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Abstract

This paper explores the impact of surface area, volumeatun and Lennard-Jones po-
tential on solvation free energy predictions. Rigidityfages are utilized to generate robust
analytical expressions for maximum, minimum, mean and §aanscurvatures of solvent-
solute interfaces, and define a generalized Poisson-BattarfGPB) equation with a smooth
dielectric profile. Extensive correlation analysis is peried to examine the linear dependence
of surface area, surface enclosed volume, maximum cupjaninimum curvature, mean cur-

vature and Gaussian curvature for solvation modeling.fttuad that surface area and surfaces
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enclosed volumes are highly correlated to each others, amdypcorrelated to various curva-
tures for six test sets of molecules. Different curvatunesveeakly correlated to each other
for six test sets of molecules, but are strongly correlatedaich other within each test set of
molecules. Based on correlation analysis, we construattinwgx nontrivial nonpolar solva-
tion models. Our numerical results reveal that the Lendartes (LJ) potential plays a vital
role in nonpolar solvation modeling, especially for molestinvolving strong van der Waals
interactions. It is found that curvatures are at least a®itapt as surface area or surface en-
closed volume in nonpolar solvation modeling. In conjugatwith the GPB model, various
curvature based nonpolar solvation models are shown to sdf@e of the best solvation free
energy predictions for a wide range of test sets. For exampt¢é mean square errors from
a model constituting surface area, volume, mean curvanad_a potential are less than 0.42

kcal/mol for all test sets.
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1 Introduction

All essential biological processes, such as signalingasttaption, cellular differentiation, etc.,
take place in an aqueous environment. Therefore, a presiggjof understanding such biological
processes is to study the solvation process, which invawegle range of solvent-solute inter-
actions, including hydrogen bonding, ion-dipole, inducigole, and dipole-dipole, hydropho-
bic/hydrophobic, dispersive attractions, or van der Wéalses. The most commonly available
experimental measurement of the solvation process is tlhatsm free energy, i.e., the energy
released from the solvation process. As a result, the pgrediof solvation free energy has been a
main theme of solvation modeling and analysis. Numerouspeational models have been pro-
posed for solvation free energy prediction, including noalar mechanics, quantum mechanics,
statistical mechanics, integral equation, explicit sotveodels, and implicit solvent models®
Each approach has its own advantages, merits and limisatiimong these models, expli¢i&nd

quantum methods® are ultimately for investigating the solvation of relativemall molecules;
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however, a great number of degrees of freedom for largersgsteay lead to unmanageable com-
putational cost. Implicit solvent models, on the contrargn lower the number of degrees of
freedom by approximating the solvent by a continuum repriadsi®n and describing the solute in

atomistic detail/=°

In implicit solvent models, the total solvation free energydivided into nonpolar and polar
contributionsi®1! There is a wide range of implicit solvent models availabldéscribe the polar
solvation process; nonetheless, Poisson-Boltzmann/(®8y1%and generalized Born (GB) mod-
elst®>=21are commonly used. GB methods are very fast, but are onlydteunodels for the polar
solvation analysis. PB methods can be derived from fund#ah#reories??:23therefore, can of-
fer somewhat of simple but satisfactorily accurate and sbbaolvation energy estimations when
handling large biomolecules.

To approximate the nonpolar solute-solvent interactiarimplicit solvent models, a common
way is to assume the nonpolar solvation free energy beingleded with the solvent-accessible
surface area (SASAY25based on the scaled-particle theory (SPT) for nonpolatesln aqueous
solutions2%:2” However, recent studies indicate that solvation free gnergy depend on both
SASA and solvent-accessible volume (SAV), especially igddength scale regimeg:2? It was
pointed out that, unfortunately, SASA based solvation nwde not capture the ubiquitous van
der Waals (vdW) interactions near the solvent-solute fater2? Indeed, the use of SASA, SAV
and solvent-solute dispersive interactions to approx@mainpolar energy significantly improves
the accuracy of solvation free energy predictins?

One of the most important tasks in handling the implicit solvmodels is to define the solute-
solvent interface. Many solvation quantities such as serfarea, cavitation volume, curvature
of the surface and electrostatic energies significantlyeddmn the interface definition. The vdW
surface, solvent accessible surf&€and solvent excluded surface (SESave shown their effec-
tiveness in biomolecular modeling. However, these suritmitions admit geometric singulari-
ties®’/38which result in excessive computational instability argbaithmic effort3°-*1As a result,

throughout the past decade, many advanced surface defsiitave been developed. One of them



is the Gaussian surface descripti&n** Another approach is by means of differential geometry.
The first curvature induced biomolecular surface was intced in 2005 using geometric partial
differential equations (PDE$P. The first variational molecular surface based on minimaeser
theory was proposed in 2086:4’ These surface definitions lead to curvature controlled $moo
solvent-solute interfaces that enable one to generate atbrdeelectric profile over solvent and
solute domains. This development leads to differentiahtgtoy based solvation modélé and
multiscale model$8-2°These models have been confirmed to deliver excellent sofvaee en-
ergy predictions3:34 Recently, a family of rigidity surfaces has been proposethénflexibility-
rigidity index (FRI) method, which significantly outperfos the Gaussian network model (GNM)
and anisotropic network model (ANM) in protein B-factor gietion.21=>* Flexibility is an in-
trinsic property of proteins and is known to be important footein drug binding?® allosteric
signaling®® and self-assembl§/ It must play an important role in the solvation process bseai
entropy effects. Therefore, FRI based rigidity surfacdsictv can be regarded as generalizations
of classic Gaussian surfac&s:**may have an advantage in solvation analysis as well.

In molecular biophysics, curvature measures the vartgth non-flatness of a biomolecular
surface and is believed to play an important role in manydgjlal processes, such as membrane
curvature sensing, and protein-membrane and protein D&&antions. These interactions may
be described by the Canham-Helfrich curvature energy fomat>8 Due to its potential contribu-
tion to the cavitation cost, curvature of the solute-solwemface is believed to affect the solvation
free energy?? By using SPT, the surface tension is assumed to have a Gaussisture depen-
dence® The curvature in such cases is locally estimated and is aifumof the solvent radius.
Nevertheless, the quantitative contribution of variousatures to solvation free energy prediction
has not been investigated.

The objective of the present work is to explore the impactufaxe area, volume, curvature,
and Lennard-Jones potential on the solvation free eneggigiion. We are particularly interested
in the role of Hadwiger integrals, namely area, volume, Geuscurvature and mean curvature, to

the molecular solvation analysis. Therefore, we considmrsSian curvature and mean curvature,



as well as minimum and maximum curvatures in the present wieok the sake of accurate and
analytical curvature estimation, we employ rigidity sgda that not admit geometric singularities.
Unlike the geometric flow surface in our previous war the construction of rigidity surfaces
does not require a surface evolution; accordingly, doesieetl parameter constraints to stabilize
the optimization process. In the current models, instealbal curvature considered in other
work,22=%1total curvatures that are the summations of absolute lagahtures are employed to
measure the total variability of solvent-solute interiacé/e show that curvature based nonpolar
solvation models offer some of the best solvation prediagtifor a large amount of molecules.

The rest of this paper is organized as follows. Sedfion 2egmtssthe theory and formulation
of new solvation models. We first briefly introduce the rigydsurface for the surface defini-
tion. A generalized PB equation using a smooth dielectmzfion is formulated. We provide
an advanced algorithm for the evaluation of surface areasarfdce enclosed volume. Analyt-
ical presentation for calculating various curvatures, elgnGaussian curvature, mean curvature,
minimum and maximum principal curvatures are presentedallyi we introduces a parameter
learning algorithm to solvation energy prediction. Setfis devoted to numerical studies. First,
we discuss the dataset used in this work. Over a hundred oleteof both polar and nonpolar
types are employed in our numerical tests. We then discessitidels and their abbreviations to
be used in this study. The numerical setups for nonpolar atar golvation free energy calcu-
lations are described in detail. We explore the correlatioetween area, volume, and different
types of curvatures. Based on the root mean square error ERbt8nputed between experimental
and predicted results, we reveal the impact of each inedesinpolar quantities on solvation free
energy prediction. The final part of Sectioh 3 is devoted ®itivestigation of the most accurate

and reliable solvation model. This paper ends with a commfus



2 Models and algorithms

2.1 Solvation models

The solvation free energdG, is calculated as a sum of pol&GP, and nonpolaiG"?, components
AG = AGP +G™. (@D

Here,AGP is modeled by the Poisson-Boltzmann theory. For the nommalatribution, we con-

sider the following nonpolar solvation free functional
AG™ — yA+ pV + Z)\jcj-l—po/ U VW )
Q
J S

where A andV are, respectively, the surface area and surface enclodache®f the solute
molecule of interest. Additionallyy is the surface tension analis the hydrodynamic pressure
difference. We denot€; andA; respectively curvatures and associated bending coefficiEn
the molecular surface. Thus, the indgxuns from maximum curvature, minimum curvature,
mean curvature to Gaussian curvature. Hayés the solvent bulk density, ardd"@" is the van
der Waals (vdW) interaction approximated by the Lennamkdmotential. The final integral is
computed solely over solvent domdy. One can turn off certain terms in Eq?7%) to arrive at

simplified models.

