impor-

tant for analyzing solvation models. A strong correlation between any pair of components indicates

their strong linear dependence and redundancy in optimization based solvation modeling. While a

weak correlation implies their complementary roles in an optimization based solvation modeling.
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Figure 2: Area versus volume over 127 molecules in all six groups. R2 = 0.99, and fitting line:
y= 1.55x−66.51.

Correlation between areas and volumes Figure 2 shows the correlation between surface areas

and surface enclosed volumes for 127 molecules studied in this work. Apparently, their surface
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Figure 3: Area versus curvatures over 127 molecules in all six groups.R2 values of the best fitting
lines are 0.47, 0.22, 0.32 and 0.73, respectively for mean, Gaussian, minimum and maximum
curvatures.

areas and surface enclosed volumes are highly correlated toeach other. The best fitting line and

R2 found in this numerical experiment are, respectively,y = 1.55x− 66.51 and 0.99. A similar

correlation was reported in the literature.75 Therefore, it is computationally inefficient to simul-

taneously include both area and volume components in a solvation model. However, physically,

it is perfectly fine to have both area and volume in a solvationmodel as surface area represents

the energy induced by the surface tension, whereas surface enclosed volume describes the work
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(Å

)
\
to
ta
l
G
au

ss
ia
n
cu
rv
a
tu
re

(d)

Area - Gaussian curv.

Area - Mean curv.

Area - Min. curv.

Area - Max.

curv.

100 125 150 175 200

Surface Area (Å2)
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Figure 4: Area versus minimum, maximum, mean, and Gaussian curvatures. Blue diamond : area
versus minimum curvature, black square: area versus maximum curvature, green triangle: area
versus mean curvature, pink star: area versus Gaussian curvature. Six groups are labeled as: (a)
SAMPL0 set, (b) alkane set, (c) alkene set, (d) ether set, (e)alcohol set, and (f) phenol set.

required to create a cavity in the solvent for a solute molecule. Mathematically, the correlation

between surface areas and volumes of a group of solute molecules can be due to their similarity in

their sphericity measurements.76 Therefore, the surface areas and volumes of lipid bilayer sheets

will not be correlated with those of micelles or liposomes.

Table 2:R2 values and best fitting lines between area and curvature measurements.

Group area vs min. curv. area vs max. curv. area vs mean curv. area vs Gaussian curv.
fitting line R2 fitting line R2 fitting line R2 fitting line R2

SAMPL0 y= 8.07x−262.51 0.96 y= 6.86x+141.72 0.95 y= 6.08x−5.05 0.95 y= 1.86x+22.05 0.90
Alkane y= 2.75x+210.87 0.95 y= 4.21x+299.83 0.99 y= 2.34x+340.21 0.98 y= 0.76x+80.84 0.93
Alkene y= 3.24x+183.15 0.90 y= 4.49x+288.34 0.99 y= 2.55x+340.27 0.95 y= 0.93x+68.51 0.87
Ether y= 3.83x+70.92 0.91 y= 4.45x+283.94 0.99 y= 2.91x+273.88 0.94 y= 1.09x+38.78 0.91
Alcohol y= 6.89x+87.63 0.99 y= 5.29x+261.34 1.00 y= 4.69x+221.01 0.99 y= 2.32x+34.15 0.99
Phenol y= 8.58x−330.11 0.94 y= 5.56x+161.15 0.98 y= 5.56x+9.16 0.95 y= 2.77x−108.17 0.93

Correlation between areas and curvatures We next investigate the correlations between sur-

face areas and four different types of curvatures for 127 molecules. Our results are depicted in Fig.

