
Residue-Centric Modeling and Design of Saccharide and 
Glycoconjugate Structures

Jason W. Labonte[a], Jared Adolf-Bryfogle[b], William R. Schief[b],[c], and Jeffrey J. Gray[a]

[a]Department of Chemical & Biomolecular Engineering, Johns Hopkins University, 3400 N. 
Charles St., Baltimore, Maryland, U.S.A. 21218

[b]Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, The 
Scripps Research Institute, La Jolla, CA 92037

[c]The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology 
and Harvard University, Cambridge, MA 02139

Graphical Abstract

Carbohydrates are present everywhere in nature, possessing a vast array of structural diversity, yet 

historically, they have been challenging to model. RosettaCarbohydrate is a new tool for 

researchers studying the form and function of carbohydrate structures. The framework integrates 

with Rosetta’s successful modeling and design suite and addresses challenges unique to glycans. 

This article describes the development of the framework and highlights its applications, including 

loop modeling and glyco-ligand docking.
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Introduction

Carbohydrates are the most abundant class of molecule on earth,[1] functioning as 

oligosaccharide small molecules, polysaccharide structures, and glycoconjugates in a wide 

array of processes crucial for life.[2] The diversity of glycoforms is enormous. Eukaryotic 

cells synthesize thousands of distinct forms from just the nine most-common 

monosaccharide subunits.[3,4] Diversity is introduced to standard glycan classes (high-

mannose, hybrid, and complex) through repeats, branching patterns, elaboration with sugars 

such as fucose or sialic acid, and sugar modifications.

As “form follows function,” a structural understanding of these complicated molecules is 

required to appreciate fully their role in biomolecular pathways. Unfortunately, the 

characterization methods currently available make structure-determination difficult. Whether 

as ligands or as conjugates, the electron density of glycans is often not resolved in crystal 

structures because of their inherent flexibility. Computational methods to assist in refining 

such crystal structures would be welcome, and protocols for studying glycan interactions in 
silico are needed.

However, computational modeling of carbohydrates has not proven straightforward,[5,6] 

though there has been significant progress. For small systems, such as individual mono- or 

disaccharides, quantum mechanical (QM) methods have been used to model carbohydrate 

structures.[7] For modeling larger systems of glycans, several computational options are 

currently available. Carbohydrate molecular dynamics (MD) forcefields include 

GLYCAM,[8] CHARMM,[9] OPLS-AA-SEI,[10] GROMOS45A3/4,[11] and MM4.[12] 

Several software packages have been used to dock carbohydrates, among them AutoDock[13] 

and AutoDock Vina,[14] DOCK,[15] FlexX,[16] Glide,[17] and Gold.[18] The majority of 

docking applications reported thus far in the literature have involved the docking of 
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carbohydrate ligands and not the interactions of glycoproteins with other proteins or 

glycoproteins.

Currently, there are no computational methods specifically for designing glycoproteins for 

particular functions. One might desire a means both of computationally designing amino 

acid residues around a particular glycan and of designing a conjugated glycan—produced 

with glycoengineering techniques[19]—for a particular protein system.

The Rosetta structure prediction and design suite[20] is an ideal platform for addressing these 

challenges. Rosetta has solved the structures of proteins[21] and RNA;[22] been used to refine 

NMR,[23] crystal,[24] and cryo-electron microscopy[25] structures; modeled antibody 

loops;[26] and docked both protein–protein[27] and protein–ligand[28] complexes. Rosetta has 

successfully designed unique sequences to match a fixed peptide backbone;[29,30] novel 

protein folds,[31,32] including with functional sites;[33] enzyme active sites;[34,35] protein–

protein interfaces;[36] RNA sequences;[37] and peptides to modify mineral growth.[38,39] 

Rosetta has also been expanded to model non-canonical and non-peptide polymers.[40]

How Rosetta Differs from Other Approaches

In contrast to quantum or molecular mechanics/dynamics approaches, Rosetta is “residue-

centric”[20] instead of “atom-centric”. That is, a residue is the primary unit for scoring and 

manipulation of a structure. Rosetta represents all atoms within the context of their residues 

instead of as individual units. This approach has several advantages. A residue can be 

classified with other molecular fragments that share certain chemical properties. From a 

computational point of view, this organization leads to a data structure that can store 

chemical and nomenclature information beyond simple atom coordinates and charges. 

