
1 

Cite this as: A. Karton, J. Comput. Chem. 38, 370–382 (2017).  http://dx.doi.org/10.1002/jcc.24669 

 

How reliable is DFT in predicting relative energies of polycyclic 

aromatic hydrocarbon isomers? Comparison of functionals from 

different rungs of Jacob's Ladder  

 
Amir Karton  

 

School of Chemistry and Biochemistry, The University of Western Australia, Perth, WA 6009, 

Australia. 

 
A B S T R A C T  

Density functional theory (DFT) is the only quantum-chemical avenue for calculating 

thermochemical/kinetic properties of large polycyclic aromatic hydrocarbons (PAHs) such as 

graphene nanoflakes. Using CCSD(T)/CBS PAH isomerization energies, we find that all GGA 

and meta GGA DFT functionals have severe difficulties in describing isomerization energies in 

PAHs. The poor performance of these functionals is demonstrated by the following root-mean-

square deviations (RMSDs) obtained for a database of C14H10 and C18H12 isomerization energies. 

The RMSDs for the GGAs range between 6.0 (BP86-D3) and 23.0 (SOGGA11) and for the meta 

GGAs they range between 3.5 (MN12-L) and 11.9 (𝜏-HCTH) kJ mol–1. These functionals 

(including the dispersion-corrected methods) systematically and significantly underestimate the 

isomerization energies. A consequence of this behavior is that they all predict that chrysene 

(rather than triphenylene) is the most stable C18H12 isomer. A general improvement in 

performance is observed along the rungs of Jacob’s Ladder, however, only a handful of 

functionals from rung four give good performance for PAH isomerization energies. These include 

functionals with high percentages (40–50%) of exact Hartree–Fock exchange such as the hybrid 

GGA SOGGA11-X (RMSD = 1.7 kJ mol–1) and the hybrid-meta GGA BMK (RMSD = 1.3 kJ 

mol–1). Alternatively, the inclusion of lower percentages (20–30%) of exact exchange in 

conjunction with an empirical dispersion correction results in good performance. For example, 

the hybrid GGA PBE0-D3 attains an RMSD of 1.5 kJ mol–1, and the hybrid-meta GGAs 

PW6B95-D3 and B1B95-D3 result in RMSDs below 1 kJ mol–1.  
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1. Introduction 

Polycyclic aromatic hydrocarbons (PAHs) are one of the most important classes of 

organic compounds. Due to their unique electronic structures and properties they found numerous 

applications in a variety of industries, for example in organic electronics, semiconductors, dyes, 

drugs, discotic liquid crystals, and fluorescent/electroluminescent reagents.1,2,3,4,5,6,7,8,9,10,11 PAHs 

are also major by-products of incomplete combustion processes and their ubiquitous presence in 

the environment is of concern due to their carcinogenic and mutagenic potencies.12,13 Over the 

past two decades density functional theory (DFT) has become the dominant electronic structure 

method in materials and quantum chemistry due to its attractive accuracy-to-computational cost 

ratio. DFT has been extensively used for modeling reactions involving PAHs and calculating 

their chemical properties (see, for example, refs. 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 

27, 28, and 29). The ability of DFT to predict of the relative energies of PAHs and to accurately 

describe potential energy surfaces involving PAHs is of central importance to many of these 

studies.  

The molecular structures of PAHs can have significant effects on their energetic, 

electronic, and magnetic properties.30,31,32,33,34,35,36 Let us take, for example, the two C14H10 PAH 

isomers: (i) the first ionization potential (IP) of phenanthrene is higher by ~39 kJ mol–1 than that 

of anthracene, (ii) phenanthrene has a larger HOMO–LUMO gap,31,32 and (iii) whilst the 

electronic ring currents in phenanthrene are localized mainly on the terminal rings, in anthracene 

they are localized mainly on the central ring.37,38,39 Similarly, of the five C18H12 PAH isomers, 

triphenylene has the highest IP and the largest HOMO–LUMO gap.40,41 Ultimately, the different 

chemical properties of the PAH isomers are a consequence of their topologies,34,42,43 and therefore 

are qualitatively well described by Clar’s π-sextet rule.44 According to this empirical rule the 

PAH resonance structure with the largest number of disjoint aromatic π-sextets, i.e. benzene-like 

moieties, is the most important one.45,46,47,48,49,50,51,52 The topological differences between the PAH 

isomers can also have significant energetic consequences. For example, phenanthrene, which has 

two isolated sextet rings, is more stable by 25.1 kJ mol–1 (vide infra) than anthracene, for which 

only one isolated sextet ring can be drawn (Figure 1).31,53,54,55,56,57 Similarly, triphenylene, which 

has three isolated sextets, is more stable than naphthacene by as much as 53.0 kJ mol–1 (Figure 

2).40,44,50,51 The present manuscript addresses an important question: can DFT functionals from 

different rungs of Jacob’s Ladder adequately describe the energy separations between C14H10 and 

C18H12 PAH isomers?  
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Kohn–Sham DFT is exact in principle, but it involves an unknown exchange-correlation 

(XC) functional, which has to be approximated.58 Developing improved approximations for the 

XC functional is a major ongoing research area.59,60,61,62,63 Despite significant advances in DFT 

methodology over the past two decades, the various XC approximations often exhibit widely 

different performances for different chemical properties and systems and do not provide uniform 

accuracy over a broad range of compounds and thermochemical/kinetic properties. This situation 

often leads to a practical problem in the application of DFT methods to a given chemical 

problem. A useful concept that helps DFT users to choose an appropriate DFT functioanal is 

Perdew’s ‘Jacob’s Ladder of DFT’.64 According to this scheme, the various XC functionals are 

grouped on sequential rungs on a ladder, with each step representing improved accuracy and 

theoretical complexity. The first rung is the local density approximation (LDA), which depends 

Figure 2. Kekulé resonance structures of the five C18H12 isomers. Clar aromatic π-sextets are indicated with a circle. 

Figure 1. Kekulé resonance structures of the two 
C14H10 isomers. Clar aromatic π-sextets are 
indicated with a circle.  
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only on the electron density at a given point. The second rung is the generalized gradient 

approximation (GGA), which employs both the local density and the reduced density gradient. 

The third rung is the meta GGAs, which additionally employ the kinetic energy density. The 

fourth rung is the hybrid-meta GGAs, which additionally involve the occupied orbitals. The fifth 

rung is the double-hybrid functionals, which additionally employ the virtual orbitals.58,65 While, in 

general, the accuracy of DFT increases as one climbs up the rungs of Jacob’s Ladder at present 

no truly systematic path towards the exact XC functional exists. Thus, the only validation for a 

given DFT approximation is benchmarking against accurate reference data.66,67,68,69 

It is well established that the performance of DFT can vary for different types of 

reactions. In particular, the accuracy of a given DFT functional should increase as larger 

molecular fragments are conserved on the two sides of the reaction, due to an increasing degree 

of error cancellation between reactants and products.70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85 The conversion 

of one PAH isomer into another (e.g., phenanthrene � anthracene) conserves the chemical 

environments on the two sides of the reaction to large extents. In particular, the following 

features are conserved: the number of (i) sp2 hybridized carbons, (ii) carbon atoms in each 

hapticity (i.e., secondary and tertiary), and (iii) aromatic C=C bonds. In addition, in most cases 

the planarity of the aromatic system is also conserved. The use of transformations in which the 

chemical environments are largely balanced on the two sides of the reaction, allows us to 

evaluate the performance of DFT for the calculation of stabilization energies associated with (i) 

bond length alternations, (ii) local aromaticity (as reflected, for example, from the Clar 

structures)34 and (iii) the extent of the overlap between the π-systems of non-neighboring rings 

