
Improving Scoring-Docking-Screening Powers of Protein-Ligand 
Scoring Functions using Random Forest

Cheng Wang1 and Yingkai Zhang1,2,*

1Department of Chemistry, New York University, New York, New York 10003

2NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China

Abstract

The development of new protein-ligand scoring functions using machine learning algorithms, such 

as random forest, has been of significant interest. By efficiently utilizing expanded feature sets and 

a large set of experimental data, random forest based scoring functions (RFbScore) can achieve 

better correlations to experimental protein-ligand binding data with known crystal structures; 

however, more extensive tests indicate that such enhancement in scoring power comes with 

significant under-performance in docking and screening power tests compared to traditional 

scoring functions. In this work, in order to improve scoring-docking-screening powers of protein-

ligand docking functions simultaneously, we have introduced a ΔvinaRF parameterization and 

feature selection framework based on random forest. Our developed scoring function ΔvinaRF20, 

which employs twenty descriptors in addition to the AutoDock Vina score, can achieve superior 

performance in all power tests of both CASF-2013 and CASF-2007 benchmarks compared to 

classical scoring functions. The ΔvinaRF20 scoring function and its code are freely available on the 

web at: https://www.nyu.edu/projects/yzhang/DeltaVina.

Graphical Abstract

A new machine-learning protein-ligand scoring function ΔvinaRF20 has been developed to achieve 

better performance for a variety of protein-ligand docking tasks compared to classical scoring 

functions.
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1. Introduction

Protein ligand docking is a computational approach that attempts to predict the binding 

mode between a protein receptor and a small molecule ligand as well as their binding 

affinity. It plays an increasingly important role in structure-based drug design as well as in 

functional studies of proteins. The most critical component of docking is the scoring 

function, which is needed to determine binding site and binding mode of a ligand on a 

protein,[1] to screen virtual small-molecule libraries to identify potential leads for further 

inhibitor development,[2–8] and to explicitly estimate the binding affinity between a protein 

and a ligand given their complex structure. Correspondingly, in order to assess performance 

of scoring functions for these different important tasks, several key metrics have been 

developed and adopted, including: (i) a docking power test, which evaluates the ability of the 

scoring function to identify the native binding site and binding mode among a set of 

computer generated decoys; (ii) a screening power test to evaluate the ability of the scoring 

function to identify a true binder for a given target from a pool of random molecules; and 

(iii) a scoring power test, which assesses the linear correlation between predicted and 

experimental binding affinities.[9–13] Extensive retrospective and comparative 

studies[10,11,14–18] indicate that some widely used scoring functions, such as 

GlideScore[19–21], can perform relatively well in docking and screening power tests, but 

most perform less satisfactorily in the scoring power test. Thus, the accuracy of scoring 

functions remains a central limitation of protein-ligand docking.

In the last few years, machine learning approaches have proven useful for many technologies 

in modern society, such as computer vision and natural language processing.[22–25] In the 

field of biomolecular modeling, there has been significant interest to develop new protein-

ligand scoring functions using state-of-the-art machine learning methods,[26–40] such as the 

random forest (RF) algorithm. By efficiently utilizing expanded feature sets and a large set 

of experimental data, random forest based scoring functions (RFbScore)[26–32] have 

achieved significantly better correlations with experimental protein-ligand binding data for 

known crystal structures; however, more extensive testing indicates that this enhancement in 
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scoring power comes with significant under-performance in docking and screening power 

tests compared to traditional scoring functions.[41,42]

Random forest is an ensemble learning method based on the aggregation of numerous 

decision trees.[43,44] In RFbScore, every regression tree is a non-parametric predictive model 

to relate structural features to binding affinities, the predicted values of which are bounded 

by the learning set. Thus random forest can do interpolation but not extrapolation.[45] 

Without a predetermined function form, random forest has the ability to learn complicated 

interactions directly from a large set of experimental data based on numerous input features. 