Related residues can share data common to their “type”, which allows rapid packing—

wherein residues with shared backbone structure have their side chains substituted with 

those of other rotamers—and design—wherein residues have their side chains swapped with 

those from related residues. Finally, this data organization permits quick insertion of or 

deletion of chains of residues, such as loops, since the structure of a macromolecule can be 

treated as a tree of residue units.[20]

The RosettaCarbohydrate Framework

In earlier work in collaboration with other Rosetta labs, we described how Rosetta’s residue-

centric framework could be generalized and adapted to model alternative-backbone 

polymers.[40] Much of the underlying code in the Rosetta codebase had originally operated 

on the assumption of the constant, repeating N–Cα–C backbone of peptides, but creative use 

of particular features of Rosetta’s topology files and patching system now allow for 

modeling of virtually any polymer.[40,41] This current work expands on this framework with 

specific consideration to the challenges involved in modeling oligo- and polysaccharides.

In this report, we describe our efforts to make Rosetta “carbohydrate-ready”, creating a tool 

to empower researchers solving problems in the growing fields of glycobiology and 

glycoengineering. We have established the RosettaCarbohydrate framework to provide 

alternative and complementary methods for general modeling and docking applications 

involving oligomeric and polymeric carbohydrate ligands and glycoconjugates. Here, we 

Labonte et al. Page 3

J Comput Chem. Author manuscript; available in PMC 2018 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



discuss general problems in sampling, scoring, and nomenclature as related to carbohydrate 

modeling, and we outline our strategies for overcoming some of these difficulties. We 

highlight new features of ring sampling and virtual glycosylation and present data that 

benchmark protein–glyco-ligand docking and novel glycan “loop” modeling.

General Modeling Concerns

Any macromolecular structural modeling problem, from simple minimization to more 

complicated cases, such as loop refinement or docking, requires sufficient sampling of 

coordinate space and accurate scoring to approximate a system’s energy. A more often 

overlooked concern is the choice of how to represent the molecule to the modeling software, 

that is, how to communicate by means of proper nomenclature the precise complex to be 

modeled. In the following paragraphs, we discuss these three issues—sampling, scoring, and 

nomenclature—in regards to carbohydrates. In the methods section we describe in detail 

how we have addressed these matters in Rosetta.

Sampling

Carbohydrates are flexible molecules, because of their many degrees of freedom (DoFs), and 

this flexibility contributes to their difficulty to model. Rosetta algorithms primarily sample 

torsion angle DoFs instead of manipulating Cartesian coordinates directly. The number of 

torsional DoFs in a typical monosaccharide residue is much greater than the number found 

in an amino acid residue.[42] Oligo- and polypeptides effectively have only two backbone 

torsion angles per residue, ϕ and ψ, since the third angle, ω, is fixed at one of two acceptable 

values (Figure 1a). Oligo- and polysaccharides also have main-chain torsions of ϕ, ψ, and 

sometimes ω. However, peptide chains are almost always linear, whereas saccharide chains 

are very commonly branched. Branching poses multiple sampling challenges. Sampling a 

torsion angle upstream of a branch point results in multiple downstream effects, instead of 

effects on a single polymer chain. This increases the chances of clashing. Moreover, it 

requires more thorough sampling before the branch point, as the positioning of the tips of 

branches depends heavily on the orientation of the stem. In addition, saccharide residues can 

adopt linear or multiple cyclic forms, and potential conformer shifts among ring forms 

provide additional backbone flexibility to the polysaccharide. This flexibility occurs through 

internal ring torsion angles labeled ν and defined by the four ring atoms about the bond 