(e.g., the overlap between the π-systems of the terminus rings in phenanthrene is larger than that 

in anthracene).56  

In the present work, we calculate the relative energies of the C14H10 and C18H12 isomers at 

the CCSD(T)/CBS level of theory (coupled cluster with single, double, and quasiperturbative 

triple excitations extrapolated to the complete basis set limit). We use these benchmark 

isomerization energies to assess the performance of a wide range of DFT procedures from rungs 

2–5 of Jacob’s Ladder for the PAH isomerization energies. We find that all of the GGA and meta 

GGA functionals, and many of the hybrid GGA and hybrid-meta GGA functionals perform 

poorly for these PAH isomerization energies and as a consequence fail to predict the lowest-

energy C18H12 PAH isomer.   
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2. Computational Methods 

 In order to obtain reliable reference isomerization energies for the PAH5 database, 

calculations have been carried out at the CCSD(T)/CBS level of theory with the Molpro 2012.1 

program suite.86 , 87  The Hartree–Fock (HF), CCSD and (T) energies are obtained from W1h 

theory.88 W1h theory is a variant of W1 theory,89 in which the diffuse functions are omitted from 

carbon. This is of little thermochemical consequence for neutral hydrocarbons, but it does 

substantially reduce computer resource requirements. In particular, the HF component is 

extrapolated from the cc-pVTZ and cc-pVQZ basis sets,90 using the E(L) = E∞ + A/L� two-point 

extrapolation formula, with � = 5. The CCSD correlation energy is extrapolated from the same 

basis sets with an extrapolation exponent of � = 3.22, as recommended in ref. 89. The (T) 

correlation component is extrapolated from the cc-pVDZ and cc-pVTZ basis sets with � = 3.22.89  

 The geometries of all structures have been obtained at the B3LYP-D3/cc-pVTZ level of 

theory.91,92,93,94 Empirical D3 dispersion corrections95,96 are included using the Becke�Johnson97 

damping potential as recommended in Ref. 94 (denoted by the suffix -D3). We note that the 

suffix -D in B97-D and �B97X-D indicates the original dispersion correction rather than the D3 

correction. Harmonic vibrational analyses have been performed to confirm each stationary point 

as an equilibrium structure (i.e., all real frequencies). All geometry optimizations and frequency 

calculations were performed using the Gaussian 09 program suite.98  

Since our reference isomerization energies are obtained at the CCSD(T)/CBS level of 

theory, it is of interest to estimate whether the contributions from post-CCSD(T) excitations are 

likely to be significant. The percentage of the total atomization energy (TAE) accounted for by 

parenthetical connected triple excitations, %TAE[(T)], has been shown to be a reliable energy-

based diagnostic for the importance of nondynamical correlation effects.68, 99  Table S1 

(Supplementary data) gathers the %TAE[(T)] values for the C14H10 and C18H12 PAH isomers. The 

%TAE[(T)] values for all the species are lower than 2.5%. It has been found that %TAE[(T)] ≤ 

5% indicates that post-CCSD(T) contributions to the TAEs should not exceed ~2 kJ mol�1.100 

However, more importantly for the present study, these %TAE[(T)] values indicate that post-

CCSD(T) contributions to the isomerization reaction should be negligible.  

 The DFT exchange-correlation functionals considered in the present study (ordered by their 

rung on Jacob’s Ladder)64 are the GGA functionals: BLYP,91,101 B97-D,102 HCTH407,103 PBE,104 

BP86,101,105 BPW91;101,106 SOGGA11,107 N12;108 the meta GGAs (MGGAs): M06-L,109 TPSS,110 𝜏-

HCTH,111 VSXC,112 BB95,113 M11-L,114 MN12-L;115 the hybrid GGAs (HGGAs): BH&HLYP,116 

B3LYP,91
’
92,93 B3P86,92,105 B3PW91,92, 106 PBE0,117 B97-1,118 B98,119 X3LYP,120 SOGGA11-X;121 

the hybrid-meta GGAs (HMGGAs): M05, 122  M05-2X, 123  M06, 124  M06-2X,124 M06-HF,124 
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BMK,125 B1B95,101,113 TPSSh,126 𝜏-HCTHh,111 and PW6B95;127 and the DHDFT procedures: B2-

PLYP, 128  B2GP-PLYP, 129  B2K-PLYP,130 B2T-PLYP, 130  DSD-BLYP, 131  DSD-PBEP86, 132 , 133 

PWPB95.66 We also consider the following range-separated (RS) functionals: CAM-B3LYP,134 

LC-�PBE,135 �B97,136 �B97X,136 �B97X-D,137 M11,138 and MN12-SX.139  

 

3. Results and Discussion  

3.1. Benchmark isomerization energies for the PAH5 dataset. The PAH5 dataset contains the 

following five isomerization energies:  

 

phenanthrene → anthracene     (1) 

triphenylene → chrysene     (2) 

triphenylene → benz[a]anthracene    (3) 

triphenylene → benzo[c]phenanthrene    (4) 

triphenylene → naphthacene     (5)  

 

The component breakdown of the benchmark CCSD(T)/CBS reaction energies are 

gathered in Table 1. The HF/CBS level of theory overestimates the CCSD(T)/CBS isomerization 

energies by 3.8 (anthracene), 4.5 (naphthacene), and 4.9 (benzo[c]phenanthrene) kJ mol–1, but 

underestimates them by 3.9 (chrysene) and 5.2 (benz[a]anthracene) kJ mol–1. Thus, complete 

neglect of electron correlation does not lead to systematic underestimation or overestimation of 

the isomerization energies. We note that the HF/CBS level of theory leads to a qualitative error in 

the triphenylene → chrysene isomerization. Namely, it predicts that the chrysene isomer is more 

stable than triphenylene by 1.8 kJ mol–1.  
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Table 1. Component breakdown of the benchmark CCSD(T)/CBS isomerization energies in the 
PAH5 database (reactions 1–5 above). 

Reaction ∆HFa ∆CCSDa ∆(T)b ∆CCSD(T) 

1 28.9c –2.0c –1.9c 25.1c 
2 –1.8 3.9 0.1 2.1 
3 8.9 5.3 –0.1 14.1 

4 29.9 –2.7 –2.1 25.0 
5 57.5 –0.4 –4.0 53.0 

aExtrapolated from the cc-pVTZ and cc-pVQZ basis sets. bExtrapolated from the cc-pVDZ and cc-pVTZ basis sets. 
cUsing larger basis sets in the extrapolations we obtain: ∆HF/cc-pV{Q,5}Z = 28.96, ∆CCSD/cc-pV{Q,5}Z = –1.93, 
and ∆(T)/cc-pV{T,Q}Z = –1.91 kJ mol–1. These extrapolations result in ∆CCSD(T) = 25.13 kJ mol–1, which is 
practically identical to the value obtained from W1h theory. 

 

The CCSD/CBS level of theory predicts the relative energies of chrysene and 

benz[a]anthracene practically spot-on, but overestimates the relative energies of anthracene, 

benzo[c]phenanthrene, and naphthacene by 1.9, 2.1, and 4.0 kJ mol–1, respectively (Table 1). 