Up to now, almost all published RFbScores that predict binding affinity have used 

experimental protein-ligand binding data with known crystal structures as the training set 

alone. Thus, in retrospect, it is not surprising that RFbScores can achieve success in scoring 

power tests, which mostly rely on interpolation—i.e. to estimate binding affinities given 

experimentally determined structures.[29] On the other hand, numerous tasks in docking and 

screening tests depend on extrapolation—i.e. to estimate binding affinities for 

computationally generated structures which should have weaker binding affinities. Thus, it is 

understandable that RFbScores would falter when applied to such decoy structures, leading 

to significant underperformance of RFbScores in docking and screening power tests.[41,42]

From the above discussion, we can see that the inferior performance of RFbScores in 

docking tests may reflect two problems: 1. Random forest is restricted to do interpolation; 2. 

Use of experimental protein-ligand binding data with known crystal structures as the training 

set alone limits the applicability of RFbScores. In this work, in order to improve scoring-

docking-screening powers of scoring functions simultaneously, we employ a two-pronged 

strategy:

• One is to expand the training set. Besides enlarging the experimental data 

set to include crystal structures with weak binding affinities, we have 

added a similar amount of computationally generated structures (decoy 

data) into the training set. The idea of including decoy data in the training 

set has been previously employed in the development of several other 

scoring functions.[34,37]

• The other is to employ a ΔvinaRF approach, in which random forest is 

employed to parameterize corrections to the AutoDock Vina scoring 

function. This is partly inspired by the recent development of the Δ-

machine learning approach to predict enthalpies of organic molecules.[46] 

AutoDock Vina is one of most widely used open-source docking 

programs, which has been successfully employed in numerous docking 

and screening tasks.[47] Our ΔvinaRF parameterization framework aims to 

combine the excellent docking power of the Vina docking function with 

the strength of random forest for improving scoring accuracy.

Furthermore, by employing random forest for feature selection and introducing a 

pharmacophore-based solvent-accessible surface area (SASA) feature set, our developed 

ΔvinaRF20, which employs twenty descriptors in addition to the AutoDock Vina score, can 

achieve superior performance compared to traditional scoring functions in all tests of both 
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CASF-2013 and CASF-2007 benchmarks, including scoring, ranking, docking and 

screening power tests. It should be noted that our new scoring function ΔvinaRF20 has not 

been incorporated into AutoDock Vina for ligand sampling, and currently it can only be used 

for post-scoring.

2. Methods

2.1 Training Set of Protein-ligand Complexes

The training set of protein-ligand complexes for this work consists of two subsets: one is an 

experimental subset, which includes 3336 crystal complex structures with experimentally 

measured binding affinities; the other is a decoy subset, which includes 3322 computer 

generated decoy structures with computationally estimated binding affinities (Table S1). 

These are obtained, respectively, from the PDBbind database,[12,48–50] which is a collection 

of protein-ligand complex PDBs with experimental binding affinities, and the CSAR decoy 

set, which is a collection of computer generated binding poses as well as native poses for 

structures in the CSAR-NRC HiQ benchmark release.[51,52] Any structure in the 

CASF-2007 or CASF-2013 benchmark sets,[12,13] which will be used for the test set, is 

excluded from the training set.

The experimental subset consists of data from three sources: the PDBbind refined set 

(v2014), native poses in the CSAR decoy data set, and weak-binding protein-ligand crystal 

structures (pKd between 0.4 to 3) in PDBbind v2014 general set. Any entry in the 

CASF-2007 or CASF-2013 benchmark set is excluded.

The decoy subset contains decoy data for 302 protein-ligand complexes in the CSAR decoy 

set, excluding 41 complexes that are also in the CASF-2007 or CASF-2013 benchmark set. 

For each native pose, 11 decoys are selected from up to 500 decoys in the original CSAR 

decoy set based on the rank of AutoDock Vina score at 0%, 10%, 20%, …, 90%, 100%, 

respectively. Thus the decoy subset has a similar number of data entries as in the 

experimental subset.