(Figure 1b). Peptide residues, on the other hand, do not have aliphatic backbone rings, 

except proline, but its ring form is determined by its main-chain torsion angles.[43] Finally, 

peptides only have one side chain per residue (designated with the label χ), in contrast to 

saccharide compounds, which have multiple side chains per residue (Figure 1). Moreover, 

only five of the standard amino acid residues (leucine, isoleucine, methionine, arginine, and 

lysine) have more than three rotatable side-chain torsions. All of the common, unmodified 

aldohexopyranose residues have four, when internally linked at non-exocyclic hydroxyl 

groups, and the common modified sugars N-acetylglucosamine and 5-acetylneuraminate 

(sialic acid) have five and nine, respectively, if internally linked. In peptides, since there is 

only one side chain, the torsional preferences are coupled; in saccharide residues, most of 

the side-chain motions are independent. To sample all of the side-chain conformations of a 
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terminal 5-acetylneuraminate, which is very common in human glycans, would require 

visiting n10 conformations!

Scoring

Rosetta uses a combination of physics-based and statistics-based scoring methods in its all-

atom, implicit-solvent scoring function.[44,45] Physics-based terms in the scoring function 

include van der Waals attractive and Pauli repulsive Lennard-Jones potentials, a Coulombic 

electrostatic potential, and the Lazaridis–Karplus implicit solvation potential. Statistics-

based terms include hydrogen-bonding potentials, a peptide backbone-dependent rotamer 

probability potential,[46] and Ramachandran backbone propensity potential.[47]

Most of Rosetta’s statistics-based terms do not apply to carbohydrate structures, and most of 

the atom types used in parameterization of the residues were derived empirically with 

peptides and peptide-like molecules and not sugars. Carbohydrates are known to have 

complicated electronic effects, such as the anomeric effect,[42] and binding of proteins with 

glycans may involve such interactions as nonconventional C–H···O hydrogen bonds[48] or π 
interactions.[42]

Nomenclature

The third general modeling concern to overcome is nomenclature. While perhaps not a 

significant issue in the case of modeling typical biopolymers of other classes—DNA and 

RNA for example have only four nucleobase residues each and canonical peptides have 20—

it is not a straightforward task to designate to modeling software which monosaccharide 

residues should be modeled. Whereas one can represent a full protein sequence with a series 

of one-letter or three-letter codes, a polysaccharide sequence is necessarily more complex 

and must include each base monosaccharide residue’s anomeric stereochemistry, ring size, 

enantiomer, linkages, and any sugar modifications. For example, the term “GlcNAc”, while 

commonly used in literature to refer to α-D-2-deoxy-2-acetylaminoglucopyranose (IUPAC 

designation[49] α-D-GlcpN2Ac), is in fact ambiguous and could refer to 36 distinct 

glucosamines—two for the specific anomer times two for the stereochemical designation 

times three for the ring form times three for the location of the N-acetyl group. This number 

increases to 108 if linkage is included as part of the designation (e.g., →4)-α-D-GlcpN2Ac 

to indicate that a downstream residue is attached to this residue’s O4) and grows even larger 

if the sugar residue is a branch point.

The data format of the Protein Data Bank (PDB) unfortunately assigns only a three-character 

column for specifying a residue type within a structure, which furthers this nomenclature 

problem. This limitation forces one to deviate from the three-letter abbreviations in wide use 

for the more common sugars. For example, since the PDB uses the code GLC to refer 

specifically to α-D-glucopyranose, any other glucoses or glucose derivatives must be 

assigned different—and usually unintuitive—three-letter codes.