For the phenanthrene → anthracene isomerization we were able to calculate the CCSD(T) 

energies in conjunction with larger basis sets (i.e., at the W2h level). In particular, the HF and 

CCSD components are extrapolated from the cc-pV{Q,5}Z basis set pair, and the (T) component 

is extrapolated from the cc-pV{T,Q}Z basis set pair. These extrapolations indicate that the HF, 

CCSD, and (T) components from W1h theory are –0.02, –0.06, and +0.04 kJ mol–1 away from the 

infinite basis set limit values. Overall, the difference between the CCSD(T) isomerization energy 

obtained from W1h and W2h theory is merely –0.04 kJ mol–1.  

 At the CCSD(T)/CBS limit (from W1h theory) we obtain that phenanthrene is more stable 

than anthracene by 25.1 kJ mol–1. According to Clar’s rule the outer rings in phenanthrene exhibit 

larger local aromatic character than the outer rings in anthracene (Figure 1).55,30,140 Therefore, the 

energy difference between the two isomers can be partly explained by Clar’s rule. Another factor, 

which contributes to the greater stability of phenanthrene relative to anthracene, is the more 

effective overlap between the π-systems of the outer rings in phenanthrene.56  

In contrast to the relatively large energy separation between the two C14H10 isomers, the 

lowest-energy C18H12 isomer (triphenylene) is more stable than chrysene by just 2.1 kJ mol–1. This 

is consistent with Clar’s rule – triphenylene has three isolated sextets, compared with chrysene 

for which only two isolated sextet rings can be drawn (Figure 2). The next C18H12 isomer, 

Benz[a]anthracene, is less stable than chrysene by 12.0 kJ mol–1. For both isomers resonance 

structures with two isolated sextet rings can be drawn, however in chrysene there is a more 

effective overlap between the π-systems of the sextet rings. Benz[c]anthracene is less stable than 

Benz[a]anthracene by 10.9 kJ mol–1. For both isomers resonance structures with two isolated 
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sextet ring can be drawn, thus this energy difference is largely attributed to the non-planar 

structure of benz[c]anthracene. Naphthacene, for which resonance structures with only one 

isolated sextet ring can be drawn (Figure 2), is less stable than benz[c]anthracene by as much as 

28.0 kJ mol–1.  

 

3.2. Performance of DFT for the isomerization reactions in the PAH5 database. The 

CCSD(T)/CBS isomerization energies provide a benchmark set of values for the evaluation of the 

performance of DFT procedures for the calculation of PAH isomerization eneries. For a rigorous 

comparison with the DFT results, secondary effects that are not explicitly included in the DFT 

calculations, such as relativity and zero-point vibrational corrections, are not included in the 

reference values either. Table 2 gives the root-mean-square deviation (RMSD), mean-absolute 

deviation (MAD), and mean-signed deviation (MSD) from our benchmark W1h results for a 

series of contemporary DFT functionals (with and without empirical D3 dispersion corrections).  

 

Table 2. Statistical analysis for the performance of DFT procedures for the calculation of the 
isomerization energies in the PAH5 database (in kJ mol–1)a,b 

Typec Method RMSD MAD MSD LDd 
GGA BLYP 12.7 11.0 –11.0 –22.9 (5) 
 BLYP-D3 8.0 7.0 –7.0 –14.4 (5) 
 B97-D 8.6 7.6 –7.6 –14.9 (5) 
 HCTH407 15.1 13.3 –13.3 –26.3 (5) 
 PBE 9.6 8.3 –8.3 –17.3 (5) 
 PBE-D3 7.1 6.3 –6.3 –12.8 (5) 
 BP86 10.0 8.7 –8.7 –18.1 (5) 
 BP86-D3 6.0 5.3 –5.3 –10.7 (5) 
 BPW91 10.9 9.5 –9.5 –19.6 (5) 
 SOGGA11 23.0 20.9 –20.9 –37.6 (5) 
 N12 9.3 8.0 –8.0 –16.9 (5) 
MGGA M06-L 3.6 3.1 –2.5 –6.8 (5) 
 TPSS 8.0 6.9 –6.9 –14.6 (5) 
 TPSS-D3 4.8 4.2 –4.2 –8.8 (5) 
 𝜏-HCTH 11.9 10.3 –10.3 –21.2 (5) 
 VSXC 5.9 5.1 5.1 9.4 (5) 
 BB95 9.1 7.9 –7.9 –16.7 (5) 
 M11-L 7.8 6.7 –6.7 –13.8 (5) 
 MN12-L 3.5 2.9 –2.9 –6.0 (5) 
HGGA BH&HLYP 2.5 2.3 –0.9 –4.0 (3) 
 BH&HLYP-D3 2.5 2.1 1.7 4.4 (5) 
 B3LYP 7.4 6.2 –6.2 –12.8 (5) 
 B3LYP-D3 3.3 2.9 –2.9 –5.8 (5) 
 B3P86 4.8 4.0 –4.0 –8.3 (5) 
 B3PW91 6.1 5.2 –5.2 –10.6 (5) 
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 B3PW91-D3 1.8 1.7 –1.7 –3.0 (5) 
 PBE0 4.0 3.3 –3.3 –6.6 (5) 
 PBE0-D3 1.5 1.3 –1.3 –2.3 (5) 
 B97-1 5.8 5.0 –5.0 –10.1 (5) 
 B98 6.1 5.2 –5.2 –10.5 (5) 
 X3LYP 6.7 5.6 –5.6 –11.5 (5) 
 SOGGA11-X 1.7 1.5 –0.5 –2.5 (3) 
HMGGA M05 5.1 4.3 –4.3 –8.7 (5) 
 M05-2X 2.6 1.9 1.8 5.0 (5) 
 M06 2.7 2.2 –2.1 –4.5 (5) 
 M06-2X 2.7 2.1 2.1 5.2 (5) 
 M06-HF 7.1 5.4 5.4 14.1 (5) 
 BMK 1.3 1.1 –0.2 –1.9 (3) 
 BMK-D3 3.0 2.4 2.4 5.6 (5) 
 B1B95 2.4 2.1 –1.9 –3.9 (5) 
 B1B95-D3 0.9 0.7 0.7 1.7 (5) 
 TPSSh 5.9 5.0 –5.0 –10.6 (5) 
 𝜏-HCTHh 6.9 6.0 –6.0 –12.2 (5) 
 PW6B95 2.3 2.0 –1.8 –3.6 (5) 
 PW6B95-D3 0.7 0.6 –0.4 –1.1 (3) 
RS CAM-B3LYP 1.7 1.6 0.4 2.9 (4) 
 CAM-B3LYP-D3 3.0 2.4 2.4 5.4 (5) 
 LC-�PBE 6.8 5.7 5.7 12.5 (5) 
 LC-�PBE-D3 9.3 7.9 7.9 17.3 (5) 
 �B97 8.3 7.2 7.2 15.0 (5) 
 �B97X 6.3 5.5 5.5 11.4 (5) 
 �B97X-D 3.4 2.9 2.9 6.3 (5) 
 N12-SX 4.1 3.3 –3.3 –7.0 (5) 
 M11 9.4 8.3 8.3 17.0 (5) 
 MN12-SX 3.4 2.8 –2.8 –5.4 (5) 
DH B2-PLYP 3.6 3.1 –3.1 –6.3 (5) 
 B2-PLYP-D3 1.0 0.9 –0.9 –1.6 (5) 
 B2GP-PLYP 1.6 1.3 –1.3 –2.3 (5) 
 B2GP-PLYP-D3 0.4 0.4 –0.1 –0.7 (2) 
 B2K-PLYP 0.7 0.6 –0.2 –1.1 (2) 
 B2K-PLYP-D3 1.0 0.8 0.6 1.8 (5) 
 B2T-PLYP 2.3 1.9 –1.9 –3.8 (5) 
 DSD-BLYP 1.3 1.1 –1.1 –1.9 (5) 
 DSD-PBEP86 1.7 1.5 –1.5 –2.7 (5) 
 DSD-PBEP86-D3 0.6 0.5 –0.5 –0.8 (4) 
 PWPB95 2.2 1.8 –1.8 –3.7 (5) 
 PWPB95-D3 0.9 0.8 –0.8 –1.4 (5) 