19



600 1200 1800 2400

Total mean curvature (Å)
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0

600

1200

1800

T
ot
al

M
in
\M

ax
cu
rv
at
u
re
s
(Å
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Figure 5: Mean curvature versus minimum, maximum, and Gaussian curvatures. Green triangle:
mean curvature versus Gaussian curvature, blue diamond: mean curvature versus minimum cur-
vature, black square: mean curvature versus maximum curvature. Six groups are labeled as: (a)
SAMPL0set, (b) alkane set, (c) alkene set, (d) ether set, (e)alcohol set, and (f) phenol set.

Table 3:R2 values and best fitting lines between mean curvature and another types of curvatures.

Group mean curv. vs min. curv. mean curv. vs max. curv. mean curv. vs Gaussian curv.
fitting line R2 fitting line R2 fitting line R2

SAMPL0 y= 1.42x−34.72 0.99 y= 1.16x+19.71 0.98 y= 0.54x−12.48 0.97
Alkane y= 1.19x−32.63 0.99 y= 1.79x−49.63 0.99 y= 0.34x−4.92 0.96
Alkene y= 1.27x−40.51 0.98 y= 1.70x−42.13 0.98 y= 0.38x−8.32 0.96
Ether y= 1.33x−49.84 0.99 y= 1.52x−19.49 0.97 y= 0.40x−12.01 0.98
Alcohol y= 1.52x−19.20 1.00 y= 1.08x+5.87 1.00 y= 0.89x−13.79 1.00
Phenol y= 1.57x−26.77 1.00 y= 1.03x+17.22 0.98 y= 0.87x−18.57 0.99

3. Obviously, the correlation between surface areas and maximum curvatures is the highest among

curvature counterparts. TheR2 value for the best fitting line is 0.73. However, mean curvatures,

Gaussian curvatures and minimum curvatures do not relate tosurface areas very well. TheirR2

values for the best fitting lines are 0.47, 0.22 and 0.32, respectively, which are unsatisfactory.

These results are expected because maximum curvatures are mostly rendered from the convex

surfaces of the molecular rigidity surface manifold, whereas minimum curvatures correspond to
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the concave surfaces of the molecular rigidity surface manifold. Topologically, in spirit of Morse-

Smale theory, a family of extreme values of minimum curvatures defined at various isosurfaces

gives rise to a natural decomposition of molecular rigiditydensity and leads to “rigidity complex”.

The mean curvature is the average of minimum and maximum curvatures. The Gaussian curvature,

as the product of two principle curvatures, correlates the least to the surface area for 127 molecules

studied. Therefore, compared to volumes, Gaussian and minimum curvatures are complementary

to surface areas and thus, are more useful for solvation modeling in general.

However, a careful examination of Fig. 3 reveals certain linear features. To understand the

origin of the data alignment in Fig. 3, we analyze the correlations between surface areas and cur-

vatures in six test sets. Figure 4 depicts these correlations. Obviously, there are good correlations

in each test set. The best fitting lines andR2 values of the corresponding date are reported in Table

2. These data further indicate that surface area and curvature quantities in each test set are well cor-

related; specifically,R2 values of them are always larger than 0.89. By averaging over six groups,

the maximum curvature has the highest correlation with surface area, following by mean curva-

ture, minimum curvature and Gaussian curvature. Surprisingly, for mean, Gaussian and minimum

curvatures, such well correlations only occur in individual test sets.

Moreover, the slopes of fitting lines in Table 2 indicates that the curvatures and areas in alkane,

alkene and ether sets are well correlated. A possible reasonfor this correlation is that structures of

the molecules in these three groups are quite similar to eachother.

Correlation between different curvatures Additionally, we are interested in finding the corre-

lations between different curvatures. Such a finding enables us to determine how many curvature

terms in an efficient solvation model. Figure 5 depicts the correlation data between mean curvature

and other types of curvatures for each group. As expected, different types of curvature are corre-

lated to each other extremely well for each group. Table 3 provides the best fitting lines andR2

values for such correlations, and we can see thatR2 for any case is always higher than 0.95. Based

on this correlation analysis, it is clear that different curvatures will have the same modeling effect
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in solvation analysis and thus at most one type of curvature term is needed in an efficient solvation

model. The correlations among different curvatures for all127 molecules are illustrated in Fig. S1

in Supporting Information.