2.2 Rigidity surface

Flexibility-rigidity index (FRI) has been shown to sign#ictly outperform other methods, such
the Gaussian network model (GNM) and anisotropic networdeh@ANM), in protein flexibility

analysis or B-factor prediction over hundreds of molecdfe€? Given a molecule witiN atoms,

we denote j the position ofjth atom,||r —r | the Euclidean distance between a poianhd atom

rj. In our FRI method, commonly used correlation kernels distieal density estimatops:22:62



include generalized exponential functions

w(r—rjinj) =e (r=nl/m)” k>0, 3
and generalized Lorentz functions
1
m([[r=rilinj) = v >0, (4)

=N
1+< i )

wheren); is a scale parameter. An atomic rigidity functiprir) for an arbitrary point on the

computational domain can be defined as

u(r) =S wi(r)m(llr —rjll:n;). (5)

M=

]

wherew;(r) is a weight function. The atomic rigidity functigm(r) measures the atomic density

at positionr. This intepretation can be easily verified since if we choege) such that

/u(r)dr =1

Then the atomic rigidity functiop(r) becomes a probability density distribution such thét)dr

is the probability of finding all thé&l atoms in an infinitesimal volume elemeatht at a given point
3

r ¢ R3. Form(|r —rj|;;n;) = e (Ir=ril/m)° one can analytically choosg(r) = & (#) * 1o
normalize atomic rigidity functiom(r). |

For simplicity, in this work we just employ the Gaussian ladrn.e., generalized exponential
kernel withk = 2, nj = r‘j’dW (i.e., the vdW radius of atom), andw; =1 forall j=1,2,--- ,N.
Other FRI kernels are found to deliver very similar resul@sir rigidity surfaces can be regarded

as a generalization of Gaussian surfat&®



2.3 Smooth rigidity function-based dielectric function

We denoteQ the total domain, an@ is divided into two regions, i.e., aqueous solvent donfain
and solute molecular domafdy,. Our ultimate goal is to construct a smooth dielectric fiorcin

a similar way to that of differential geometry based solvatnodels as follow’s?:48

E(M) = (1— p)es+ pem, (6)

wheregs and €, are the dielectric constants of the solvent and solute ectiely. However the
total atomic density described i) exceeds 1 in many cases. As a result, we normalize the

atomic rigidity function as

1

maxp(r)

u(r) u(r). (7)
Nonetheless, the dielectric functio?) is still not applicable since the characteristic function
1— u may not capture the commonly defined solvent domain. Thigéstd the fact that the value
of u(r) could be less than 1 inside the biomolecule. As a result, ieelthe molecular domain as
{r e Q|u(r) > B}, wheref is a cut-off value defined in the protocol to attain the behfjitagainst
other PB solvers, such as MIBPE By doing so, the dielectric functior?®) will be modified as

the following

sy =1 THD =P ®
a(n) = T
(1‘3) ) <F.



2.4 Generalized Poisson-Boltzmann (GPB) equation

With smooth dielectric profile being defined ia3), we arrive at the GPB equation in an ion-free

solvent

—0-(e()De(r)) = tpm(r), (9)

whereg is the electrostatic potentighy(r) = ziNm Qid(r —r;) represents the fixed charge density
of the solute. Her&)(r;) is the partial charge at in the solute molecule, andy, is the total
number of partial charges.

LetQ be the computational domain of the GPB equation. Withouswharing the salt molecule
in the solvent, we employ the Dirichlet boundary conditiaa & Debye-Hickel expression for the

GPB equation

o(r)= ;M, Vr € 0Q. (10)

The electrostatic solvation free enerdysP, is calculated by

1 Nm

AGP = éi;Q(ri)((P(ri>—(ﬂ)(ri)>a (11)

where ¢ and @ are, respectively, the electrostatic potential in the gmee of the solvent and
vacuum. In other wordsp is a solution of the GPB equatiod?), and homogeneous solutigp of
the GPB equation is obtained by setting dielectric functigm) = &, in the whole computational

domainQ.



2.5 Surface area and surface-enclosed volume

The surface integral for a density functidroverl” in the domainQ with a uniform mesh can be

evaluated b$>=67

n N n
(f(XO,ijzk)%‘f’ f(Xi,YOJk)%‘f’ f(Xi,YLZO)%) he, (12)

/rf(x,y,z)dSz z

(i,].k)el

where(Xo, Yj, Z) is the intersecting point between the interfacand thex mesh line going through
(i, j,k), andny is thex component of the unit normal vector @b, Yj, z). Similar definitions are
used for they andz directions. We only carry out the calculatio”?] in a small set of irregular
grid points, denoted as Here, the irregular grid points are defined to be the poist®aated
with neighbor point(s) from the other side of the interfacen the second order finite difference
scheme?? In this case| will contain the irregular points near interfaEe Finally, h is the uniform

grid spacing. The volume integral can be simply approxichate

o, fdr= (i PRRICBIEALY (13)
,1,K)ed

whereQn, is the domain enclosed by, andJ is the set of all grid points insid@,. By considering
the density functionf = 1, Eqgs. ??) and (??) can be respectively used for the surface area and

volume calculations.

2.6 Curvature calculation

The evaluation of the curvatures for isosurface embeddednetric dataS(x,y, z), has been re-
ported in the literaturé/:68:8%|n general, there are two approaches for the curvature @t@iu
The first method is to invoke the first and second fundameataid in differential geometry, the
another one is to make use of the Hessian matrix mefA@&ince both of these algorithms yield
the same results as shown in our earlier w&tlonly the first approach is employed in the present

work. To this end, we immediately provide the formulation @aussian curvatur&() and mean
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curvature H) by means of the first and second fundamental f&f63

_ 255,/ S¢Sz + 255 SyS)z + 25 5SSz

K
_ 2SSSaSy + 2§;§xsyz+ 2585452
N LSSy + stjzyszi £S6Sz2
sxswsgsx?-szsx "
and
b 585yt 2555¢+ 2555 (§ * S)Sx— (S+)Sy— (S + sf)szi (15)

2972

whereg = § + & + . With determined Gaussian and mean curvatures, the minjrynand

maximum,K», can be evaluated by
kK1 =min{H —/H2-K,H+VH2-K}, ky=max{H—-+vH2-K,H++H2-K}. (16)

We apply the formulations(?), (??) and (??) for curvature calculations of rigidity surfaces. Again,
we only consider generalized exponential kernel wite 2 andw; = 1 for all j = 1,2,-,Nin this

paper. As a result, the atomic rigidity functiper ), defined in ?) and (?), become

2

Ir=ril\ 2 X))y P +Hz-7)

) g
prj=5Se\ "/ =%e ] . (17)
=1 =

Note that derivatives oft can be analytically attained. Therefore, by replacswyith u in
various curvature formulas, we obtain analytical expassior different curvatures of FRI based
rigidity surfaces. As a result, the calculation of variousvatures is very simple and robust for

rigidity surfaces.
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2.7 Optimization algorithm

In this section, we present an algorithm, inspired by therlgm 2 in our earlier workk? to
optimize the parameters appearing in the nonpolar compoherhis work, we utilize the 12-6