aAll DFT calculations were carried out in conjunction with the cc-pVQZ basis set. bRMSD = root-mean-square 
deviation, MAD = mean-absolute deviation, MSD = mean-signed deviation, LD = largest deviation (in absolute 
value). cGGA = generalized gradient approximation, HGGA = hybrid GGA, MGGA = meta GGA, HMGGA = 
hybrid-meta GGA, RS = range-separated HGGA or HMGGA, DH = double hybrid. dThe reaction numbers are given 
in parenthesis (with very few exceptions the largest deviation is obtained for reaction 5). 
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3.2.1 General improvement in performance along the rungs of Jacob's Ladder. Inspection of 

the error statistics in Table 2 reveals that there is a general improvement in the performance of 

the DFT functionals along the rungs of Jacob's Ladder. This is illustrated graphically in Figure 3. 

The RMSDs for the GGA methods (rung 2) spread over a wide range from 23.0 (SOGGA11) to 

6.0 (BP86-D3) kJ mol–1. None of the considered GGA methods result in an RMSD below the 

threshold of ‘chemical accuracy’ (defined here as RMSD < 4 kJ mol–1). The RMSDs for the meta 

GGA methods (rung 3) range between 11.9 (𝜏-HCTH) and 3.5 (MN12-L) kJ mol–1. Where only 

the Minnesota functionals MN12-L and M06-L attain RMSDs below the chemical accuracy 

threshold. The hybrid GGA (rung 3.5) and hybrid-meta GGA (rung 4) functionals give better 

performance with RMSDs ranging between 7.4 (B3LYP) and 0.7 (PW6B95-D3) kJ mol–1. Where 

nearly 60% of the considered methods result in RMSDs below the threshold of chemical 

accuracy, and about 20% of the methods result in RMSDs smaller than 2 kJ mol–1. Finally, all the 

considered double-hybrid methods (rung 5) result in RMSDs below the chemical accuracy 

threshold, with 75% of the functionals attaining RMSDs < 2 kJ mol–1. 

  

 

Figure 3 reveals another interesting feature, namely that the best-performing functional 

from each rung are either dispersion corrected or belong to the Minnesota family. For example, 

the best performing methods of each rung are: (rung 2) PBE-D3 and BP86-D3; (rung 3) M06-L 

and MN12-L; (rung 4) B1B95-D3 and PW6B95-D3; and (rung 5) DSD-PBEP86-D3 and B2GP-

PLYP-D3. The importance of the dispersion corrections will be further discussed in Section 3.2.7. 

 

 

Figure 3. Root-mean-square deviations (RMSDs) for a subset of the DFT procedures over the isomerization 
energies in the PAH5 database (in kJ mol–1). The RMSDs for all the DFT procedures are given in Table 2 (and in 
Figure S1 of the Supplementary data). 
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3.2.2 GGA and meta GGA methods significantly underestimate PAH isomerization energies. 

Inspection of Table 2 reveals that all the GGA methods systematically underestimate the 

isomerization energies, as evident from MSD = –1�MAD. This is illustrated graphically in Figure 

4. The MSDs range from –5.3 (BP86-D3) to –20.9 (SOGGA11) kJ mol–1. The GGA methods 

show particularly poor performance for the energy difference between triphenylene and 

naphthacene (reaction 5). The worst performing functional (SOGGA11) underestimates this 

energy difference by as much as 37.6 kJ mol–1, whilst the best performing GGA method (BP86-

D3) still underestimates this isomerization energy by an appreciable amount of 10.7 kJ mol–1. 

 

 

 The inclusion of the kinetic energy density in the meta GGA functionals improves the 

situation to some extent. However, the meta GGAs still systematically underestimate the 

isomerization energies, with MSDs ranging between –2.5 (M06-L) and –10.3 (𝜏-HCTH) kJ mol–1. 

We note that the VSXC functional is a notable exception to this rule since it systematically 

overestimates the isomerization energies with an MSD of +5.1 kJ mol–1. Again, reaction 5 proves 

to be very challenging for all the meta GGA functionals. This energy separation is 

underestimated by amounts of 21.2 (𝜏-HCTH), 14.6 (TPSS), and 13.8 (M11-L). Even the best-

performing functionals (MN12-L and M06-L) still underestimate this energy separation by 

appreciable amounts of 6.0 and 6.8 kJ mol–1, respectively.  

 

3.2.3 Most hybrid and hybrid-meta GGAs show good performance. The performance of the 

13 hybrid GGA and 13 hybrid-meta GGA functionals can vary substantially. The RMSDs for the 

rung 3.5–4 functionals range between 7.4 (B3LYP) and 0.7 (PW6B95-D3) kJ mol–1. The B3LYP 

and M06-HF functionals are the worst performers with RMSDs > 7 kJ mol–1, whilst the 

Figure 4. Mean-signed deviations (MSDs) for a subset of the DFT procedures over the isomerization energies in the 
PAH5 database (in kJ mol–1). The MSDs for all the DFT procedures are given in Table 2 (and in Figure S2 of the 
Supplementary data). 
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dispersion-corrected hybrid-meta GGAs B1B95-D3 and PW6B95-D3 perform exceptionally well 

with RMSDs < 1 kJ mol–1 (Table 2). Inspection of the MSDs in Figure 4 (and Table 2) reveals a 

general correlation between the amount of exact HF exchange and the functional’s MSD. The 

functionals with the largest MSDs incorporate about 10–25% of exact exchange. For example, 

hybrid functionals with 20–25% of exact exchange (e.g., B3LYP, B98, B3PW91, B971, B3P86, 

and PBE0) are associated with MSDs between –6.2 and –3.3 kJ mol–1. Hybrid-meta GGA 

functionals with 10–28% of exact exchange (e.g., 𝜏-HCTHh, TPSSh, M05, M06, B1B95, and 

PW6B95) are associated with MSDs between –6.0 and –1.8 kJ mol–1. On the other hand, 

functionals with 40–42% of exact exchange (e.g., SOGGA11-X and BMK) are associated with 

near-zero MSDs, and functionals with 54–100% of exact exchange (e.g., M05-2X, M06-2X, and 

M06-HF) are associated with positive MSDs.  