3.5 The influence of surface area, volume, curvatures and Lennard-Jones

potential on the accuracy of solvation free energy prediction

Table 4: The solvation free energy prediction for the SAMPL0set with different models. Energy
is in the unit of kcal/mol.

M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 M13 M14 M15 M16 M17
∆GExp 72 -8.84 -2.38 -1.93 1.07 -11.01 -9.76 -4.23 -4.97 -3.28 -5.05 -6.00 -2.93 -6.34 -3.54 -1.43 -4.08 -9.81
∆Gp -5.27 -2.10 -2.17 -1.45 -4.43 -3.82 -1.52 -3.78 -0.99 -1.98 -3.54 -1.37 -3.45 -0.97 -1.14 -3.43 -4.93

H
∆GH -2.79 -1.83 -1.78 -3.17 -2.33 -2.29 -2.01 -2.32 -2.09 -1.43 -2.31 -1.51 -2.07 -2.20 -1.85 -1.85 -1.31
∆G -8.06 -3.93 -3.95 -4.62 -6.76 -6.10 -3.54 -6.10 -3.08 -3.41 -5.85 -2.89 -5.52 -3.18 -2.99 -5.27 -6.24
Error -0.78 1.55 2.02 5.69 -4.25 -3.66 -0.69 1.13 -0.20 -1.64-0.15 -0.04 -0.82 -0.36 1.56 1.19 -3.57
RMSE 2.34

A
∆GA -2.94 -1.94 -1.92 -3.01 -2.61 -2.50 -2.03 -2.22 -2.14 -1.52 -2.45 -1.51 -2.17 -2.31 -1.88 -1.96 -1.30
∆G -8.21 -4.04 -4.09 -4.45 -7.04 -6.32 -3.55 -6.00 -3.13 -3.50 -5.99 -2.88 -5.62 -3.28 -3.02 -5.39 -6.23
Error -0.63 1.66 2.16 5.52 -3.97 -3.44 -0.68 1.03 -0.15 -1.55-0.01 -0.05 -0.72 -0.26 1.59 1.31 -3.58
RMSE 2.27

L
∆GL -3.37 -0.28 -1.79 2.52 -4.29 -4.21 -2.36 -2.49 -2.99 -1.96 -2.89 -1.98 -2.57 -3.13 -0.29 -1.76 -6.03
∆G -8.64 -2.38 -3.96 1.07 -8.72 -8.02 -3.88 -6.27 -3.98 -3.94 -6.43 -3.36 -6.02 -4.10 -1.43 -5.19 -10.96
Error -0.20 0.00 2.03 0.00 -2.29 -1.74 -0.35 1.30 0.70 -1.11 0.43 0.43 -0.32 0.56 0.00 1.11 1.15
RMSE 1.07

A
H

∆GA -40.93 -27.04 -26.78 -41.87 -36.39 -34.89 -28.24 -30.98 -29.79 -21.16 -34.10 -21.03 -30.23 -32.14 -26.13 -27.36 -18.10
∆GH 37.41 24.46 23.83 42.47 31.18 30.61 26.95 31.13 28.01 19.12 30.96 20.27 27.66 29.52 24.79 24.74 17.55
∆G -8.79 -4.68 -5.11 -0.85 -9.64 -8.10 -2.82 -3.64 -2.77 -4.02 -6.68 -2.13 -6.02 -3.58 -2.47 -6.04 -5.48
Error -0.05 2.30 3.18 1.92 -1.37 -1.66 -1.41 -1.33 -0.51 -1.03 0.68 -0.80 -0.32 0.04 1.04 1.96 -4.33
RMSE 1.78