Some groups have therefore devised a system of alternative three-letter codes to uniquely 

identify distinct saccharide residues. The GLYCAM format, for example, uses single 

characters to designate linkage, base monosaccharide, and anomer. Upper or lower case 

designate anomeric state[50] Such codes suffice for commonly observed natural sugars but 
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are mathematically incapable of covering the full range of residues one might wish to model 

when rare natural sugars, synthetic sugars, and sugar modifications are included. Moreover, 

required use of case can be problematic, since some computational programs are not case-

sensitive. Such a system also leads to conflicts with already existing three-letter codes within 

the PDB for non-canonical amino acids, solvent and other small molecules, ions, and other 

polymeric residue types.

The solution of Im research group was to avoid nomenclature altogether and to 

automatically prepare saccharide residues and linkages for direct input into CHARMM 

simulation software, such as the CHARMM-GUI,[51] using atom coordinates, types, and 

bonding from .pdb file HETATM and CONECT records.[52] Notably, the CHARMM format 

does not limit its residue names to three characters. While a much-needed tool for the field, 

the nomenclature problem still remained for Rosetta, which interfaces with .pdb files, not 

CHARMM ones.

RosettaCarbohydrate Development

ResidueType and CarbohydrateInfo

To integrate carbohydrate functionality into the Rosetta suite, we took advantage of its 

object-oriented code design.[20] Rosetta stores data about a structural model primarily in a 

Pose object, whose primary data are stored in an array of Residue objects (Figure 2). These 

contain both conformational and chemical information. Properties specific to a particular 

monomeric chemical moiety are stored within a data structure called a ResidueType (Figure 

2). Such properties include nomenclature, classifications, stereochemical information, and 

chemical functionality. Monosaccharide residues have a far greater diversity of properties 

than do amino acid residues, such as ring size, anomeric state, specific sugar modifications, 

and branch points; therefore, we expanded the ResidueType data structure by introducing 

into it two additional sub-structures—a ResidueProperties object to manage properties in 

general and a CarbohydrateInfo object specifically for saccharide ResidueTypes (Figure 2).

The CarbohydrateInfo object contains methods for deriving secondary properties from 

primary topology file data and for nomenclature output. The inclusion of the 

CarbohydrateInfo object within ResidueType means that a saccharide residue knows its 

chemical functionality and classification. This feature allows for glycoengineering design 

applications, where one monosaccharide subunit can be “swapped” with another of similar 

properties in a design protocol. Properties stored within CarbohydrateInfo include full and 

short-form IUPAC names, position of the anomeric carbon, number of carbons, 

stereochemistry (L or D), ring size, anomer (α or β), and a list of modifications. The 

RosettaCarbohydrate framework is not limited to aldohexopyranoses; CarbohydrateInfo can 

represent aldoses and ketoses, acyclic and cyclic sugars, sugars of sizes ranging from trioses 

to nonoses, and sugars with ring sizes ranging from oxiroses to septanoses (Figure 3).

We developed a singleton object called the CarbohydrateInfoManager (Figure 2) to handle 

data access to constant properties and data common to carbohydrates, such as nomenclature 

rules and common torsion angle definitions (e.g., glycosidic ϕ, ψ, and ω definitions).
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Branching

Unlike most amino acid and nucleic acid residue chains, oligo- and polysaccharide chains 

commonly branch. Rosetta’s AtomTree and FoldTree[20,27] had allowed only limited 

functionality for branching, such as for disulfide bonds and ubiquitination. We updated and 

expanded all Rosetta code for the handling of branching, including new methods of 

specifying torsional degrees of freedom across branch connections (through the MoveMap 

object) and correct handling of packing at branch-point residues. Moreover, we refactored 

Rosetta code that had assumed that a parent residue was always the previous residue in the 

sequence, which is only true for a linear polymer.

We further improved the input/output methods of Rosetta to properly read and interpret the 

LINK records from .pdb files from the Protein Data Bank, which are a standard record type 

for that file format. Rosetta now uses the information in the LINK records to build the 

FoldTree and AtomTree correctly for branched structures, including saccharides.