The binding affinity for each complex in the training set is denoted as pKd(train). For each 

entry in the experimental subset, pKd(train) is the experimental binding affinity pKd(exp). 

The binding affinity for each entry in the decoy subset should not be larger than the 

experimental binding affinity for the corresponding native pose. For each decoy, first we 

calculate pKd(Vina) based on the AutoDock Vina score: if the calculated pKd(Vina) of a 

decoy structure is less than pKd(exp) of the corresponding native pose, we assign pKd(Vina) 

as pKd(train) for this decoy structure; otherwise pKd(train) of the decoy structure is assumed 

to be at the upper limit, which is the pKd(exp) of the corresponding native pose.

2.2 The ΔvinaRF Parameterization Approach

Our main idea is to employ random forest to parameterize corrections to the AutoDock Vina 

scoring function, and thus to take advantage of both the excellent docking power of the Vina 

docking function and the strength of random forest in improving scoring accuracy. The Vina 

scoring function consists of six components: two Gaussian steric terms, one repulsion term, 

one hydrogen bonding (HB) term, and one torsion count factor, and has been parameterized 
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to improve both binding pose and affinity prediction.[47] The original score calculated by the 

AutoDock Vina program is in the unit of kcal/mol, and can be converted into pKd unit with 

the following formula: pKd(Vina) = −0.73349 E(Vina). Thus, our overall ΔvinaRF scoring 

function can be cast into the following form:

where ΔpKd(RF) is the correction term trained by the random forest (RF) algorithm using 

ΔpKd(train), i.e., pKd(train) − pKd(Vina).

Given a learning set L= {(X(1), y(1)), …, (X(N), y(N))}, which contains N pairs of input 

feature vectors X= (x1, x2, …, xp) and output values y, each regression tree in a random 

forest model can be grown as follows: (1). Sample the learning set. Prior to growing a 

decision tree k, a bootstrap learning subset Lk* is drawn at random from L with replacement, 

and the left-out data (L − Lk*) constitutes the (OOB) out-of-bag subset OOBk; (2). Grow a 

single decision tree Tk. Based on the bootstrap learning subset Lk*, Tk is constructed by 

recursively splitting each terminal node of the tree into two child nodes until the minimum 

node size is reached. For each splitting, it picks the best feature from a pool of mtry features. 

The mtry features are randomly selected from all p features. (3). The prediction error of the 

Tk is estimated using the out-of-bag subset OOBk. After repeating steps 1–3 to grow M 

regression trees, the collection of all regression trees (Tk, k = 1, …, M) is considered as a 

predictive RF model. To make a prediction with a new input feature vector X(new), its 

predicted value is the average of predictions from all trees: [44]

In our development of ΔvinaRF20 parameterization, the learning set L is derived from our 

training set that has been described above: N is 6658; the output value y is ΔpKd(train), i.e., 

pKd(train) − pKd(Vina); the input feature vector has p = 20 features, which are calculated 

based on the corresponding protein-ligand structure in the training set. The randomForest 

package in R is used to build random forest models.[53] The final ΔvinaRF20 model is built 

by using M = 500 regression trees with mtry = 4, selected based on the OOB performance of 

the learning set.

The twenty features in ΔvinaRF20 are listed in Table 1. There are 10 terms from the 

AutoDock Vina source code and 10 terms related to buried solvent-accessible surface area 