Lennard-Jones potential to model the van der Waals inieraldt"dw regarding an atom of type

a+0s\? [ 0i+0s\°
= _Z(IIr—rill)]’ (19

whereg; is the well-depth parametes; andos are, respectively, the radii of the atom of tyipend

UMW) =

solvent. Here is the location of an arbitrary point in the solvent domaimj g is the location of
the atom of type. Since the integral of the Lennard-Jones potential terral@s in the solvent
bulk densitypg, the fitting parameter for the van der Waals interaction efdtom of type will be

& = po&i. Assume that we have a training group contaimmgolecules, the process of calculating

solvation free energy will give us the following quantities the jth (j =1,2,---,n) molecule

Nm Nm
AGP,A;,V;,C1i,Coi,Csi,Cai, 51/ UYWiydr | Lo [ SN [ uY®Wr)dr | b,
jr N Va1, 2] 3 A i; ' Ja. | i;  Ja. N j

(19)

where N, and N; are the number of atoms and the number of atom types in eadyidual
molecule, respectively ar@; denotes théth curvature for thgth molecule. Hereﬁ" is defined as
follows
1, if atomi belongs to typé,
& = (20)
0, otherwise,
wherek=1,2,--- ,N; andi =1,2,--- ,Ny,. We denote the parameter set for the current training

group asP = {y,p,A1,---,As,€1,€2,--- ,En }- The solvation free energy for molecujewill be
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then predicted by
p < dw
AG; :AGj—l-ij-i-p\/j—i-lz)\iCij-l-Sl (i;q /QSUi/ (r)dr>j

+ A+ En (_N_iqM /QSU,‘\,’tdW(r)dr> E (21)

]

It is noted that the fitting parameter of corresponding Maing term will set to O in the solva-
tion free energy calculatior??). We denote a vector of predicted solvation energies for the
given molecular group aAG(P) = (AG1,AGy,--- ,AG,) which depends on the parameter set
P. In addition, we denote a vector of the corresponding erpemial solvation free energy as
AGE® = (AGZ*® AGS™®, - - ,AGK™®). We then optimize the parameter Sety solving the follow-

ing minimization problem
min (|AG(P) —AG™?||2), (22)

where|| x || denotes thd., norm of the quantity. Optimization problem??) is a standard one
which can be solved by many available tools. In this work, weey CVX softwar€? to deal
with it.

Unlike our previous work* we only need to generate the fixed molecular surface and solve
the GPB equation?) one time. We will then utilize the optimization proce&8) with obtained

guantities to achieve the optimized parameteiPset

3 Results and discussions

3.1 Data sets

To study the impact of area, volume, curvature and Lennangsl potential on the solvation free
energy prediction, we employ a large number of solute mddscwith accurate experimental

solvation values. These molecules are of both polar and alanpypes and are divided into
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six groups: the SAMPLO test s@twith 17 molecules, alkane set with 35 molecules, alkene
set with 19 molecules, ether set with 15 molecules, alcobblnéth 23 molecules, and phenol
set with 18 molecules sefS. The charges of the SAMPLO set are taken from the OpenEye-
AM1-BCC v1 parameteré? while their atomic coordinates and radii are based on the-BAP
parametrizatiod? The structural conformations for the other groups are agbfsom FreeSol?

with their parameter and coordinate information being doaded from Mobley’s homepage

http://mobleylab.org/resources.html.

3.2 Model abbreviation

Table 1: Model terminologies

Symbols Meaning

A G"P contains a area term

Vv G"P contains a volume term

L G"P contains a Lennard-Jones potential term
ki G"P contains a minimum curvature term

ko G"P contains a maximum curvature term

H G"P contains a mean curvature term

K G"P contains a Gaussian curvature term

It is noted that if we only consider area, volume and van dealgdateraction in nonpolar com-
ponent computations, we would arrive at the formulatioeady discussed in the literatuté?
However, the nonpolar component in this work includes aoldaktl curvature terms. To investigate
the impact of area, volume, Lennard-Jones potential aneatune on the solvation free energy
prediction, we benchmark different models consisting afotes terms in nonpolar free energy
functionals. To this end, we use the symbols listed in Taktelabel a model if it includes the cor-
responding terms in the nonpolar solvation free functiorar example, modée\ only considers
the surface area term, whereas mo&lL incorporates are&\(), volume {/) and Lennard-Jones

potential L) terms in nonpolar energy calculations.
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3.3 Polar and nonpolar calculations

In this work, we employ rigidity surfacel-®?discussed in Sectidn 2.2, as the surface representation
of a solvent-solute interface. For simplicity, we impler#iie Gaussian kernel for all tests, while

other FRI kernels deliver similar results.

Polar part By following the paradigm for constructing a smooth dietectunction in differen-
tial geometry based solvation modél8 we propose a smooth rigidity-based dielectric function
as in Eq. ??). The generalized Poisson-Boltzmann (GPB) equation thestin Eq. ?) is used.
For the current framework, we consider the solvent enviremrwithout salt and there is only one
solvent component, water. The polar solvation energy is ttedculated as the difference of the
GPB energies in water and in a vacuum, and the detail of thigsentation is offered in Section
[2.4. Similar results are obtained if we create a sharp aterfand then employ a standard PB
solver to compute the polar solvation energy.

In all calculations, the rigidity surface is constructedé@on the cut-off value beirf$y= 0.09,
and the dielectric constants for solute and solvent regasasset to 1 and 80, respectively. In
addition, the grid spacing is set to20A. The computational domain is the bounding box of the
molecular surface with an extra buffer length of 3 A. The demin RMS errors are less than 0.02
kcal/mol when the buffer length is extended to 6 A. Since flaéedtric profile in the GPB equation
is smooth throughout the computational domain, one catyeasike use of the standard second
order finite difference scheme to numerically solve the GBBation. Then, a standard Krylov

subspace method based sol&is employed to handle the resulting algebraic equatioresyst

Nonpolar part To estimate the surface area and surface enclosed voluraerifgidity surface,
we utilize a stand-alone algorithm based on the marchingsubethod, and the detail of this
procedure is referred to Sectibn2.5. Thanks to the use afigidity surface, the curvature of a
solvent-solute interface can be analytically determimstidad of using numerical approximations

as in our earlier differential geometry mod®ITo prevent the curvature from canceling each other
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Figure 1: The relations between the solvent radii and the RM&s for modeRVHL . Red circle:
SAMPLO set; blue diamond: alkane set; black square: alketygggeen triangle: ether set ; pink
cross: alcohol set; cyan asterisk: phenol set.

at different grid points, we construct total curvaturesrdi as

Ci=Y lej(rlh?, (23)

riel

wherer; is the position of theth grid point,| is a set of irregular grid points in the region of the
solvent-solute bounda?y=' andh is the mesh size of the uniform computational domain. Here
cj(ri) is the jth type of curvature at position, and indexj runs through minimum, maximum,
mean and Gaussian curvatures. Since the full standard I&h6ard-Jones potential improves
accuracy of the solvation free energy predictioif, it is utilized to model the vdW interaction
UV9Win the current work.

Similar to our previous work? an optimization process as discussed in Seétion 2.7 iseappli
to determine the optimal parameters for the nonpolar freeggyncalculations. Unfortunately, the
involvement of the solvent radius in the Lennard-Jonesmii@tieterm features a high nonlinear-
ity. Consequently, it cannot be incorporated into the patamoptimization. Instead, we resort
to a brute force approach to determine the most favorablesbradius for six molecular sets

including SAMPLDO, alkane, alkene, ether, alcohol, and phgroups. The value afis that mostly

16



produces the smallest RMS error between predicted andiexpatial solvation free energies will
be employed in all numerical calculations. By consideringdel AVHL , we depict the relations
between RMS errors and the solvent radii varying fram A to 3.5 A with the increment of &

A'in Fig. . This figure reveals that the use@mf= 1 A will give us the smallest RMS errors in
all test sets except alkane and alkene sets. Therefore,ilize sblvent radius 1 A for the current

work.

3.4 Correlations between area, volume and curvatures

Understanding the correlation or non-correlation betwfferent modeling components is impor-
tant for analyzing solvation models. A strong correlatietieen any pair of components indicates
their strong linear dependence and redundancy in optiaizaased solvation modeling. While a

weak correlation implies their complementary roles in atirojzation based solvation modeling.