Input/Output and Nomenclature

For the input of .pdb files, we have made Rosetta compatible with both the current list of 

PDB three-letter codes and the three-letter code system used with GLYCAM-based 

utilities.[50] In addition, we created a means to specify the exact residue desired by means of 

an expanded, backwards-compatible use of .pdb file HETNAM records, which allows for 

even the most exotic sugars to be designated with precision. We refactored Rosetta’s input 

code so that it now reads HETNAM records and abstracts information about which 

ResidueTypes it should use to build the model. Rather than a single HETNAM record being 

used for every occurrence of a single three-letter code within the .pdb file, Rosetta now 

allows for the specification of the exact residue identity for each HETNAM record, so that 

the same three-letter code can be used for distinct but related saccharide residues. (This 

same solution can now also be applied for any noncanonical residue for which there may be 

three-letter code conflicts and is not limited in any way to saccharide residues.) Comparisons 

of simple oligosaccharide .pdb files in all three formats (standard PDB, GLYCAM, and 

Rosetta) are shown in Figure S1 and Figure S2.

In addition to .pdb-file input, we have provided a means of reading IUPAC-format 

polysaccharide sequences,[49] including branched polysaccharides and sugar modifications 

(Figure 3), and of reading the .gws file format used by the GlycoWorkbench software.[53] 

The latter provides an easy means of converting between standard Consortium for 

Functional Glycobiology (CFG) topology diagrams[54] and Rosetta.

For file output, we designed Rosetta to output .pdb files, as well as .gws files of glycans.

Backbone Sampling

As discussed above, backbone torsion angles for carbohydrate polymers include ϕ, ψ, ω, 

and ν angles. ϕ, ψ, and ω always fall along the main chain of the Rosetta AtomTree. 

Sampling of ν angles (internal ring torsions) changes the backbone but involves atoms both 

on and off the main chain. Because of this, they require special sampling methods.
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Main-Chain Sampling—We refactored the SmallMover and ShearMover main-chain 

sampling code to access the CarbohydrateInfo object for determining which main-chain 

torsion angles in Rosetta’s FoldTree correspond to ϕ and ψ for a given residue (Figure 2). 

Thus, the Small- and ShearMover, which sample ϕ and ψ, can be used in Rosetta algorithms 

“out-of-the-box” with both saccharides and glycoconjugates.

Incorporating elements of our previously published Glycan Relax protocol,[55] we further 

designed a LinkageConformerMover to select statistically favorable ϕ, ψ, and ω angles 

during sampling stages of Rosetta algorithms. This new method specific to carbohydrate 

residues selects from known, preferred sets of glycosidic torsion angles for pairs of 

saccharide residues. For example, ϕ and ψ torsions for β-D-Galp-(1→3)-D-GlcpNAc 

linkages statistically show a strong preference (nearly 100%) for ϕ values of −74° ± 10° and 

ψ values of −132° ± 18°.[56] The LinkageConformerMover thus samples in this region of 

torsion space for any occurrence of β-D-Galp-(1→3)-D-GlcpNAc in a structure. This 

sampling, when combined with the more general small and shear moves, brings about a 

more efficient determination of natural surface glycan structures.

The LinkageConformerMover code functions as follows. First, we constructed a mapping of 

linkages to LinkageConformerData structures, each of which represents a single glycosidic-

bond conformation. Each LinkageConformerData object contains a conformation’s 

reducing-end and non-reducing-end residues, population percentage, and mean and standard 

deviation values for ϕ, ψ, and any applicable ω torsions. We first used data from a series of 

papers by Petrescu et al., which include conformations of β-D-GlcpNAc–Asn for the 

modeling of N-linked glycans.[56,57] The CarbohydrateInfoManager object described above 

loads and controls access to the mapping of LinkageConformerData (Figure 2)

When acting on a structure, the LinkageConformerMover selects a random carbohydrate 

residue and locates its parent residue in the direction of the reducing end. By means of the 

CarbohydrateInfoManager, the Mover searches for conformer data present for a linkage 

between the two residues. If conformer data are found, the Mover selects a conformer and 

sets each backbone torsion angle of the current residue to the mean of the value, plus or 

minus a uniform random value within a given number of standard deviations of the mean 

(Figure 2). The specific conformer selected can be chosen uniformly from among all 

conformers for the found linkage, or it can be selected based on population weight.