Figure 5 illustrates the relationship between the percentage of exact HF exchange and the 

MSDs for the 26 hybrid and hybrid-meta GGA functionals (for a meaningful comparison 

between the methods, dispersion-corrected functionals are not included in this plot, dispersion 

corrections will be discussed separately in Section 3.2.7). It is evident that functionals with 15–25% 

of exact exchange are associated with large MSDs ranging between –3 and –6 kJ mol–1. Three 

functionals with 27–28% of exact exchange give better performance with MSDs of about –2 kJ 

mol–1, they are: M06, B1B95, and PW6B95. However, the functionals with 40–50% of exact 

exchange perform significantly better. In particular, the hybrid-meta GGA BMK (42% of exact 

exchange) attains a near-zero MSD of –0.2 kJ mol–1, and the hybrid GGA SOGGA11-X (40% of 

exact exchange) attains an MSD of –0.5 kJ mol–1. We note that the hybrid GGA BH&HLYP with 

50% of exact exchange also performs well with an MSD of –0.9 kJ mol–1. Functionals with more 

than 50% of exact exchange are associated with positive MSDs. In particular, the MSDs for these 

functionals are: +1.8 (M05-2X), +2.1 (M06-2X), and +5.4 (M06-HF) kJ mol–1.  
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Finally, it is instructive to compare the performance of the three hybrid functionals B3P86, 

B3PW91, and B3LYP, which combine Becke’s three-parameter exchange functional with 

different gradient-corrected correlation functionals. These functionals give RMSDs of 4.8, 6.1, 

and 7.4 kJ mol–1, respectively. Thus, the P86 correlation functional is better than PW91, which in 

turn is better than the LYP functional. We note that similar trends are observed for the GGAs, i.e., 

BP86 performs slightly better than BPW91, which in turn performs slightly better than BLYP 

(Table 2).  

 

3.2.4 Optimal percentage of exact Hartree–Fock exchange. The results of the previous section 

show that functionals with up to ~40% of exact HF exchange tend to underestimate the PAH 

isomerization energies, whilst functionals with more than ~50% of exact HF exchange tend to 

overestimate them. Thus, the optimal percentage of exact HF exchange seems to lie in between 

~40–50% (for functionals without a dispersion correction). In order to investigate this further, we 

chose two GGAs (PBE and BP86) and two meta GGAs (𝜏-HCTH and TPSS) and we scan the 

percentage of exact HF exchange. The MSDs and RMSDs over the PAH5 dataset are depicted in 

Figure 6. It can be seen that for all four functionals the MSD varies linearly with the percentage 

of exact exchange in the functional form. Low percentages of exact exchange lead to large 

negative MSDs of up to –10 kJ mol–1, whilst high percentages of exact exchange lead to large 

positive MSDs of up to 10 kJ mol–1. The MSD curve crosses the x-axis at ~40–44% of exact HF 

exchange for all four functionals (consistent with the results in Figure 5). Figure 6 also shows that 

Figure 5. Linear correlation between the MSDs over the PAH5 dataset and the percentage of exact exchange mixing 
coefficient for the hybrid and hybrid-meta GGA functionals without a dispersion correction. The MSDs are taken from 
Table 2. 
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at the exact-exchange percentage for which the MSDs are zero, all the functionals result in small 

RMSDs. In particular, the RMSDs are 1.6 (PBE and BP86), 1.7 (TPSS), and 1.9 (𝜏-HCTH) kJ 

mol–1 (Figure 6b). For comparison, the following RMSDs are obtained for the original semi-local 

functionals: 9.6 (PBE), 10.0 (BP86), 8.0 (TPSS), and 11.9 (𝜏-HCTH) kJ mol–1, and for the 

original hybrid and hybrid-meta functionals: 4.0 (PBE0), 5.9 (TPSSh), and 6.9 (𝜏-HCTHh) kJ 

mol–1.  

 

 

 

 

 

 

3.2.5 Range-separated functionals tend to systematically overestimate PAH isomerization 

energies. Inspection of the error statistics obtained for the range-separated methods (Table 2) 

reveals that, with three exceptions (CAM-B3LYP, N12-SX, and MN12-SX), the RS functionals 

systematically overestimate the isomerization energies, as evident from MSD = MAD. CAM-

B3LYP results in a near-zero MSD of 0.4 kJ mol–1, whilst N12-SX and MN12-SX systematically 

underestimates the isomerization energies. The different behavior of CAM-B3LYP, N12-SX, and 

MN12-SX from the other RS functionals may be associated with the percentage of exact HF 

exchange at long ranges. The functionals that systematically overestimate the isomerization 

energies (i.e., LC-�PBE, M11, and the �B97 family of functionals) include 100% exact HF 

exchange at long ranges. CAM-B3LYP, on the other hand, includes 65% HF exchange at long 

ranges. Whereas N12-SX and MN12-SX, which were developed for solid-state physics and 

chemical properties, include no HF exchange at long ranges.  

 

3.2.6 Double-hybrid functionals show excellent performance. All the DHDFT methods result 

in RMSDs below the threshold of chemical accuracy. Remarkably, all of the dispersion-corrected 

functionals result in RMSDs ≤ 1 kJ mol–1, where B2GP-PLYP-D3 puts in the best performance 

Figure 6. Dependence of the MSD and RMSD over the PAH5 dataset on the exact 
exchange mixing coefficient for two GGA (blue and red curves) and two meta GGA 
functionals (green and purple curves). 
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with an RMSDs of merely 0.4 kJ mol–1 (Table 2), an MSD of –0.1 kJ mol–1 indicates that B2GP-

PLYP-D3 is free of systematic bias towards underestimating the PAH isomerization energies.  

We will concentrate here on the performance of the non-dispersion-corrected functionals 

(dispersion corrections will be discussed in the next section). With the exception of B2K-PLYP, 

all the DHDFT functionals tend to systematically underestimate the PAH isomerizations (as 

evident from MSD = –1�MAD). A closer inspection of the MSDs (Table 2 and Figure 4) reveals 

a general correlation between the amounts of exact HF exchange and the MSDs. Functionals with 

50–60% of exact HF exchange (B2-PLYP, B2T-PLYP, and PWPB95) results in an MSDs 

between –1.8 and –3.1; functionals with 65–70% of exact exchange (B2GP-PLYP, DSD-BLYP, 

and DSD-PBEP86) result in an MSDs between –1.1 and –1.5; whilst B2K-PLYP (72% of HF 

exchange) results in a near-zero MSD of –0.2 kJ mol–1. We also note that B2K-PLYP is 

associated with a large percentage (42%) of MP2-like correlation. Overall, the B2-PLYP method 

results in the largest RMSD (3.2) and B2K-PLYP results in the smallest RMSD (0.7 kJ mol–1).  

 

3.2.7 Dispersion corrections. As mentioned in Section 3.2.1, the best-performing functionals 

from each rung of Jacob’s Ladder are either dispersion corrected or belong to the Minnesota 

family (Figure 3). Table S2 of the Supplementary data gives the contributions of the D3 

dispersion corrections to the five isomerization reactions in the PAH5 database. It is evident that 

dispersion corrections tend to stabilize the energetically more stable isomers to a higher degree 

(with the exception of benzo[c]phenanthrene). Namely, the magnitude of the dispersion 

correction (in absolute value) increases in the order: anthracene < phenanthrene for the C14H10 

isomers, and naphthacene < benz[a]anthracene < chrysene < triphenylene ~ 

benzo[c]phenanthrene for the C18H12 isomers. This trend may be partly explained by the fact that 

the overlap between the π-systems of the isolated sextet rings is expected to increase in the same 

order (see Clar’s structures in Figures 1 and 2).  