500

400t

80 160 240 320
Surface Area (A?)

Figure 2: Area versus volume over 127 molecules in all siugso RZ = 0.99, and fitting line:
y=1.55x—66.51.

Correlation between areas and volumes Figure[2 shows the correlation between surface areas

and surface enclosed volumes for 127 molecules studiedsmtbrk. Apparently, their surface
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Figure 3: Area versus curvatures over 127 molecules imaljisiups.R? values of the best fitting
lines are 0.47, 0.22, 0.32 and 0.73, respectively for meaus&an, minimum and maximum
curvatures.

areas and surface enclosed volumes are highly correlategcto other. The best fitting line and
R? found in this numerical experiment are, respectivgly; 1.55x— 66.51 and 099. A similar
correlation was reported in the literatufeTherefore, it is computationally inefficient to simul-
taneously include both area and volume components in atsmivaodel. However, physically,

it is perfectly fine to have both area and volume in a solvatimdel as surface area represents

the energy induced by the surface tension, whereas sunfextesed volume describes the work
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Figure 4: Area versus minimum, maximum, mean, and Gaussiaatires. Blue diamond : area
versus minimum curvature, black square: area versus maxiowvature, green triangle: area
versus mean curvature, pink star. area versus Gaussiaatgreyv Six groups are labeled as: (a)
SAMPLO set, (b) alkane set, (c) alkene set, (d) ether segl¢ehol set, and (f) phenol set.

required to create a cavity in the solvent for a solute mdeciMathematically, the correlation
between surface areas and volumes of a group of solute niesezan be due to their similarity in
their sphericity measurement® Therefore, the surface areas and volumes of lipid bilayeetsh
will not be correlated with those of micelles or liposomes.

Table 2:R? values and best fitting lines between area and curvatureurezasnts.

Group area vs min. curv. area vs max. curv. area vs mean curv. rea va Gaussian curv.
fitting line R? fitting line R? fitting line R? fitting line R?
SAMPLO y=807x—26251 0.96 y=6.86x+14172 0.95 y=6.08x—5.05 0.95 y=186x+2205 0.90
Alkane  y=275x+21087 0.95 y=4.21x+29983 0.99 y=234x+34021 098 y=076x+8084 0.93
Alkene  y=3.24x+18315 0.90 y=4.4%+28834 0.99 y=255x+34027 095 y=093%+6851 0.87
Ether y=3.83%+7092 091 y=445+28394 0.99 y=291x+27388 0.94 y=109%+3878 0.91
Alcohol y=6.89x+87.63 0.99 y=52%+26134 1.00 y=4.69%+22101 099 y=23%+3415 0.99
Phenol y=858x—33011 0.94 y=556x+16115 0.98 y=5.56x+9.16 095 y=277x—-10817 0.93

Correlation between areas and curvatures We next investigate the correlations between sur-

face areas and four different types of curvatures for 127mdés. Our results are depicted in Fig.
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Figure 5: Mean curvature versus minimum, maximum, and Gangsirvatures. Green triangle:
mean curvature versus Gaussian curvature, blue diamonan mevature versus minimum cur-
vature, black square: mean curvature versus maximum cuevaSix groups are labeled as: (a)
SAMPLOset, (b) alkane set, (c) alkene set, (d) ether sesl¢ehol set, and (f) phenol set.

Table 3:R? values and best fitting lines between mean curvature anth@ntypes of curvatures.

Group mean curv. vs min. curv. mean curv. vs max. curv. mean va Gaussian curv.
fitting line R? fitting line R? fitting line R?
SAMPLO y=142x—3472 0.99 y=116x+1971 0.98 y=054x—1248 0.97
Alkane y=119%-3263 099 y=17%—-4963 0.99 y=0.34x—492 0.96
Alkene y=127x—4051 098 y=170x—4213 0.98 y=0.38%-8.32 0.96
Ether y=133%—-4984 099 y=152%-1949 0.97 y=0.40x—1201 0.98
Alcohol y=152x—-1920 1.00 y=108+587 1.00 y=0.89%—-1379 1.00
Phenol y=157x—-2677 1.00 y=103+1722 0.98 y=0.87x—1857 0.99

[3. Obviously, the correlation between surface areas andhmoax curvatures is the highest among
curvature counterparts. TH& value for the best fitting line is 0.73. However, mean curmegy
Gaussian curvatures and minimum curvatures do not relatarface areas very well. TheR?
values for the best fitting lines are 0.47, 0.22 and 0.32 e&sgely, which are unsatisfactory.
These results are expected because maximum curvature®stly rendered from the convex

surfaces of the molecular rigidity surface manifold, whreninimum curvatures correspond to
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the concave surfaces of the molecular rigidity surface folthiTopologically, in spirit of Morse-
Smale theory, a family of extreme values of minimum curveswilefined at various isosurfaces
gives rise to a natural decomposition of molecular rigidignsity and leads to “rigidity complex”.
The mean curvature is the average of minimum and maximunatunes. The Gaussian curvature,
as the product of two principle curvatures, correlatesehstito the surface area for 127 molecules
studied. Therefore, compared to volumes, Gaussian ananuimicurvatures are complementary
to surface areas and thus, are more useful for solvation ingde general.

However, a careful examination of Fig] 3 reveals certaiedinfeatures. To understand the
origin of the data alignment in Fig] 3, we analyze the cotretes between surface areas and cur-
vatures in six test sets. Figure 4 depicts these corremtiobviously, there are good correlations
in each test set. The best fitting lines @fdvalues of the corresponding date are reported in Table
[2. These data further indicate that surface area and cuevgtiantities in each test set are well cor-
related; specificallyR? values of them are always larger thaB®. By averaging over six groups,
the maximum curvature has the highest correlation withaserfarea, following by mean curva-
ture, minimum curvature and Gaussian curvature. Surgligifor mean, Gaussian and minimum
curvatures, such well correlations only occur in indivibiest sets.

Moreover, the slopes of fitting lines in Talple 2 indicateg tha curvatures and areas in alkane,
alkene and ether sets are well correlated. A possible rdastinis correlation is that structures of

the molecules in these three groups are quite similar to eter.

Correlation between different curvatures Additionally, we are interested in finding the corre-
lations between different curvatures. Such a finding ersaléeto determine how many curvature
terms in an efficient solvation model. Figlie 5 depicts theatation data between mean curvature
and other types of curvatures for each group. As expectéfdreht types of curvature are corre-
lated to each other extremely well for each group. Table 3ides the best fitting lines arfé@®
values for such correlations, and we can see®dbr any case is always higher thar®b. Based

on this correlation analysis, it is clear that differentvatures will have the same modeling effect
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in solvation analysis and thus at most one type of curvatima ts needed in an efficient solvation
model. The correlations among different curvatures fot 2l molecules are illustrated in Fig. S1

in Supporting Information.

3.5 The influence of surface area, volume, curvatures and Lerard-Jones

potential on the accuracy of solvation free energy predicon

Table 4: The solvation free energy prediction for the SAMRBEDwith different models. Energy
is in the unit of kcal/mol.

mM01 M02 MO3 MO4 MO5 MO6 MO7 MO8 M09 M10 M1l M12 M13 M4 M15 M16 M17
AGP®2 884 -2.38 -1.93 1.07 -11.010 -9.76 -423 -497 -3.28 -5.0%.06 -293 -6.34 -3.54 -143 -408 -9.81