H
L

∆GH 27.06 17.69 17.23 30.71 22.55 22.14 19.49 22.51 20.26 13.83 22.39 14.66 20.01 21.35 17.93 17.89 12.69
∆GL -31.17 -17.97 -17.47 -28.20 -28.74 -27.41 -22.11 -22.81 -23.02 -16.59 -25.41 -15.62 -23.01 -24.09 -18.22 -18.77 -17.87
∆G -9.38 -2.38 -2.40 1.07 -10.61 -9.09 -4.15 -4.07 -3.75 -4.74 -6.55 -2.34 -6.45 -3.71 -1.43 -4.31 -10.11
Error 0.54 0.00 0.47 0.00 -0.40 -0.67 -0.08 -0.90 0.47 -0.31 0.55 -0.59 0.11 0.17 0.00 0.23 0.30
RMSE 0.43

A
H
L

∆GA 25.16 16.62 16.46 25.74 22.37 21.45 17.36 19.05 18.31 13.01 20.96 12.93 18.58 19.75 16.06 16.82 11.13
∆GH 15.70 10.26 10.00 17.82 13.08 12.84 11.31 13.06 11.75 8.02 12.99 8.50 11.61 12.39 10.40 10.38 7.36
∆GL -44.94 -27.17 -26.35 -41.04 -41.61 -39.87 -31.35 -32.88 -33.15 -23.93 -36.59 -22.18 -33.03 -34.67 -26.75 -28.12 -23.60
∆G -9.35 -2.38 -2.06 1.07 -10.58 -9.40 -4.21 -4.55 -4.08 -4.88 -6.17 -2.12 -6.29 -3.50 -1.43 -4.35 -10.04
Error 0.51 0.00 0.13 0.00 -0.43 -0.36 -0.02 -0.42 0.80 -0.17 0.17 -0.81 -0.05 -0.04 0.00 0.27 0.23
RMSE 0.36

A
V
H
L

∆GA 21.86 14.44 14.30 22.36 19.44 18.63 15.08 16.55 15.91 11.30 18.22 11.23 16.15 17.16 13.95 14.61 9.67
∆GV 4.46 2.69 2.67 5.07 3.90 3.73 2.69 3.12 2.95 1.95 3.61 1.87 3.16 3.13 2.54 2.74 1.54
∆GH 17.68 11.56 11.26 20.07 14.73 14.46 12.73 14.71 13.24 9.04 14.63 9.58 13.07 13.95 11.71 11.69 8.29
∆GL -47.99 -28.97 -28.08 -44.98 -44.22 -42.33 -33.20 -35.10 -35.15 -25.47 -39.00 -23.55 -35.24 -36.76 -28.50 -30.11 -24.63
∆G -9.26 -2.38 -2.02 1.07 -10.58 -9.32 -4.21 -4.49 -4.04 -5.16 -6.08 -2.24 -6.31 -3.49 -1.43 -4.50 -10.06
Error 0.42 0.00 0.09 0.00 -0.43 -0.44 -0.02 -0.48 0.76 0.11 0.08 -0.69 -0.03 -0.05 0.00 0.42 0.25
RMSE 0.35

M01: Glycerol triacetate; M02: Benzyl bromide; M03: Benzylchloride; M04: m-bis (trifluoromethyl)
benzene; M05: N,N-dimethyl-p-methoxybenz; M06: N,N-4-trimethylbenzamide; M07: bis-2-chloroethyl

ether; M08: 1,1-diacetoxyethane; M09: 1,1-diethoxyethane; M10: 1,4-dioxane; M11: Diethyl
propanedioate; M12: Dimethoxymethane; M13: Ethylene glycol diacetate; M14: 1,2-diethoxyethane;

M15: Diethyl sulfide; M16: Phenyl formate; and M17: Imidazole.