(bSASA). In the AutoDock Vina source code[47], there are a total of 58 terms implemented 

as listed in Table S2, among which 6 terms have been selected for the AutoDock Vina 

scoring function, including: two Gaussian steric terms, one repulsion term, one hydrogen 

bonding (HB) term, and one torsion count factor. These 58 Vina-implemented terms have 

been explored in the development of smina and user-specified custom scoring functions with 

linear regression.[54] During our development of ΔvinaRF20, we first ranked 58 Vina-

implemented terms based on the permutation variable importance indices %IncMSE, which 
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is OOB mean square error (MSE) increase as a result of feature i being permuted (values are 

randomly shuffled). For a given feature i, it is calculated by

where MSEOOB is the OOB MSE and MSEi
OOB is the OOB MSE when feature i is 

permuted. More important features have higher %IncMSE values. Then we have employed a 

backward feature selection approach, in which the least important features are removed one 

by one to build random forest models, to choose the least number of features with a 

comparable top performance. The selected 10 Vina-implemented terms in Table 1 include 5 

polar interaction terms and 5 ligand-dependent terms.

The bSASA terms are calculated using atomic SASA changes between the unbound and 

bound structures: for an atom i, bSASAi = SASAi, unbound − SASAi, complex, where atomic 

SASAs are calculated by the MSMS program using a probe radius of 1.0 Å.[55] As shown in 

Table S3, nine pharmacophore types are defined for the atoms in the protein and ligand 

based on SYBYL atom types and neighboring atoms as in DOCK.[56] The SYBYL atom 

types[57] are converted by Pybel from the structures with hydrogen atoms added.[58] Thus in 

Table 1, there are 9 pharmacophore-based bSASA terms and 1 total bSASA term.

2.3 Testing Set and Evaluation Methods

Both CASF-2013 and CASF-2007 benchmark sets[12,13] are used as testing sets so that the 

results can be directly compared with other docking functions. Both datasets consist of 195 

protein-ligand complexes selected from a refined dataset in their respective year’s PDBbind 

database.[12,48] Scoring, ranking and docking powers have been evaluated for 16 scoring 

functions (in Table S4) for the CASF-2007 benchmark set[12], while scoring, ranking, 

docking and screening power tests have been carried out for 20 scoring functions (in Table 

S5) for the CASF-2013 benchmark set.[13] In our current work, all power tests for AutoDock 

Vina and ΔvinaRF20 are carried out in the same way as those described in comparative 

assessment articles for CASF-2007 and CASF-2013,[13] which are summarized below.

Scoring Power—The scoring power test evaluates the linear correlation between predicted 

binding affinity and experimental binding affinity. It is evaluated by the Pearson’s 

correlation coefficient (R) between predicted binding affinity and experimental binding 

affinity and the standard deviation (SD) in regression:

where xi is the predicted binding affinity for ith complex; yi is the experimental binding 

affinity for ith complex; a and b are the intercept and the slope of linear regression between 

experimental binding affinity and predicted binding affinity.
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Ranking Power—The ranking power test assesses the ability of a scoring function to 

correctly rank the known ligands of the same target protein based on their predicted binding 

affinity given the poses from the crystal structures. For each benchmark, there are 65 target 

proteins and 3 known ligands for each protein. Two levels of success, namely high-level and 

low-level, are evaluated in CASF-2013. For the high-level, the three ligands for target 

protein should be ranked by predicted score as the best > the median > the poorest, while the 

low-level only needs to pick the best one out of three. The success rate is calculated by the 

number of the correctly ranked targets among all 65 targets. In CASF-2007, only the high-

level success rate is evaluated.[12]

Docking Power—The docking power test evaluates the ability of a scoring function to 

identify native binding poses among computer generated decoys. In CASF-2007, 100 decoy 

binding poses are selected from the poses generated by LigandFit,[60] GOLD,[61,62] 

Surflex[63,64] and FlexX[65] for each ligand. Success is defined as one pose from the top one, 

the top two, or the top three poses ranked by predicted scores is within 2 Å RMSD from the 

native pose. The RMSDs of decoys relative to the native are provided in CASF-2007 

benchmark and used directly. In CASF-2013, up to 100 decoy binding poses are selected 

from the poses generated by GOLD, Surflex and MOE. The property-matched RMSDs 

(RMSDPM) of decoys, are calculated by considering the symmetry of the molecule in 

CASF-2013, however, RMSDPM is not provided in CASF-2013. The symmetry-corrected 

RMSDs used here are calculated by Pybel.[58] The native poses are included in the decoy set 

for success rate calculation.