AGP -5.27 -210 -217 -145 -443 -382 -152 -378 -099 -198.54 -137 -345 -097 -114 -3.43 -493
AGH -279 -183 -178 -817 -233 -229 -201 -232 -209 -1433% -151 -207 -220 -1.8 -185 -1.31
H AG -806 -393 -395 -462 -676 -6.10 -354 -6.10 -3.08 -3.41585 -2.89 -552 -3.18 -299 -527 -6.24
Error -0.78 1.55 2.02 569 -425 -3.66 -0.69 1.13 -020 -164.15 -0.04 -082 -0.36 1.56 119 -3.57
RMSE 2.34
AGR -294 -194 -192 -301 -261 -250 -203 -222 -214 -15245 -151 -217 -231 -188 -196 -1.30
A AG -8.21 -4.04 -409 -445 -704 -632 -355 -6.00 -3.13 -350699 -2.88 -562 -3.28 -3.02 -539 -6.23
Error -0.63 1.66 2.16 552 -397 -3.44 -0.68 1.03 -015 -15%.01 -0.05 -0.72 -0.26 1.59 131 -3.58
RMSE 2.27
AGH -3.37 -0.28 -1.79 252 -429 -421 -236 -249 -299 -196.892 -1.98 -257 -3.13 -0.29 -1.76 -6.03
L AG -8.64 -2.38 -3.96 107 -872 -802 -388 -6.27 -398 -3.94.436 -3.36 -6.02 -410 -143 -519 -10.96
Error -0.20  0.00 203 000 -229 -174 -0.35 130 070 -1.11.430 043 -032 056 0.00 1.11 1.15
RMSE 1.07
A AGR -40.93 -27.04 -26.78 -41.87 -36.39 -34.89 -28.24 -30.98 .729-21.16 -34.10 -21.03 -30.23 -32.14 -26.13 -27.36 -18.10
H AGH 37.41 2446 2383 4247 3118 30.61 26.95 31.13 28.01 19.12963 20.27 27.66 29.52 24.79 2474 1755
AG -8.79 -468 -511 -085 -9.64 -810 -282 -3.64 -277 -40%.68 -2.13 -6.02 -358 -247 -6.04 -548
Error -0.05 2.30 3.18 192 -137 -166 -141 -133 -051 31.0068 -0.80 -032 0.04 1.04 1.96 -4.33
RMSE 1.78
H AGH 27.06 17.69 17.23 30.71 2255 2214 1949 2251 20.26 13.83392 1466 20.01 21.35 17.93 17.89 12.69
L AGH -31.17 -17.97 -17.47 -28.20 -28.74 -27.41 -22.11 -22.81.023-16.59 -25.41 -15.62 -23.01 -24.09 -18.22 -18.77 -17.87
AG -9.38 -2.38 -2.40 1.07 -1061 -9.09 -4.15 -4.07 -3.75 -474655 -234 -645 -3.71 -143 -431 -10.11
Error 0.54 0.00 0.47 0.00 -040 -0.67 -0.08 -090 047 -031.550 -0.59 0.11 0.17 0.00 0.23 0.30
RMSE 0.43
A AGH 25.16 16.62 16.46 2574 2237 2145 1736 19.05 1831 13.00962 1293 1858 19.75 16.06 16.82 11.13
H acGH 1570 10.26 10.00 17.82 13.08 12.84 11.31 13.06 11.75 8.029912 850 11.61 1239 1040 10.38 7.36
L AGH -44.94 -27.17 -26.35 -41.04 -41.61 -39.87 -31.35 -32.88.183-23.93 -36.59 -22.18 -33.03 -34.67 -26.75 -28.12 -23.60
AG -9.35 -2.38 -2.06 1.07 -10.58 -9.40 -421 -455 -408 -48%.17 -212 -6.29 -350 -1.43 -435 -10.04
Error 0.51 0.00 0.13 000 -043 -036 -0.02 -042 080 -0.17.170 -0.81 -0.05 -0.04 0.00 0.27 0.23
RMSE 0.36
A AGA 2186 14.44 1430 2236 19.44 1863 15.08 16.55 1591 11.38221 11.23 16.15 17.16 13.95 14.61 9.67
vV AGY 4.46 2.69 2.67 5.07 3.90 3.73 269 312 2.95 1.95 3.61 187 6 3.13.13 254 274 154
H acGH 17.68 1156 11.26 20.07 1473 1446 1273 1471 13.24 9.046314 9.58 13.07 13.95 11.71 11.69 8.29
L AGt -47.99 -28.97 -28.08 -44.98 -44.22 -42.33 -33.20 -35.10.185-25.47 -39.00 -23.55 -35.24 -36.76 -28.50 -30.11 -24.63
AG -9.26 -2.38 -2.02 1.07 -1058 -9.32 -421 -449 -404 -516.08 -224 -631 -349 -143 -450 -10.06
Error 0.42 0.00 0.09 000 -043 -044 -002 -048 076 0.11 080.-0.69 -0.03 -0.05 0.00 042 0.25
RMSE 0.35

MO1: Glycerol triacetate; M02: Benzyl bromide; M03: Bengylloride; M04: m-bis (trifluoromethyl)
benzene; M05: N,N-dimethyl-p-methoxybenz; M06: N,N-#nthylbenzamide; M0O7: bis-2-chloroethyl
ether; M08: 1,1-diacetoxyethane; M09: 1,1-diethoxyetha10: 1,4-dioxane; M11: Diethyl
propanedioate; M12: Dimethoxymethane; M13: Ethylene glgiacetate; M14: 1,2-diethoxyethane;
M15: Diethyl sulfide; M16: Phenyl formate; and M17: Imidazol

To examine the impact of area, volume, curvature and Lendainés potential in the solvation

prediction, we firstly explore seven different models imithg H, A, L, AH, HL, AHL, and
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AVHL to predict the solvation free energy for SAMPLO test set.tRersake of simplicity, we use
short notations to represent 17 molecules in SAMPLO testaset their full names are given in
the caption of Tablgl4. Judging by RMS errors evaluated betvtiee experimental and predicted
solvation free energies, Talile 4 reveals that LennardsJpo&ntial plays an important role in the
accuracy of the solvation free energy prediction. If we orysider this term in the nonpolar
calculation, i.e., moddl, the RMS error for this case is as low a®1 kcal/mol, which is a very
reasonable result in comparison to those reported in thetitre, such as®0 kcal/mol in24 and
1.71+ 0.05 kcal/mol in/2 On the other hand, if the Lennard-Jones potential is abserdrpolar
calculations, the solvation free energy prediction penopoorly for SAMPLO. To be specific, the
RMS errors for modelsl, A, andAH listed in Tablé # are all over.15 kcal/mol. As the previous
analysis in Section 3.4, mean curvature and area are wedllated; therefore, the RMS errors for
modelsH andA are very similar and are, respectively32 and 227. Even the combination of
them in modeAH does not improve the solvation prediction very much, anBMS error is found
to be 178. Due to correlations, models involving only differenpé&g of curvatures and volume
will have the similar results (data not shown). On the othard) the mixture of Lennard-Jones
potential and other quantities can significantly improve $blvation prediction accuracy. To be
specific, Tablé}4 shows that the RMS errors for modtls AHL are 043 and 036, respectively,
which are much smaller than other predictions of SAMPLOgesin the literature. Because of the
high correlation among volume, curvatures and surface #neautilization of modeRVHL does

not improve prediction, and its RMS error, 0.35, is slightistter than oAHL .

3.6 The best all around model for predicting the solvation fee energy

Finally, we determine which model will have the best solwatfree energy prediction in each
group, and then which one will provide an good prediction eerage. Tablel5 lists all the RMS
errors of 26 models over 6 groups including SAMPLO, alkatieree, ether, alcohol and phenol
sets. These results again confirm the important role of Lielkdanes potential in the accuracy of

solvation energy prediction as other studies have nété&./.’8The RMS errors of modal for

23



Table 5: The RMS errors (in the unit of kcal/mol) for 26 moddlke highlighted numbers indicate
the best RMS error in a particular category.