To examine the impact of area, volume, curvature and Lennard-Jones potential in the solvation

prediction, we firstly explore seven different models including H, A, L , AH , HL , AHL , and
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AVHL to predict the solvation free energy for SAMPL0 test set. Forthe sake of simplicity, we use

short notations to represent 17 molecules in SAMPL0 test set, and their full names are given in

the caption of Table 4. Judging by RMS errors evaluated between the experimental and predicted

solvation free energies, Table 4 reveals that Lennard-Jones potential plays an important role in the

accuracy of the solvation free energy prediction. If we onlyconsider this term in the nonpolar

calculation, i.e., modelL , the RMS error for this case is as low as 1.07 kcal/mol, which is a very

reasonable result in comparison to those reported in the literature, such as 0.60 kcal/mol in,34 and

1.71±0.05 kcal/mol in.72 On the other hand, if the Lennard-Jones potential is absent in nonpolar

calculations, the solvation free energy prediction performs poorly for SAMPL0. To be specific, the

RMS errors for modelsH, A, andAH listed in Table 4 are all over 1.75 kcal/mol. As the previous

analysis in Section 3.4, mean curvature and area are well correlated; therefore, the RMS errors for

modelsH andA are very similar and are, respectively, 2.34 and 2.27. Even the combination of

them in modelAH does not improve the solvation prediction very much, and itsRMS error is found

to be 1.78. Due to correlations, models involving only different types of curvatures and volume

will have the similar results (data not shown). On the other hand, the mixture of Lennard-Jones

potential and other quantities can significantly improve the solvation prediction accuracy. To be

specific, Table 4 shows that the RMS errors for modelsHL , AHL are 0.43 and 0.36, respectively,

which are much smaller than other predictions of SAMPL0 testset in the literature. Because of the

high correlation among volume, curvatures and surface area, the utilization of modelAVHL does

not improve prediction, and its RMS error, 0.35, is slightlybetter than ofAHL .

3.6 The best all around model for predicting the solvation free energy

Finally, we determine which model will have the best solvation free energy prediction in each

group, and then which one will provide an good prediction on average. Table 5 lists all the RMS

errors of 26 models over 6 groups including SAMPL0, alkane, alkene, ether, alcohol and phenol

sets. These results again confirm the important role of Lennard-Jones potential in the accuracy of

solvation energy prediction as other studies have noted.32,75,77,78The RMS errors of modelL for
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Table 5: The RMS errors (in the unit of kcal/mol) for 26 models. The highlighted numbers indicate
the best RMS error in a particular category.

Model\ Group SAMPL0 alkane alkene ether alcohol phenol
A 2.27 0.40 0.35 0.84 0.57 0.59
V 2.34 0.44 0.39 0.85 0.62 0.61
L 1.07 0.29 0.34 0.23 0.28 0.55
k1 2.35 0.41 0.33 0.83 0.54 0.63
k2 2.32 0.40 0.33 0.81 0.52 0.59
G 2.23 0.43 0.32 0.83 0.54 0.64
H 2.34 0.41 0.33 0.81 0.51 0.61
AL 0.45 0.23 0.20 0.23 0.28 0.54
VL 1.06 0.28 0.33 0.19 0.18 0.44
k1L 0.66 0.22 0.19 0.23 0.28 0.48
k2L 0.65 0.23 0.23 0.22 0.28 0.54
GL 0.52 0.23 0.18 0.23 0.28 0.47
HL 0.43 0.23 0.24 0.22 0.28 0.53
AVL 0.45 0.19 0.19 0.17 0.17 0.42
Ak1L 0.36 0.22 0.19 0.22 0.28 0.46
Ak2L 0.45 0.23 0.19 0.12 0.19 0.53
AGL 0.31 0.23 0.19 0.23 0.27 0.43
AHL 0.36 0.22 0.18 0.14 0.18 0.53
Vk1L 0.53 0.21 0.19 0.19 0.17 0.41
Vk2L 0.50 0.19 0.20 0.18 0.17 0.42
VGL 0.46 0.20 0.17 0.18 0.17 0.41
VHL 0.40 0.20 0.22 0.19 0.18 0.41
AVk 1L 0.31 0.19 0.18 0.14 0.17 0.41
AVk 2L 0.45 0.18 0.19 0.12 0.16 0.42
AVGL 0.28 0.19 0.17 0.14 0.17 0.41
AVHL 0.35 0.18 0.18 0.11 0.15 0.41
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Figure 6: Comparison ofAVHL ’s predicted and experiment solvation free energies for sixgroups.
(a) SAMPL0, (b) alkene, (c) alkene, (d) ether, (e) alcohol, (f) phenol. In all charts, red circles for
the predicted data, solid lines for the experiment data.