When the LinkageConformerMover does not find a residue pair within the map of 

LinkageConformerData, a conformer is selected from the minima of the appropriate 

CarboHydrate-Intrinsic (CHI) Energy Functions,[58,59] which we describe below.

Ring-Conformer Sampling—As peptide chains and nucleic acids have a limited degree 

of ring-puckering flexibility, no general method had been developed for sampling ring 

conformations in Rosetta. Within the ResidueType class, we thus designed and implemented 

a RingConformerSet object (Figure 2), which stores the current and all possible ideal ring 

conformers for any given ring size.
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Each RingConformer object in the Set represents a single ideal conformer and stores both 

specific IUPAC name (e.g., 4C1 for the most-stable glucopyranose ring form) and general 

name (e.g., “chair”), degeneracy, Cremer–Pople (C–P) parameters,[60] and ideal torsion (ν) 

and bond (τ) angles. Specific ring conformers can be accessed by IUPAC name or by C–P 

parameters. We included all idealized ring conformers for six-membered rings in the Rosetta 

database (Table S1).

We also wrote a generalized method for sampling ring conformations of cyclic residues as 

part of backbone sampling, which we call the RingConformationMover (Figure 2). It selects 

idealized ring conformers from the RingConformerSet, such as the 4C1 chair conformer 

found in most common glycans. The RingConformationMover selects residue-specific, 

energetically favored ring conformers for each residue when known. A list of these preferred 

ring conformers are stored in each residue’s topology/parameter file in the Rosetta database. 

The torsion angles and bond angles are set from the RingConformer data.

Additionally, we expanded Rosetta’s MoveMap object to communicate to other objects 

within Rosetta protocols whether internal ring torsion angles are permitted to move during 

sampling steps.

While designed with carbohydrates in mind, these new Rosetta objects will also be useful 

for sampling the conformations of non-canonical amino acid residues and other moieties 

containing rings.

Side-Chain Sampling

Side-chain moves change χ angles and any torsion angles found on sugar modifications. As 

mentioned above, Rosetta typically uses a rotamer-library approach to refine side-chain 

torsional space. For amino acid residues, it relies on statistical data of rotamer probabilities 

for each residue type. Because the majority of “side chains” in carbohydrates are simple 

hydroxyls, and structures with proton-resolution are so rare, such rotamer statistics are next 

to impossible to calculate and likely unneeded. Instead, we simply have exhaustively 

generated rotamers for every combination of staggered/non-eclipsed side-chain 

conformations per residue. We allow minimization to find the most favorable side-chain 

conformations from the staggered ideals given by packing.

Scoring Function

For peptides, Rosetta’s Pauli repulsive term is split into both inter-residue and intra-residue 

components and the weight for the intra-residue repulsion term is a small fraction of that for 

the inter-residue term to avoid double-counting with the term for rotamer potential. For 

carbohydrates and other non-peptide residues, which do not have a term for rotamer 

potential, we use a separate intra-residue repulsive term with the same weight as that for the 

inter-residue term, and we add an additional, carbohydrate-specific scoring method for 

glycosidic bonding.

We implemented the CHI Energy Function developed in the laboratory of Robert Woods. 

This function was determined from QM calculations involving various isomers of O-linked 

tetrahydropyran oligomers and confirmed by statistical data.[58,59] This new scoring method 
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is analogous to the Ramachandran scoring method used within Rosetta for peptide bonds. 