Model\ Group SAMPLO alkane alkene ether alcohol phenol

A 2.27 0.40 035 084 057 0.59
Vv 2.34 0.44 039 085 0.62 0.61
L 1.07 0.29 034 0.23 0.28 0.55
k1 2.35 0.41 033 083 054 0.63
ko 2.32 0.40 033 081 0.52 0.59
G 2.23 043 032 083 054 0.64
H 2.34 0.41 033 081 051 0.61
AL 0.45 0.23 020 0.23 0.28 0.54
VL 1.06 0.28 033 0.19 0.18 0.44
kil 0.66 022 019 0.23 0.28 0.48
koL 0.65 0.23 0.23 0.22 0.28 0.54
GL 0.52 0.23 0.18 0.23 0.28 0.47
HL 0.43 0.23 024 0.22 0.28 0.53
AVL 0.45 0.19 0.19 0.17 0.17 0.42
Ak1L 0.36 0.22 0.19 0.22 0.28 0.46
Ak,L 0.45 0.23 0.19 0.12 0.19 0.53
AGL 0.31 0.23 019 0.23 0.27 0.43
AHL 0.36 0.22 0.18 0.14 0.18 0.53
VkiL 0.53 0.21 0.19 0.19 0.17 0.41
VKoL 0.50 0.19 0.20 0.18 0.17 0.42
VGL 0.46 0.20 0.17 0.18 0.17 0.41
VHL 0.40 0.20 022 019 018 041
AVk L 0.31 0.19 0.18 0.14 0.17 041
AVk oL 0.45 0.18 0.19 0.12 0.16 0.42
AVGL 0.28 019 0.7 014 017 041
AVHL 0.35 0.18 0.18 0.11 0.15 0.41
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Figure 6: Comparison AAVHL ’s predicted and experiment solvation free energies fogsixips.
(&) SAMPLO, (b) alkene, (c) alkene, (d) ether, (e) alcolpkenol. In all charts, red circles for

the predicted data, solid lines for the experiment data.

SAMPLO, alkane, alkene, ether, alcohol, and phenol setgespectively, 07, 029, 034, 023,

0.28 and 055. It is obvious that these predictions are still not the pesformance in comparison

to other work such as that in R&$. This is easy to apprehend because madeinly consists

of Lennard-Jones potential while that in our previous wW8rkcludes surface area, volume and
Lennard-Jones potential itself. While models lacking ohh&rd-Jones potential usually perform
poorly in solvation free energy prediction. Specially, BAMPLO the RMS errors of those models
are larger than .B. However, for the rest of the test sets, the RMS errors ofetsodithout
Lennard-Jones potential are always und&50 Especially, in alkene test set, mo@ldelivers

a better RMS error, 0.32, than that of modgl 0.34. This is probably because hydrophobic

compounds in alkane and alkene groups contain only carbodmgrogen and are very uniform.
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Whereas other test sets contain oxygen or nitrogen thatthasgsvdW interaction® and thus
prefer the Lennard-Jones potential.

As expected, more quantities appearing in the nonpolar coemt will produce a better sol-
vation prediction in general. Tablé 5 indicates that twwortenodels always outperform related
single-term models. Similar patterns can be found for theee models and four-term models.
The best results at each level of modeling are highlightethile[5. On average, modaVHL
produces the best RMS errors. Its RMS errors for six groupiserdiscussed order are 0.35, 0.18,
0.18, 0.11, 0.15, and 0.41, respectively. To demonstraeaticuracy of modeAVHL , Fig. [6
depicts its predicted and experimental solvation freegasifor SAMPLO, alkane, alkene, ether,
alcohol and phenol sets. Since the results of SAMPLO has tepemted in Tablgl4, in the support-
ing information we only list the data for alkane, alkene egttalcohol and phenol tests in Tables
S1, S2, S3 and S4, respectively.

By a comparison with our earlier work®*the current models yield better solvation predictions
for all test sets. The earlier woH24 employs modeRAVL and invokes sophisticated mathematical
algorithms, such as differential geometry and constraimgtiimization. The present approach
utilizes FRI based rigidity surfaces which are very simglaple and robust. Additionally, as an
intrinsic property of a proteif®2’-2’flexibility plays an important role in the solvation process
The use FRI based rigidity surfaces enables us to build tixéifiey feature in our solvation
analysis. Consequently, many of the present two-term nspdaeth a#\L , GL andHL, are able
to deliver better predictions on all test sets. The preaindiof the preserd/L model are much
better than those of our earli&vL model3?

Table[5 reveals that models involving various curvaturesadnle to deliver some of the best
results at each level of modeling. For example, at the sitegla level of modeling, the Gaussian
curvature model(s, gives rise to better prediction for the alkene set. At the-tarm level of
modeling, model$iL, k;L andGL provide the best predictions for SAMPLO, alkane and alkene
sets, respectively. At three-term and four-term levels ofdalings, most best predictions are

generated by curvature based models. Since curvatureslatgated analytically in the rigidity
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surface representatici;>3the use of curvatures is very robust and simple in the preseri, see

Sectior 2.6. Therefore, the present work establishes turevas a robust, efficient and powerful

approach for solvation analysis and prediction.

3.7 Five-fold validation

Table 6: Training Errors (TRN. Err.) and Validation ErrokAL. Err.) for five-fold cross valida-
tion. Errors are in the unit of kcal/mol.

Group 1 Group 2 Group 3 Group 4 Group 5
T. Err.  VAL. Err. TRN. Err.  VAL. Err. TRN. Err.  VAL. Err. TRN. Er. VAL. Err. TRN. Err.  VAL. Err.
Alkane  0.19 0.19 0.17 0.24 0.18 0.23 0.18 0.23 0.19 0.15
Alkene  0.15 0.40 0.14 0.34 0.18 0.30 0.17 0.23 0.19 0.10
Ether 0.10 0.21 0.11 0.13 0.10 0.22 0.07 0.26 0.12 0.07
Alcohol 0.15 0.21 0.17 0.07 0.11 0.31 0.14 0.46 0.14 0.27
Phenol  0.39 0.57 0.39 0.67 0.32 0.86 0.44 0.32 0.33 0.97

To further estimate how accurately the models with optimhigarameters perform in practice,
we carry out 5-fold cross validation. In this evaluatiorglegroup of molecules is partitioned into
5 sub-groups as uniformly as possible. Of 5 sub-groups, axeleut one sub-group and employ
model AVHL for the rest four sub-groups of of molecules. The optimizathmeters are then
utilized for the left out sub-group. Tall¢ 6 lists trainimgags and validation errors. It is seen that

these two errors are of the same level, indicating the ptesethod performs well.

4 Conclusion

Solvation analysis is a fundamental issue in computatibi@hysics, chemistry and material
science and has attracted much attention in the past twaldgchmplicit solvent models that split
the solvation free energy into polar and nonpolar contridng have been a main workhorse in
solvation free energy prediction. While the Poisson-Buklinn theory is a well established model
for polar solvation energy prediction, there is no geneoalsensus about what constitutes a good
nonpolar component. This paper explores the impact of aodame, curvature and Lennard-Jones
potential to the accuracy of the solvation free energy otea in conjugation with a Poisson-

Boltzmann based polar solvation model. To this end, 26 nsadeblving the presence of different
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guantities in the nonpolar component are systematicallgiss in the current work. Some of
these models that consist of Gaussian curvature, meantgrgyeninimum curvature or maximum
curvature are first known to our knowledge.

In order to analytically evaluate molecular curvatures,utize rigidity surfaces!=3as the
molecular surface representation. Since the use of thaityggurface does not require a surface
evolution as in previous approachk®3:2*the algorithm for achieving parameter optimization in
the nonpolar component is much simpler than that in ourevaslork 24 To benchmark our models,
we employ the SAMPLO test set with 17 molecules, alkane st 36 molecules, alkene set with
19 molecules, ether set with 15 molecules, alcohol set vtimdlecules, and phenol set with 18
molecules.

We first carry out intensive correlation analysis. It is fduat surface areas and surface
enclosed volumes are highly correlated for the above meationolecules, whereas various cur-
vatures are poorly correlated to surface areas. Thereforeatures are complementary to surface
areas and surface enclosed volumes in solvation modeliegertheless, for a given set of sim-
ilar molecules, maximum, minimum, mean and Gaussian curgatand Gaussian curvatures are
highly correlated to each other and to surface areas.

Based on the correlation analysis, a total 26 nontrivial eidre constructed and examined
against 6 test sets of molecules. Numerous numerical erpats indicate that the Lennard-Jones
potential is essential to the accuracy of solvation freegggnprediction, especially for molecules
involving strong van der Waals interactions or attractigpdrsive effects. However, it is found that
various curvatures are at least as useful as surface aresudiade enclosed volume in nonpolar
solvation modeling. Many curvature based models delivaresof the best solvation free energy
predictions.

Supporting Information Available

Addition results for interested models and additional elation analysis for various curvatures

(filename: URL will be inserted by publisher).