 As a result of the above trend in the magnitude of the dispersion corrections, the D3 

corrections universally increase the isomerization energies (Table S2, Supplementary data). The 

one exception to this rule is the triphenylene � benzo[c]phenanthrene isomerization, for which 

dispersion corrections tend to be nil (Table S2). Since most of the DFT procedures from rungs 2–

5 of Jacob’s Ladder tend to underestimate the PAH isomerization energies (and in many cases by 

very large amounts), inclusion of the dispersion correction almost always improves the 

performance of the DFT and DHDFT methods. For the few functionals that tend to overestimate 

the isomerization energies (most notably the RS functionals CAM-B3LYP and LC-�PBE) there 

is no point in including the D3 corrections since they can only increase the deviations. Table 3 
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gathers the differences in RMSD between the dispersion-corrected and uncorrected DFT 

functionals (∆D3 = RMSD(DFT) � RMSD(DFT-D3)). A positive ∆D3 value indicates that the 

dispersion correction improves the performance of the functional, whereas a negative ∆D3 value 

indicates deterioration in performance.  

 

Table 3. Overview of the performance of various DFT functionals with and without empirical D3 
dispersion corrections. The tabulated values are ∆D3 = RMSD(DFT) � RMSD(DFT-D3) (in kJ 
mol–1).a,b 

Type Method ∆D3 

GGA BLYP 4.8 
 PBE 2.5 
 BP86 4.0 
MGGA TPSS 3.2 
HGGA BH&HLYP 0.0 
 B3LYP 4.1 
 B3PW91 4.3 
 PBE0 2.5 
HMGGA BMK –1.6 
 B1B95 1.6 
 PW6B95 1.6 
RS CAM-B3LYP –1.2 
 LC-�PBE –2.5 
DH B2PLYP 2.6 
 B2GP-PLYP 1.1 
 B2K-PLYP –0.3 
 DSD-PBEP86 1.1 
 PWPB95 1.3 

aFootnotes a–c to Table 2 apply here. bRMSD(DFT) and RMSD(DFT-D3) are taken from Table 2.  
 

Inspection of Table 3 reveals that adding the dispersion D3 corrections for the GGA, meta 

GGA, and hybrid GGA (with 20–25% of HF exchange) methods significantly improve the 

agreement with the CCSD(T)/CBS reference values. In particular, the RMSDs are reduced by 

amounts ranging from 2.5 (PBE and PBE0) to 4.8 (BLYP) kJ mol–1. The improvements for the 

hybrid-meta GGAs (with 28% of exact exchange) are smaller, ∆D3 being 1.6 kJ mol–1 for both 

B1B95 and PW6B95. The hybrid and hybrid-meta GGA methods with 40–50% of exact 

exchange (BH&HLYP and BMK) show excellent performance without the dispersion corrections 

with small MSDs (–0.9 and –0.2 kJ mol–1, respectively). Thus, there is little point in including 

dispersion corrections in these cases. Upon including the D3 correction to these functionals the 

isomerization energies are overestimated (with MSDs of +1.7 and +2.4 kJ mol–1, respectively).  

Finally, it is worth pointing out that since most DHDFT methods still underestimate the 

PAH isomerization energies, sizable improvements are obtained upon inclusion of the dispersion 
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corrections. In particular, the RMSDs are reduced by amounts ranging between 1.1 (B2GP-PLYP 

and DSD-PBEP86) and 2.6 (B2-PLYP) kJ mol�1. A notable exception is B2K-PLYP, for which a 

near-zero MSD of –0.1 kJ mol�1 is obtained; upon inclusion of the D3 correction the MSD 

becomes +0.6 kJ mol�1 and the RMSD increases by 0.3 kJ mol�1. 

 

3.2.8 Practical implications. In this section we will present two illustrative examples of possible 

implications of the results presented in Sections 3.2.1–3.2.7. Namely, we will consider the 

performance of DFT for the relative energy of isomers separated by either very small or very 

large energy gaps.  

 

Which DFT functionals can predict the lowest-energy C18H12 isomer? Table 1 shows that the 

energy separation between the two lowest-energy C18H12 isomers is just 2.1 kJ mol–1 at the 

CCSD(T)/CBS level of theory. It is expected that the lowest-energy isomers of larger PAHs will 

also be separated by small energy gaps. For example, using the best performing DHDFT 

functional (B2GP-PLYP-D3, Table 2), we find that the three lowest-energy C22H14 isomers are 

separated by less than 4 kJ mol–1. Namely, we obtain the following relative energies in 

conjunction with the cc-pVQZ basis set: 0.0 (picene), 3.0 (benzo[k]tetraphene, and 3.6 

(benzo[m]tetraphene) kJ mol–1. We note that three isolated sextet rings can be drawn for all three 

isomers (Figure 7). An important question is: which functionals can predict the lowest-energy 

PAH isomer in cases where the lowest-energy isomers are separated by small energy gaps (say < 

4 kJ mol–1). We will examine this question for the two lowest-energy C18H12 isomers, for which 

we have CCSD(T)/CBS data.  

 

  

Table S3 of the Supplementary data depicts the energy of chrysene relative to 

triphenylene obtained by the DFT methods from rungs 2–5 of Jacob’s Ladder, whilst Figure 8 

shows these results for a selected subset of methods from rungs 2–4 of Jacob’s Ladder. As can be 

seen, all the GGA methods erroneously predict that chrysene is the lowest-energy C18H12 isomer. 

Figure 7. Selected Clar structures for the lowest energy C22H14 isomers.  
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The GGA fanctionals without a dispersion correction predict that chrysene is more stable than 

triphenylene by amounts ranging from 11.2 (SOGGA11) to 2.9 (PBE) kJ mol–1. Inclusion of an 

empirical dispersion correction improves the situation, however, the dispersion-corrected 

functionals still predict that chrysene is more stable than triphenylene by amounts ranging from 

2.6 (B97-D) to 0.3 (BP86-D3) kJ mol–1. 

 

 

The meta GGA methods that do not account for dispersion interactions also predict that 

chrysene is more stable than triphenylene by considerable amounts, ranging from 4.5 (𝜏-HCTH) 

to 2.2 (TPSS) kJ mol–1. TPSS-D3 and M06-L, which were either parameterized for weak 

interactions or include a dispersion correction, predict that triphenylene and chrysene are 

essentially isoenergetic (Figure 8 and Table S3). 

 Similarly, all the hybrid GGAs that do not account for dispersion interactions via 

parameterization or a dispersion correction predict that chrysene is more stable than triphenylene 

by amounts ranging from 2.7 (B3LYP) to 0.7 (BH&HLYP) kJ mol–1. B3LYP-D3 and SOGGA11-

X predict that both isomers are essentially isoenergetic. Only three out of the 13 considered 

hybrid GGAs predict that triphenlyene is the lowest energy isomer. In particular, they predict an 

energy difference of 0.8 (PBE0-D3), 1.0 (B3PW91-D3), and 1.4 (BH&HLYP-D3) kJ mol–1 (cf. 

an energy difference of 2.1 kJ mol–1 at the CCSD(T)/CBS level of theory).  