Screening Power—The screening power test assesses the ability of a scoring function to 

identify a true binder from a pool of random molecules for a given target. The test set for 

screening in CASF-2013 is designed by cross docking 195 ligands on 65 target proteins. For 

each protein, there are at least 3 true binders, as defined in Ref. 13. The remaining 192 

ligands are searched through the ChEMBL database for possible cross-binders and 12 target 

proteins have more than 3 true binders in the dataset from the search. There are 12,675 (65 × 

195) protein-ligand pairs from docking 195 ligands to 65 target proteins and up to 50 poses 

are selected for each protein-ligand pair. For a given target protein, 195 ligands are ranked 

based on the best-scored pose for a given protein-ligand pair. Screening power is measured 

by two metrics-enhancement factors and success rates—both based on the counts of the total 

number of true binders among the 1%, 5% and 10% top-ranked molecules. Enhancement 

factors are computed for each target by

NTB1%, NTB5% and NTB10% are the number of true binders among the 1%, 5% and 10% 

top-ranked molecules. NTBtotal is the total number of true binders for a given target protein. 

The average EFs over 65 targets are calculated for each scoring function. Success rates are 

calculated as the number of targets that have true binders in 1%, 5% and 10% of the top-

ranked molecules among the total 65 targets.

Wang and Zhang Page 7

J Comput Chem. Author manuscript; available in PMC 2018 January 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. Results

Based on a learning set which consists of 3336 experimental crystal structures and 3322 

computer generated decoy structures, we have developed a new scoring function ΔvinaRF20 

by employing random forest to parameterize a correction term to the original AutoDock 

Vina score.[47] The overall scoring function ΔvinaRF20 has the following form: 

pKd(ΔvinaRF20) = pKd(Vina) + ΔpKd(RF20), where pKd(Vina) is the pKd value calculated by 

multiplying the original Vina score by a factor of −0.73349. ΔpKd(RF20) is the correction 

term parameterized with random forest using 20 features as listed in Table 1. The ΔvinaRF20 

model and code are available at: https://www.nyu.edu/projects/yzhang/DeltaVina. We have 

carried out all power tests on both CASF-2013 and CASF-2007 benchmark sets[12,13] for 

ΔvinaRF20 as well as the AutoDock Vina scoring function,[47] and compared with, 

respectively, 20 other and 16 other docking functions that were tested in the original 2013 

and 2007 comparative assessment articles. The results are presented in Figures 1–3 and 

Tables S6–S13. The new scoring function ΔvinaRF20, which employs twenty descriptors in 

addition to the AutoDock Vina score, has achieved superior performance compared to 

classical scoring functions in all tests of both CASF-2013 and CASF-2007 benchmarks, 

including scoring, ranking, docking and screening power tests.

Scoring Power—The scoring power of ΔvinaRF20 significantly outperforms AutoDock 

Vina as well as all scoring functions that have been tested in the original 2013 and 2007 

comparative assessment articles, as shown in Figure 1 and 2. It achieves the best Pearson’s 

correlation coefficients of 0.686 and 0.732 for the CASF-2013 and CASF-2007 benchmarks 

respectively, and significantly improves upon AutoDock Vina, which has corresponding 

Pearson’s correlation coefficients of 0.557 and 0.566 respectively.