28



Acknowledgement

This work was supported in part by NSF Grant 1IS- 1302285 ari8l\MCenter for Mathematical

Molecular Biosciences Initiative.

References

(1) Chen, Z.; Baker, N. A.; Wei, G. W. Differential geometrgded solvation models I: Eulerian
formulation.J. Comput. Phy201Q 229, 8231-8258.

(2) Chen, Z.; Baker, N. A.; Wei, G. W. Differential geometrgded solvation models II: La-
grangian formulation]. Math. Biol.2011, 63, 1139- 1200.

(3) Chen, Z.; Wei, G. W. Differential geometry based solwatnodels I1l: Quantum formulation.
J. Chem. Phy2011, 135 194108.

(4) Ponder, J. W.; Case, D. A. Force fields for protein simoites. Advances in Protein Chemistry

2003 66, 27-85.

(5) Husowitz, B.; Talanquer, V. Solvent density inhomoggeg and solvation free energies in
supercritical diatomic fluids: A density functional appcbarl he Journal of Chemical Physics

2007, 126, 054508.

(6) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Perspextm Foundations of Solvation Mod-
eling: The Electrostatic Contribution to the Free Energgolvation.J.Chem.Theory Comput

2008 4, 877-877.

(7) Davis, M. E.; McCammon, J. A. Electrostatics in biomailee structure and dynamics.

Chemical Review$99Q 94, 509-21.
(8) Roux, B.; Simonson, T. Implicit solvent modeBiophysical Chemistrg999 78, 1-20.

(9) Sharp, K. A.; Honig, B. Electrostatic Interactions in &emolecules - Theory and Applica-

tions.Annual Review of Biophysics and Biophysical Chemis®9Q 19, 301-332.

29



(10) Koehl, P. Electrostatics calculations: latest methogical advancesCurrent Opinion in

Structural Biology2006 16, 142-51.

(11) David, L.; Luo, R.; Gilson, M. K. Comparison of generald Born and Poisson models:
Energetics and dynamics of HIV proteaseurnal of Computational Chemist300Q 21,

295-3009.

(12) Baker, N. A. Improving implicit solvent simulationsPaisson-centric viewCurrent Opinion

in Structural Biology2005 15, 137—43.

(13) Fogolari, F.; Brigo, A.; Molinari, H. The Poisson-Bofhann equation for biomolecular elec-

trostatics: a tool for structural biologyournal of Molecular RecognitioB002 15, 377-92.

(14) Zhou, Y. C.; Feig, M.; Wei, G. W. Highly accurate biomaldar electrostatics in continuum

dielectric environmentslournal of Computational ChemistB008 29, 87-97.

(15) Bashford, D.; Case, D. A. Generalized Born models ofngraclecular solvation effects.

Annual Review of Physical Chemis#§0Q 51, 129-152.

(16) Dominy, B. N.; Brooks, C. L., lll Development of a genlezad Born model parameterization

for proteins and nucleic aciddournal of Physical Chemistry B999 103 3765-3773.

(17) Gallicchio, E.; Zhang, L. Y.; Levy, R. M. The SGB/NP hwtion free energy model based on
the surface generalized Born solvent reaction field andImavgpolar hydration free energy

estimatorsJournal of Computational ChemistB002 23, 517-29.

(18) Grant, J. A.; Pickup, B. T.; Sykes, M. T.; Kitchen, C. Aicholls, A. The Gaussian Gen-
eralized Born model: application to small moleculebysical Chemistry Chemical Physics

2007, 9, 4913-22.

(19) Onufriev, A.; Case, D. A.; Bashford, D. Effective Boradri in the generalized Born ap-
proximation: the importance of being perfeddurnal of Computational Chemistgp02 23,

1297-304.

30



(20) Tjong, H.; Zhou, H. X. GBr6NL: A generalized Born methfod accurately reproducing
solvation energy of the nonlinear Poisson-Boltzmann egnalournal of Chemical Physics

2007, 126, 195102.

(21) Tsui, V.; Case, D. A. Calculations of the Absolute Freeigies of Binding between RNA and
Metal lons Using Molecular Dynamics Simulations and Cowntiim Electrostaticslournal of

Physical Chemistry R001, 105, 11314-11325.

(22) Beglov, D.; Roux, B. Solvation of complex molecules ipdar liquid: an integral equation

theory.Journal of Chemical Physics996 104, 8678—-8689.

(23) Netz, R. R.; Orland, H. Beyond Poisson-Boltzmann: lation effects and correlation func-

tions.European Physical Journal E00Q 1, 203-14.

(24) Swanson, J. M. J.; Henchman, R. H.; McCammon, J. A. RengsFree Energy Calcula-
tions: A Theoretical Connection to MM/PBSA and Direct Cadttion of the Association
Free EnergyBiophysical Journak004 86, 67—74.

(25) Massova, I.; Kollman, P. A. Combined molecular mecbainand continuum solvent ap-
proach (MM-PBSA/GBSA) to predict ligand bindingerspectives in drug discovery and
design200Q 18, 113-135.

(26) Stillinger, F. H. Structure in Aqueous Solutions of Ipofar Solutes from the Standpoint of
Scaled-Particle Theory. Solution Chenml973 2, 141 — 158.

(27) Pierotti, R. A. A scaled patrticle theory of aqueous andageous solution€hemical Re-

views1976 76, 717-726.

(28) Lum, K.; Chandler, D.; Weeks, J. D. Hydrophobicity atdiand large length scale3ournal
of Physical Chemistry B999 103 4570-7.

(29) Huang, D. M.; Chandler, D. Temperature and length stapendence of hydrophobic effects

31



and their possible implications for protein foldingroceedings of the National Academy of

Science200Q 97, 8324-8327.

(30) Gallicchio, E.; Levy, R. M. AGBNP: An analytic implic#tolvent model suitable for molecu-
lar dynamics simulations and high-resolution modelidmyurnal of Computational Chemistry

2004 25, 479-499.

(31) Choudhury, N.; Pettitt, B. M. On the mechanism of hydraipic association of nanoscopic
solutesJournal of the American Chemical Soci@@05 127, 3556—3567.

(32) Wagoner, J. A.; Baker, N. A. Assessing implicit modelsrionpolar mean solvation forces:
the importance of dispersion and volume terfsoceedings of the National Academy of

Sciences of the United States of Amef2€86 103 8331-6.

(33) Chen, Z.; Zhao, S.; Chun, J.; Thomas, D. G.; Baker, NBAtgs, P. B.; Wei, G. W. Variational

approach for nonpolar solvation analysleurnal of Chemical Physic&012 137.

(34) Wang, B.; Wei, G. W. Parameter optimization in diffedtahgeometry based solvation mod-
els.Journal Chemical Physic2015 143 1341109.

(35) Lee, B.; Richards, F. M. The interpretation of protdiustures: estimation of static accessi-

bility. J Mol Biol 1971, 55, 379-400.

(36) Richards, F. M. Areas, Volumes, Packing, and Protaunc8ire Annual Review of Biophysics
and Bioengineerind977 6, 151-176.

(37) Connolly, M. L. Analytical molecular surface calcudtat. Journal of Applied Crystallogra-

phy1983 16, 548-558.

(38) Sanner, M. F.; Olson, A. J.; Spehner, J. C. Reducedcirfan efficient way to compute

molecular surface®iopolymersl 996 38, 305—-320.

(39) Yu, S. N.; Geng, W. H.; Wei, G. W. Treatment of geometigslarities in implicit solvent
models.Journal of Chemical Physic007, 126, 244108.

32



(40) Yu, S. N.; Wei, G. W. Three-dimensional matched integfand boundary (MIB) method for
treating geometric singularitie3. Comput. Phy2007, 227, 602—632.

(41) Zhou, Y. C.; Zhao, S.; Feig, M.; Wei, G. W. High order nted interface and boundary
method for elliptic equations with discontinuous coeffiteeand singular sourceks.Comput.

Phys.2006 213 1-30.

(42) Grant, J.; Pickup, B. A Gaussian description of molacshapeJournal of Physical Chem-

istry 1995 99, 3503-3510.

(43) Chen, M.; Lu, B. TMSmesh: A Robust Method for Molecularrface Mesh Generation
Using a Trace Techniqué.Chem. Theory and Comp@011, 7, 203-212.