 In contrast to most of the DFT methods from rungs 2–3.5 of Jacob’s Ladder, most rung 4 

functionals predict that triphenlyene is the lowest energy isomer. In particular, only three hybrid-

meta GGAs erroneously predict that chrysene is the most stable C18H12 isomer. They are: 𝜏-

Figure 8. Energy of chrysene relative to the lowest-energy C18H12 isomer triphenylene obtained by a subset of DFT 
methods form rungs 2–4 of Jacob’s Ladder (in kJ mol–1). DFT methods below the dashed red line erroneously 
predict that chrysene is energetically more stable than triphenylene. Figure S3 of the Supporting Information shows 
these relative energies for all the considered DFT procedures.  
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HCTHh, TPSSh, and M05. Three methods (PW6B95, B1B95, and M06) predict that triphenylene 

and chrysene are essentially isoenergetic (Figure 8 and Table S3), whilst seven methods predict 

that triphenylene is more stable by amounts ranging from 0.6 (BMK) to 4.4 (M06-HF) kJ mol–1. 

The excellent performance of M05-2X and B1B95-D3 should be noted. These two functionals 

reproduce the CCSD(T) isomerization energy spot-on.  

 Eight out of the ten considered range-separated functionas predict that triphenylene is the 

most stable isomer. However, it should be noted that the RS procedures tend to significantly 

overestimate the energy gap between the two isomers. In particular, half of the RS functionals 

predict an energy difference of over twice the CCSD(T)/CBS value; namely, LC-�PBE, �B97X, 

�B97, LC-�PBE-D3, and M11 predict that the chrysene isomer lies 4.3–6.5 kJ mol–1 above 

triphenylene.  

 Finally, we note that with the exception of B2-PLYP, all the DHDFT functionlas predict 

the correct order of stability. However, an empirical dispersion correction is needed in order to 

predict the CCSD(T)/CBS energy gap to within 1 kJ mol–1. Of the DHDFT-D3 methods only 

B2K-PLYP-D3 is able to reproduce the CCSD(T)/CBS isomerization energy to within 0.5 kJ 

mol–1 (Table S3). 

 

Performance of DFT for isomers separated by a large energy gap. In the previous subsection 

we showed that predicting the correct order of stability of the lowest-lying C18H12 isomers is a 

challenging problem for many DFT methods. Here we will consider the performance of DFT for 

relative energies of PAHs that are separated by a large energy gap. We will show that very large 

errors are obtained for most DFT functionals.  

 Table S4 of the Supplementary data gives the energy of naphthacene relative to 

triphenylene obtained by the DFT methods, whilst Figure 9 shows these results for a subset of 

methods from rungs 2–4 of Jacob’s Ladder. At the CCSD(T)/CBS level of theory we obtain an 

isomerization energy of +53.0 kJ mol–1 (Table 1). The pure GGA methods severely underestimate 

this energy difference. GGA methods without a D3 dispersion correction result in very large 

deviations, ranging from 37.6 (SOGGA11) to 16.9 (N12) kJ mol–1. The dispersion corrected 

GGAs perform better but still result in large underestimations, ranging between 14.9 (B97-D) and 

10.7 (BP86-D3) kJ mol–1. Inclusion of the kinetic energy density in the functional form improves 

the performance, however the rung 3 functionals still systematically underestimate the 

isomerization energy by large amounts of up to 21.2 kJ mol–1 (𝜏-HCTH). The best performing 

meta GGAs result in underestimations of 6.0 (MN12-L) and 6.8 (M06-L) kJ mol–1.  



20 

 

 

Consistent with the results of Section 3.2.3, the hybrid and hybrid-meta GGAs that 

involve up to ~30% of exact exchange underestimate the isomerization energies. In particular, 

eight hybrid GGAs (B3LYP, X3LYP, B3PW91, B98, B971, B3P86, B3LYP-D3, and PBE0) and 

three hybrid-meta GGAs (𝜏-HCTHh, TPSS, and M05) result in sizeable underestimations of 6–13 

kJ mol–1. Functionals with ~40–55% of HF exchange overestimate the isomerization energy, 

where overestimations of over 4 kJ mol–1 are obtained for BH&HLYP-D3, M06-2X, BMK-D3, 

and M05-2X. Note that M06-HF, with 100% of exact exchange, overestimates the isomerization 

energy by as much as 14.1 kJ mol–1. Finally, we note that two hybrid GGA functionals that give 

excellent performance are (deviations are given in parenthesis): BH&HLYP (–1.2) and 

SOGGA11-X (–0.9), and two hybrid-meta GGA functionals that show exceptional performance 

are: PW6B95-D3 (–0.6) and BMK (0.0 kJ mol–1). 

Most of the range-separated functionals overestimate the triphenylene–naphthacene 

isomerization energy by large amounts. In particular, �B97, �B97X, LC-�PBE, LC-�PBE-D3, 

and M11 result in overestimations of 11.4–17.3 kJ mol–1. MN12SX and N12SX, on the other 

hand underestimate the isomerization energy by 5.4 and 6.9 kJ mol–1, respectively. These 

observations are consistent with the results of Section 3.2.5. We note that CAM-B3LYP results in 

the best performance with a deviation of +0.9 kJ mol–1.  

With very few exceptions the DHDFT functiuonals show excellent performance with 

deviations below the threshold of chemical accuracy. The three best performing DHDFT methods 

are (deviations are given in parenthesis): DSD-PBEP86-D3 (–0.6), B2K-PLYP (0.0), and B2GP-

PLYP-D3 (+0.2 kJ mol–1).  

Figure 9. Energy of naphthacene relative to the lowest-energy C18H12 isomer triphenylene obtained by a subset of 
the DFT methods form rungs 2–4 of Jacob’s Ladder (in kJ mol–1). Table S4 of the Supporting Information shows 
these relative energies for all the considered DFT procedures. 



21 

We also evaluated the performance of the various DFT functionals for the energy 

separation between the lowest- and highest-energy C22H14 isomers: picene and pentacene. For 

these highly symmetric structures we were able to obtain W1h energies. At the CCSD(T)/CBS 

level of theory these isomers are separated by 82.1 kJ mol–1. The performance of the DFT 

methods for this isomerization energy is discussed in detail in Section S1 of the Supplementary 

data. Suffice to mention here that both the qualitative and quantitative observations described 

above remain largely unchanged for the picene–pentacene energy separation.  

In summary, it is useful to identify DFT methods that show good performance for both 

small and large PAH isomerization energies. In this regard, we make the following observations: 

(i) none of the functionals from rungs 2–3 of Jacob’s Ladder can achieve this task, (ii) of the 48 

methods from rungs 4–5 of Jacob’s Ladder, 21 functionals predict the triphenylene–naphthacene 

isomerization energy to within chemical accuracy (i.e., to within ±4.2 kJ mol–1), (iii) of these 21 

functionals, only two dispersion-corrected hybrid-meta GGAs (B1B95-D3 and PW6B95-D3) 

give acceptable performance for the triphenylene–naphthacene energy separation with deviations 

smaller than ±1 kJ mol–1, and (iv) all the dispersion-corrected methods from rung 5 of Jacob’s 

Ladder result in deviations smaller than ±1 kJ mol–1.  