Ranking Power—The ranking power of ΔvinaRF20 is improved over AutoDock Vina, and 

is among the top 3 for both benchmarks. In CASF-2013, ΔvinaRF20 has a ranking power of 

55% for high-level (in Figure 1) and 74% for low-level (in Table S10), which places it third 

for high-level successes and second for low-level successes. In CASF-2007, the ranking 

power of ΔvinaRF20 is 57%, following the best X-Score::HSScore’s success rate of 58%.[66]

Docking Power—The docking power of ΔvinaRF20 is among the top rank for both 

benchmarks. Its success rate to identify the top pose as the native pose is 87% in 

CASF-2013 (see Figure 1), which outperforms all other scoring functions. In CASF-2007 

(in Figure 2), the success rate of ΔvinaRF20 is 80%, which ranks second following the best 

one GOLD::ASP (82%).[67] We can see that the docking power of ΔvinaRF20 has improved 

upon AutoDock Vina by about 2% in both benchmarks. Recently, a new SPA-SE score 

function was developed by combining knowledge-based atom-pair potential with the atomic 

solvation energy of a charge-independent implicit solvent model.[68] It shows excellent 

performance in scoring (with a Pearson’s correlation coefficient of 0.662), ranking (60.0% 

for high level and 75.4% for low level) and docking power (83.1% success rate for the best 

pose) for the CASF-2013 benchmark, while the screening power of SPA-SE was not 

reported. We can see that ΔvinaRF20 is still slightly better than SPA-SE in both scoring and 

docking power tests for the CASF-2013 benchmark.
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Screening Power—The screening power of ΔvinaRF20 is the best as shown in Figure 3 for 

both metrics: enrichment factor and success rate at top 1% level. The average enrichment 

factor of ΔvinaRF20 is 21 at top 1% level, which is slightly better than GlideScore-SP’s 20, 

and the success rate is 60% (39 out of 65), which is the same as GlideScore-SP at top 1% 

level.[19,20] It should be noted that ΔvinaRF20 has significantly improved upon AutoDock 

Vina, which has an enrichment factor of 15.6 and success rate of 45% at top 1% level 

respectively.

4. Discussion

Scoring functions play a central role in protein-ligand docking. An ideal, robust scoring 

function should perform well across different important tasks, including scoring, docking, 

and screening power tests. Extensive retrospective and comparative studies[10,11,14–18] 

indicate that although some widely used scoring functions can do relatively well in docking 

and screening power tests, most of them are weaker in performance in the scoring power 

test. Furthermore, it is very challenging for a docking function to achieve superior 

performance on all three power tests simultaneously.[41,42] For example, X-Score(HM)[66] is 

the top performer in the scoring power test in the original CASF-2013 comparative study, 

with a Pearson’s correlation coefficient of 0.614, but its performance in the docking power 

test only ranks in the middle among about 20 tested scoring functions. Its success rate is 

61% in predicting the best pose, which is significant lower than the value of 81% for 

ChemPLP@GOLD.[69] These disparities in performance for different power tests become 

significantly worse for recently developed machine learning-based scoring functions 

(MLbScores).[41,42] For example, in a recent comparative assessment of a dozen 

MLbScores[42] for the CASF-2013 benchmark, RF@ML, which is parameterized with 

random forest using more than one hundred features, achieved the best scoring power of 

0.704 in Pearson’s correlation coefficient among all 12 scoring functions developed using 

different machine learning algorithms. However, the docking and screening powers of these 

12 MLbScores are all significantly worse. The docking power of RF@ML is only 12.2% for 

success in predicting the best pose, while the screening power of RF@ML is just 6.45% for 

the success rate in finding the best ligand molecule. These values are significantly lower 

than those of classical scoring functions, whose top performances are 81% 

(ChemPLP@GOLD)[69] and 60% (GlideScore-SP)[19,20] for docking and screening power 

respectively. On the other hand, as presented in the above results section, our newly 

developed ΔvinaRF20 scoring function, using 20 features, achieved superior performance 

compared to traditional scoring functions in all power tests for both CASF-2013 and 

CASF-2007 benchmarks.