(44) Li, L.; Li, C.; Alexov, E. On the Modeling of Polar Compent of Solvation Energy us-
ing Smooth Gaussian-Based Dielectric Functigournal of Theoretical and Computational

Chemistry2014 13, 10.1142/S0219633614400021.

(45) Wei, G. W.; Sun, Y. H.; Zhou, Y. C.; Feig, M. Molecular nitdsolution surfaces.
arXiv:math-ph/0511001v2005 1 — 11.

(46) Bates, P. W.; Wei, G. W.; Zhao, S. The minimal moleculaface.arXiv:q-bio/0610038v1
2006 [g-bio.BM].

(47) Bates, P. W.; Wei, G. W.; Zhao, S. Minimal molecular auds and their application®urnal
of Computational Chemist008 29, 380-91.

(48) Wei, G. W. Differential geometry based multiscale misdBulletin of Mathematical Biology
201Q 72, 1562 — 1622.

(49) Wei, G.-W.; Zheng, Q.; Chen, Z.; Xia, K. Variational rtistale models for charge transport.
SIAM Review2012 54, 699 — 754.

(50) Wei, G.-W. Multiscale, multiphysics and multidomairodels I Basic theoryJournal of

Theoretical and Computational Chemis2913 12, 1341006.

33



(51) Xia, K. L.; Opron, K.; Wei, G. W. Multiscale multiphyss@and multidomain models — Flex-
ibility and Rigidity. Journal of Chemical Physicz013 139 1941009.

(52) Opron, K.; Xia, K. L.; Wei, G. W. Fast and anisotropic flaity-rigidity index for protein
flexibility and fluctuation analysislournal of Chemical Physic2014 140 234105.

(53) Opron, K.; Xia, K. L.; Wei, G. W. Communication: Captogi protein multiscale thermal
fluctuations.Journal of Chemical Physic015 142

(54) Xia, K. L.; Opron, K.; Wei, G. W. Multiscale Gaussian werk model (mMGNM) and multi-

scale anisotropic network model (mMANMournal of Chemical Physic2015

(55) Alvarez-Garcia, D.; Barril, X. Relationship betweeanin Flexibility and Binding: Lessons
for Structure-Based Drug Desigdournal of Chemical Theory and Computatia@l14 10,
2608-2614.

(56) Bu, Z.; Callaway, D. J. Proteins MOVE! Protein dynaméesl long-range allostery in cell
signaling.Advances in Protein Chemistry and Structural Biol@§1 1, 83, 163—-221.

(57) Marsh, J. A.; Teichmann, S. A. Protein Flexibility Héates Quaternary Structure Assembly
and EvolutionPLoS Biol2014 12, e1001870.

(58) Helfrich, W. Elastic Properties of Lipid Bilayers: Tdry and Possible Experiments.
Zeitschrift fir Naturforschung Teil @973 28, 693 — 703.

(59) Dzubiella, J.; Swanson, J. M. J.; McCammon, J. A. Cagplydrophobicity, Dispersion,

and Electrostatics in Continuum Solvent Modé&thysical Review Lettei2006 96, 087802.

(60) Sharp, K. A.; Nicholls, A.; Friedman, R.; Honig, B. Extting hydrophobic free energies
from experimental data: relationship to protein foldingl @neoretical model€Biochemistry

1991 30, 9686-9697.

34



(61) Jackson, R. M.; Sternberg, M. J. Application of scaladiple theory to model the hydropho-
bic effect: Implications for molecular association andtpno stability.Protein engineering

1994 7, 371-383.

(62) Wei, G. W. Wavelets generated by using discrete simgrdavolution kernelsJournal of

Physics A: Mathematical and Genei200Q 33, 8577 — 8596.

(63) Grant, J. A.; Pickup, B. T.; Nicholls, A. A smooth pertwnitty function for Poisson-

Boltzmann solvation methoddournal of Computational Chemist®001, 22, 608—640.

(64) Chen, D.; Chen, Z.; Chen, C.; Geng, W. H.; Wei, G. W. MIBPBsoftware package for
electrostatic analysis. Comput. Chen011, 32, 657 — 670.

(65) Geng, W.; Wei, G. W. Multiscale molecular dynamics ggime matched interface and bound-
ary methodJ Comput. Phys2011, 230 435-457.

(66) Zheng, Q.; Yang, S. Y.; Wei, G. W. Molecular surface gatien using PDE transform.

International Journal for Numerical Methods in Biomedi€&algineering2012 28, 291-316.

(67) Tian, W. F.; Zhao, S. A fast ADI algorithm for geometriovil equations in biomolecular
surface generationkiternational Journal for Numerical Methods in Biomedi&aigineering

2014 30, 490-516.

(68) Soldea, O.; Elber, G.; Rivlin, E. Global segmentatiod aurvature analysis of volumetric

data sets using trivariate B-spline functiolSEE Trans. on PAMR00gG 28, 265 — 278.

(69) Xia, K. L.; Feng, X.; Tong, Y. Y.; Wei, G. W. Multiscale geetric modeling of macro-
molecules I: Cartesian representatidournal of Computational Physica014 275 912—

936.

(70) Kindlmann, G.; Whitaker, R.; Tasdizen, T.; Méller, Tu@ature-based transfer functions for

direct volume rendering: methods and applicatidtrec. IEEE Visualizatior2003

35



(71) Grant, M.; Boyd, S. CVX: Matlab Software for Disciplid€onvex Programming, version

2.1.)http://cvxr.com/cvx, 2014,

(72) Nicholls, A.; Maobley, D. L.; Guthrie, J. P.; Chodera,lJ., Bayly, C. I.; Cooper, M. D.;
Pande, V. S. Predicting Small-Molecule Solvation Free giest An Informal Blind Test for

Computational Chemistry. Med. Chem2008 51, 769—-799.

(73) Mobley, D. L.; Guthrie, J. P. FreeSolv: a database otexrpental and calculated hydration
free energies, with input fileSournal of Computer-Aided Molecular Desig014 28, 711—
720.

(74) Jakalian, A.; Bush, B. L.; Jack, D. B.; Bayly, C. |. Fasffjcient generation of high-quality
atomic charges. AM1-BCC model: I. Methodburnal of Computational Chemist00Q
21, 132-146.

(75) Mobley, D. L.; Bayly, C. I.; Cooper, M. D.; Shirts, M. Roijll, K. A. Small Molecule Hydra-
tion Free Energies in Explicit Solvent: An Extensive TesFofed-Charge Atomistic Simu-

lations.Journal of Chemical Theory and Computati®®09 5, 350-358.

(76) Xia, K. L.; Feng, X.; Tong, Y. Y.; Wei, G. W. Persistent HMology for the quantitative pre-
diction of fullerene stabilityJournal of Computational Chemsit3015 36, 408—422.

(77) Ashbaugh, H. S.; Kaler, E. W.; Paulaitis, M. E. A “unisal’ surface area correlation for
molecular hydrophobic phenomenkurnal of the American Chemical Societ999 121,
9243-9244.

(78) Gallicchio, E.; Kubo, M. M.; Levy, R. M. Enthalpy-Enfpg and Cavity Decomposition of
Alkane Hydration Free Energies: Numerical Results and icaibns for Theories of Hy-

drophobic SolvationJournal of Physical Chemistry B00Q 104, 6271-6285.

36


http://cvxr.com/cvx

Maximum curvature Minimum curvature Mean curvature Gaussian curvature




	1 Introduction
	2  Models and algorithms
	2.1 Solvation models
	2.2 Rigidity surface
	2.3 Smooth rigidity function-based dielectric function
	2.4 Generalized Poisson-Boltzmann (GPB) equation
	2.5 Surface area and surface-enclosed volume
	2.6 Curvature calculation
	2.7 Optimization algorithm

	3 Results and discussions
	3.1 Data sets
	3.2 Model abbreviation
	3.3 Polar and nonpolar calculations
	3.4 Correlations between area, volume and curvatures
	3.5 The influence of surface area, volume, curvatures and Lennard-Jones potential on the accuracy of solvation free energy prediction
	3.6 The best all around model for predicting the solvation free energy
	3.7 Five-fold validation

	4 Conclusion