SAMPL0, alkane, alkene, ether, alcohol, and phenol sets are, respectively, 1.07, 0.29, 0.34, 0.23,

0.28 and 0.55. It is obvious that these predictions are still not the best performance in comparison

to other work such as that in Ref.34 This is easy to apprehend because modelL only consists

of Lennard-Jones potential while that in our previous work34 includes surface area, volume and

Lennard-Jones potential itself. While models lacking of Lennard-Jones potential usually perform

poorly in solvation free energy prediction. Specially, forSAMPL0 the RMS errors of those models

are larger than 2.0. However, for the rest of the test sets, the RMS errors of models without

Lennard-Jones potential are always under 0.85. Especially, in alkene test set, modelG delivers

a better RMS error, 0.32, than that of modelL , 0.34. This is probably because hydrophobic

compounds in alkane and alkene groups contain only carbon and hydrogen and are very uniform.
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Whereas other test sets contain oxygen or nitrogen that has strong vdW interactions75 and thus

prefer the Lennard-Jones potential.

As expected, more quantities appearing in the nonpolar component will produce a better sol-

vation prediction in general. Table 5 indicates that two-term models always outperform related

single-term models. Similar patterns can be found for three-term models and four-term models.

The best results at each level of modeling are highlighted inTable 5. On average, modelAVHL

produces the best RMS errors. Its RMS errors for six groups inthe discussed order are 0.35, 0.18,

0.18, 0.11, 0.15, and 0.41, respectively. To demonstrate the accuracy of modelAVHL , Fig. 6

depicts its predicted and experimental solvation free energies for SAMPL0, alkane, alkene, ether,

alcohol and phenol sets. Since the results of SAMPL0 has beenreported in Table 4, in the support-

ing information we only list the data for alkane, alkene, ether, alcohol and phenol tests in Tables

S1, S2, S3 and S4, respectively.

By a comparison with our earlier work,1,34 the current models yield better solvation predictions

for all test sets. The earlier work1,34 employs modelAVL and invokes sophisticated mathematical

algorithms, such as differential geometry and constrainedoptimization. The present approach

utilizes FRI based rigidity surfaces which are very simple,stable and robust. Additionally, as an

intrinsic property of a protein,55,57,57flexibility plays an important role in the solvation process.

The use FRI based rigidity surfaces enables us to build the flexibility feature in our solvation

analysis. Consequently, many of the present two-term models, such asAL , GL andHL , are able

to deliver better predictions on all test sets. The predictions of the presentAVL model are much

better than those of our earlierAVL model.34

Table 5 reveals that models involving various curvatures are able to deliver some of the best

results at each level of modeling. For example, at the single-term level of modeling, the Gaussian

curvature model,G, gives rise to better prediction for the alkene set. At the two-term level of

modeling, modelsHL , k1L andGL provide the best predictions for SAMPL0, alkane and alkene

sets, respectively. At three-term and four-term levels of modelings, most best predictions are

generated by curvature based models. Since curvatures are calculated analytically in the rigidity
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surface representation,51–53the use of curvatures is very robust and simple in the presentwork, see

Section 2.6. Therefore, the present work establishes curvature as a robust, efficient and powerful

approach for solvation analysis and prediction.