The main idea of our ΔvinaRF approach is to use random forest to parameterize a correction 

term to the AutoDock Vina score so that it can combine Vina’s excellent docking power with 

RF’s ability to significantly improve scoring accuracy. We tested both RF and ΔvinaRF 

approaches using the same twenty features and training set for the development of the 

ΔvinaRF20 scoring function, and compared them with Vina in Figure 4 for the scoring, 

docking and screening power tests in CASF-2013. In addition, we have also trained a RF 

model using experimental data alone and the same twenty features. The results clearly 

demonstrate that the RF approach can only improve the scoring power by significantly 
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sacrificing docking and screening powers, while the ΔvinaRF approach, with a combined 

experimental and decoy training set, can achieve the improvement over AutoDock Vina in 

all three tests simultaneously.

One attractive capability of the random forest algorithm is that it can efficiently utilize a 

large set of training data. It has been previously demonstrated that the larger the training 

data, the better the resulting RFbScore’s performance in the scoring power test[28,29,70], even 

when low-quality structures are included[30]. For the ΔvinaRF approach, as shown in Figure 

S1, we also find that a larger experimental learning set can significantly improve the scoring 

power, but it does not necessarily improve the docking power. By expanding the learning set 

to include decoy structures, both docking and screening power of the scoring function can be 

improved over AutoDock Vina with the ΔvinaRF approach.

Besides the training set, another critical component of a random forest based scoring 

function (RFbScore) is the feature set. For a random forest model, both the number of 

features and feature relevance will affect its performance. Numerical experiments show that 

increasing the fraction of relevant features can improve the performance of the random 

forest model by increasing the chance that important features will be selected at each tree 

splitting.[44] In this work, by taking advantage of random forest in ranking features, we 

employ a strategy that includes both feature selection and aggregation, to yield the twenty 

features in ΔvinaRF20. As listed in Table 1, the feature set of ΔvinaRF20 consists of 5 

interaction terms and 5 ligand-dependent terms, which are selected from 58 terms 

implemented in the AutoDock Vina source code and 10 terms related to buried solvent-

accessible surface area (bSASA). Interestingly, all 5 interaction terms in the ΔvinaRF20 are 

related to polar interactions, and there is only one overlap term between ΔvinaRF20 and the 

original Vina score, which is the number of torsions in the ligand. In comparison with using 

only 6 terms in the original Vina score and all 58 terms implemented in the AutoDock Vina 

source code, the ΔvinaRF model, developed using 10 selected features, performs better in all 

scoring, docking and screening power tests for the CASF-2013 benchmark test as shown in 

Figure S2.

Among 5 ligand-dependent terms, rotors and torsions have been previously used to 

approximate the entropic change in several empirical scoring functions.[19,66,71,72] Number 

of heavy atoms and ligand length could also be viewed as entropy-related features since both 

of them are highly correlated with rotors (Pearson’s correlation coefficients are 0.802 and 

0.906, respectively) in the crystal structure training set. Number of hydrophobic atoms is 

related to the hydrophobic interaction and the Pearson’s correlation coefficient between 

number of hydrophobic atoms and the hydrophobic term defined in AutoDock Vina source 

code is around 0.85 for the crystal structure training set.

Surface area and related features are widely used in protein-ligand scoring function 

development due to their relation to solvation.[66,68,71–74] The buried solvent-accessible 

surface area of a ligand (bSASA) has also been tested as a naive scoring function in 

CASF-2013 scoring comparison list[13] and outperforms most of other scoring functions in 

the scoring power test but ranks the worst in both docking and screening power tests. Since 

no bSASA term has been implemented in the AutoDock Vina source code, we have explored 
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9 pharmacophore-based bSASA terms and 1 total bSASA term as the feature set. As shown 

in Figure S3, the ΔvinaRF model developed using 10 bSASA terms alone would also perform 

quite well in all three power tests, but not as good as when combined with 10 selected 

AutoDock Vina terms. By combining two feature sets, the resulting Vina10-bSASA, the 

feature set used in ΔvinaRF20, performs better than either Vina10 or bSASA in all three 

power tests for the CASF-2013 benchmark. We have tested the importance of features 

measured by percentage of increased mean squared error (%IncMSE) for the 20 features in 

ΔvinaRF20 as shown in Figure S4. Except for the halogen bSASA, which may be limited by 

the rarity of halogens in the training set, each of the other 19 features has a %IncMSE value 

significantly larger than 20%, indicating their general importance and justifying their 

inclusion in the feature set of ΔvinaRF20. Meanwhile, the additional test results in Figures 

S1–S4 further indicate the robustness of the ΔvinaRF approach.