 

4. Conclusions  

We have obtained benchmark isomerization energies by means of the high-level W1h 

composite thermochemistry protocol for the C14H10 and C18H12 PAH isomers (and some C22H14 

PAHs). The relative energies of these species are governed by chemical concepts such as local 

aromaticity (as reflected, for example, from Clar structures) and the extent of the π-π overlap 

between non-neighboring rings. These chemical differences between the isomers can have 

significant energetic consequences. For example, at the CCSD(T)/CBS level of theory the lowest- 

and highest-energy isomers are separated by 25.1 (C14H10), 53.0 (C18H12), and 82.1 (C22H14) kJ 

mol–1. On the other hand, in some cases the isomers are separated by very small energy gaps. For 

example, the two lowest-lying C18H12 isomers (triphenylene and chrysene) are separated by just 

2.1 kJ mol–1.  

We use our benchmark PAH isomerization energies (a.k.a. the PAH5 database) to 

evaluate the performance of a variety of contemporary density functional theory procedures. We 

find that the isomerization energies in the PAH5 database are a challenging test for most 

conventional DFT procedures. With regard to the performance of the conventional DFT 

procedures (rungs 2–4 of Jacob’s Ladder) we make the following observations:  
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Ø The GGA functionals (rung 2 of Jacob’s Ladder) universally underestimate the 

isomerization energies. The RMSDs for the functionals without a D3 dispersion 

correction range between 9.3 (N12) and 23.0 (SOGGA11) kJ mol�1. The functionals with 

a dispersion correction result in RMSDs between 6.0 (BP86-D3) and 8.6 (B97-D) kJ 

mol�1. Thus, GGA methods are not recommended for modeling PAH isomerization 

energies.  

Ø The meta GGA functionals (rung 3 of Jacob’s Ladder) lead to better performance but still 

systematically underestimate the isomerization energies. Only the two Minnesota 

functionals M06-L and MN12-L result in RMSDs below the threshold of chemical 

accuracy (RMSD = 3.6 and 3.5 kJ mol�1, respectively).  

Ø Hybrid and hybrid-meta GGA functionals with up to 30% of exact HF exchange tend to 

systematically underestimate the isomerization energies, in such cases inclusion of a 

dispersion correction can significantly improve the performance. The best performing 

functionals from this class are PBE0-D3 and PW6B95-D3 with RMSDs of 1.5 and 0.7 kJ 

mol�1, respectively.  

Ø Hybrid and hybrid-meta GGA functionals with 40–55% of exact HF exchange are not 

biased towards underestimation of the isomerization energies. The best performing 

functionals from this class are SOGGA11-X and BMK with RMSDs of 1.7 and 1.3 kJ 

mol�1, respectively. In these cases, inclusion of a dispersion correction tends to lead to a 

systematic overestimation of the isomerization energies and to poorer overall 

performance.  

Ø The range-separated functionals tend to overestimate the isomerization energies. CAM-

B3LYP emerges as the best performing method with an RMSD of 1.7 kJ mol�1. 

Ø The double-hybrid procedures (rung 5 of Jacob’s Ladder) give excellent performance. 

The best performing functionals are (RMSDs are given in parenthesis): B2GP-PLYP-D3 

(0.4), DSD-PBEP86-D3 (0.6), B2K-PLYP (0.7), and PWPB95-D3 (0.9 kJ mol–1). 

 

The results outlined above mean that many DFT functionals from rungs 2–4 of Jacob’s 

Ladder should be applied with caution for modeling relative energies of PAHs. We demonstrate 

this in two scenarios, namely, calculating the relative energies of isomers separated by very small 

or very large energy gaps:  

Ø Predicting the lowest-energy C18H12 isomer is a taxing problem for DFT methods from 

rungs 2–3 of Jacob’s Ladder. All of the considered GGA and meta GGA functionals 

erroneously predict that chrysene is the most stable isomer (or isoenergetic with 
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triphenylene). This includes all the dispersion corrected methods. This task is still quite 

challenging for most hybrid GGAs, where only 3 out of the 13 methods predict the correct 

stability order (namely, PBE0-D3, and B3PW91-D3, and BH&HLYP-D3). We note that 

these predictions are in contrast to Clar’s rule, and illustrate the difficulty that lower-rung 

DFT methods have in describing the intricate factors governing the stability of PAHs. 

Ø Naphthacene lies 53.0 kJ mol–1 above the lowest-energy C18H12 isomer triphenylene. 

Calculating this energy difference proves to be an extremely challenging task for 

functionals from rungs 2–4. In particular, the GGA methods underestimate this energy 

gap by amounts ranging from 37.6 (SOGGA11) to 10.7 (BP86-D3) kJ mol–1. The meta 

GGA methods underestimate this energy gap by amounts ranging from 21.2 (𝜏-HCTH) to 

5.9 (MN12-L) kJ mol–1. Only a handful of the rung 4 functionals can reproduce this 

energy difference to within chemical accuracy. Most notably (deviations are given in 

paranthesis): PBE0-D3 (–2.2), BH&HLYP (–1.1), SOGGA11-X (–0.9), PW6B95-D3 (–

0.6), BMK (0.0), CAM-B3LYP (+1.0), and B1B95-D3 (+1.7 kJ mol–1). Similar 

observations are obtained for the C22H14 isomers pentacene and picene, which are 

separated by 82.1 kJ mol–1.  

 

In summary, we deem the best performing functionals for modeling PAH isomerization energies, 

as functionals for which the following three criteria hold: (i) the RMSD for the PAH5 dataset is 

smaller than 4 kJ mol–1, (ii) they are able to predict the correct lowest-energy C18H12 isomer, and 

(iii) they are able to predict the naphthacene–triphenylene energy separation to within ±4 kJ mol–1. 

With the exception of MN12-L and M06-L, all the functionals from rungs 2–3 of Jacob’s ladder 

are poor performers based on criterion (i) alone. MN12-L does not comply with criteria (2) and 

(3), and M06-L does not comply with criterion 3. Thus, none of the functionals from rungs 2–3 

are deemed as good performers. The following functionals emerge as best performers from rungs 

3.5–4 of Jacob’s ladder: three hybrid GGAs (PBE0-D3, B3PW91-D3, and SOGGA11-X), five 

hybrid-meta GGAs (BMK, PW6B95, PW6B95-D3, B1B95, and B1B95-D3), and one range-

separated functional (CAM-B3LYP). We note that the above three criteria hold for practically all 

of the rung 5 functionals, where B2GP-PLYP-D3 emerges as the best performing DHDFT 

method.  

 

Supplementary data 

Diagnostics indicating the importance of post-CCSD(T) correlation effects for the species 

considered in this work (Table S1); contribution of the D3 dispersion correction to the DFT 
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procedures for reactions 1–5 in the PAH5 database (Table S2); RMSDs for the DFT procedures 

over the isomerization energies in the PAH5 database (Figure S1); MSDs for the DFT procedures 

over the isomerization energies in the PAH5 database (Figure S2); reaction energy for reaction 2 

in the PAH5 database obtained by the DFT procedures (Table S3 and Figure S3); reaction energy 

for reaction 5 in the PAH5 database obtained by the DFT procedures (Table S4); B3LYP-D3/cc-

pVTZ optimized geometries for all the species considered in the present work (Table S5); full 

references for ref. 86 (Molpro 2012) and ref. 98 (Gaussian 09) (Table S6); and a detailed 

discussion of the performance of DFT for the picene–pentacene isomerization energy (Section 

S1). 
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