3.7 Five-fold validation

Table 6: Training Errors (TRN. Err.) and Validation Errors (VAL. Err.) for five-fold cross valida-
tion. Errors are in the unit of kcal/mol.

Group 1 Group 2 Group 3 Group 4 Group 5
T. Err. VAL. Err. TRN. Err. VAL. Err. TRN. Err. VAL. Err. TRN. Err. VAL. Err. TRN. Err. VAL. Err.

Alkane 0.19 0.19 0.17 0.24 0.18 0.23 0.18 0.23 0.19 0.15
Alkene 0.15 0.40 0.14 0.34 0.18 0.30 0.17 0.23 0.19 0.10
Ether 0.10 0.21 0.11 0.13 0.10 0.22 0.07 0.26 0.12 0.07

Alcohol 0.15 0.21 0.17 0.07 0.11 0.31 0.14 0.46 0.14 0.27
Phenol 0.39 0.57 0.39 0.67 0.32 0.86 0.44 0.32 0.33 0.97

To further estimate how accurately the models with optimized parameters perform in practice,

we carry out 5-fold cross validation. In this evaluation, each group of molecules is partitioned into

5 sub-groups as uniformly as possible. Of 5 sub-groups, we leave out one sub-group and employ

modelAVHL for the rest four sub-groups of of molecules. The optimized parameters are then

utilized for the left out sub-group. Table 6 lists training errors and validation errors. It is seen that

these two errors are of the same level, indicating the present method performs well.

4 Conclusion

Solvation analysis is a fundamental issue in computationalbiophysics, chemistry and material

science and has attracted much attention in the past two decades. Implicit solvent models that split

the solvation free energy into polar and nonpolar contributions have been a main workhorse in

solvation free energy prediction. While the Poisson-Boltzmann theory is a well established model

for polar solvation energy prediction, there is no general consensus about what constitutes a good

nonpolar component. This paper explores the impact of area,volume, curvature and Lennard-Jones

potential to the accuracy of the solvation free energy prediction in conjugation with a Poisson-

Boltzmann based polar solvation model. To this end, 26 models involving the presence of different
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quantities in the nonpolar component are systematically studies in the current work. Some of

these models that consist of Gaussian curvature, mean curvature, minimum curvature or maximum

curvature are first known to our knowledge.

In order to analytically evaluate molecular curvatures, weutilize rigidity surfaces51–53 as the

molecular surface representation. Since the use of the rigidity surface does not require a surface

evolution as in previous approaches,1,33,34 the algorithm for achieving parameter optimization in

the nonpolar component is much simpler than that in our earlier work.34 To benchmark our models,

we employ the SAMPL0 test set with 17 molecules, alkane set with 35 molecules, alkene set with

19 molecules, ether set with 15 molecules, alcohol set with 23 molecules, and phenol set with 18

molecules.

We first carry out intensive correlation analysis. It is found that surface areas and surface

enclosed volumes are highly correlated for the above mentioned molecules, whereas various cur-

vatures are poorly correlated to surface areas. Therefore,curvatures are complementary to surface

areas and surface enclosed volumes in solvation modeling. Nevertheless, for a given set of sim-

ilar molecules, maximum, minimum, mean and Gaussian curvatures and Gaussian curvatures are

highly correlated to each other and to surface areas.

Based on the correlation analysis, a total 26 nontrivial models are constructed and examined

against 6 test sets of molecules. Numerous numerical experiments indicate that the Lennard-Jones

potential is essential to the accuracy of solvation free energy prediction, especially for molecules

involving strong van der Waals interactions or attractive dispersive effects. However, it is found that

various curvatures are at least as useful as surface area andsurface enclosed volume in nonpolar

solvation modeling. Many curvature based models deliver some of the best solvation free energy

predictions.

Supporting Information Available

Addition results for interested models and additional correlation analysis for various curvatures

(filename: URL will be inserted by publisher).
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