5. Conclusion

A major challenge in developing a robust protein-ligand scoring function is to improve 

scoring, docking and screening performances simultaneously. In this work, we have made 

advances in overcoming this challenge by introducing a new ΔvinaRF parameterization and 

feature selection framework based on random forest. Our new scoring function ΔvinaRF20 

employs twenty features in addition to the AutoDock Vina score, and can achieve superior 

performance compared to classical scoring functions in all tests of both CASF-2013 and 

CASF-2007 benchmarks, including scoring, ranking, docking and screening power tests. 

This work suggests that Δ-machine learning is a promising approach to systemically 

improve the performance and robustness of docking functions by employing larger diverse 

experimental/decoy data sets of high quality, developing and selecting physically meaningful 

features, as well as adapting advanced machine learning algorithms.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Performance of 22 scoring functions in (A) scoring power measured by Pearson’s R, (B) 

ranking power in terms of high-level success rate and (C) docking power measured by the 

success rate when the best-scored pose is considered to match the native pose in CASF-2013 

benchmark. ΔvinaRF20 is colored in red and AutoDock Vina is colored in green. All results 

colored in blue are obtained from reference[13].
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Figure 2. 
Performance of 18 scoring functions in (A) scoring power measured by Pearson’s R, (B) 

ranking power in terms of high-level success rate and (C) docking power measured by the 

success rate when the best-scored pose is considered to match the native pose in CASF-2007 

benchmark. ΔvinaRF20 is colored in red and AutoDock Vina is colored in green. All results 

colored in blue are obtained from reference[12].
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Figure 3. 
Performance of 22 scoring functions in screening power measured by (A) enrichment factor 

and (B) success rate at top 1% level in CASF-2013 benchmark. ΔvinaRF20 is colored in red 

and AutoDock Vina is colored in green. All results colored in blue are obtained from 

reference[13].
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Figure 4. 
CASF-2013 benchmark test performance of AutoDock Vina (colored in green), scoring 

function developed with RF approach (colored in blue) using experimental data alone and 

the same twenty features in ΔvinaRF20 scoring function, and scoring functions developed 

with RF approach and ΔvinaRF approach (colored in red) using the same twenty features and 

the same training set for the development of the ΔvinaRF20 scoring function. (A) Scoring 

power; (B) Docking power; (C) Screening power. Each set is run 10 times with different 

random seed for random forest and calculated by averaging over 10 performances except 

AutoDock Vina. The AutoDock Vina performance is also indicated by dashed line.
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Table 1

20 Features in ΔvinaRF20

No. Feature Description

AutoDock Vina Interaction Termsa

1

2

3

4–5

AutoDock Vina Ligand Dependent Terms

6 number of heavy atoms

7 number of hydrophobic atoms

8 number of torsion

9 number of rotors

10 ligand length

bSASA Featuresb

11 positive

12 negative

13 donor-acceptor

14 donor

15 acceptor

16 aromatic

17 hydrophobic

18 polar

19 halogen

20 total bSASA

a
Interaction terms are from the AutoDock Vina source code.[54] d is the distance between two atoms, a1 and a2. ddiff is the surface distance 

calculated by ddiff = d − R(a1) − R(a2), where R(a1) and R(a2) are the van der Waals radius of atom a1 and a2.[47] q is the atomic charge and V 

is the atomic volume. ASP and QASP refer to atomic solvation parameter and charge-based solvation parameter respectively.[59]

b
The pharmacophore type definitions are presented in Table S3.
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