For scoring glycosidic ϕ torsion angles, the function depends on the stereochemistry of the 

anomeric carbon, and for scoring the ψ angle, it depends on whether the connecting oxygen 

atom is in the axial or equatorial position. (Omega angles were added to the CHI scoring 

function[59] during the writing of this manuscript and have not yet been implemented in 

Rosetta.) The anomeric stereochemistry is read from CarbohydrateInfo. In preliminary tests, 

we found that the inclusion of this term improved results in ligand docking (Figure 4).

We wrote a tutorial using Python that demonstrates the above features, which can be 

downloaded from http://graylab.jhu.edu/~labonte/shared/RosettaCarbohydrates/

RosettaCarbohydrate_Tutorial-Demo.pdf.

Carbohydrate-Specific Applications

Having adapted the core Rosetta code to consider issues of carbohydrate sampling, scoring, 

and nomenclature, we began adding new methodologies. Here we describe “virtual 

glycosylation”, carbohydrate “loop” modeling, and glyco-ligand docking. Since most 

saccharide residues are known to have approximately fixed ring conformations,[61] we did 

not sample ν angles in any of these three applications.

Virtual Glycosylation

Since many glycoprotein structures in the PDB lack their native glycans or have incomplete 

or unclear density in some of the carbohydrate residues, we added functionality to Rosetta to 

generate glycosylated starting structures from non- or partially glycosylated models. We 

generate the glycan from an IUPAC string or file and affix it to the peptide at the requested 

position in a starting conformation with torsion angles pulled from the linkage conformer 

database. Glycans can be appended to a structure in N- (Figure 5), O- (Figure S3), or C-

linkages or attached to other monosaccharide residues. Such a glycosylated peptide can be 

used as a starting point for other modeling applications, or protocols can be written to 

sample the heterogeneous array of glycans a peptide might be able to exhibit. As a starting 

point, we have added a small file library of common glycan sequences to the Rosetta 

database for use with this function.

“Loop” Modeling of Carbohydrates

When conjugated glycans are not fully resolved in crystal structures, it is usually 

monosaccharide residues nearest the non-reducing end(s) that are unresolved. On occasion, 

however, the non-reducing-end residue(s) may interact tightly with another portion of the 

structure, and the internal residues of the glycan instead remain unresolved.[62] This latter 

scenario can be treated as a loop-building problem, where the missing residues can be 

appended and then the gap closed to form a starting model for either MD or further Rosetta 

applications.

Rosetta regularly uses loop-closure algorithms borrowed from robotics in the modeling of 

dynamic loop regions of proteins. One of these algorithms, cyclic coordinate descent (CCD), 

minimizes the distance of the two atoms of the “cut” bond in the loop by changing one 

torsional degree of freedom at a time, one after the other in a cycle until the loop is 
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closed.[63] We refactored and adapted the CCD code within Rosetta to allow the rapid 

closing of saccharide “loops”, including cases where residues of the loop are branch points. 

CCD can be combined with backbone sampling and sugar-aware scoring to model such 

cases where glycan density was undefined in a starting crystal. We then implemented a 

carbohydrate loop-modeling protocol with Python using the PyRosetta libraries. The 

protocol performs 25 Monte Carlo cycles[6,64] of small moves, CCD loop closure, and 

minimization. (25 cycles provided score convergence in this test case.) Our script is included 

within the supplementary material.

As an example, we modeled the non-fucosylated glycan β-D-GlcpNAc-(1→2)-α-D-Manp-

(1→3)-[β-D-Galp-(1→4)-β-D-GlcpNAc-(1→2)-α-D-Manp-(1→6)]-β-D-Manp-(1→4)-β-

D-GlcpNAc-(1→4)-β-D-GlcpNAc- found on a subunit of the Fc region of IgG from PDB 

structure 3AY4 (Figure 6).[65] First, from the native structure, we cut the bond between the 

third residue of the glycan (β-D-Manp) and the α-D-Manp off its O6 branch. We then 

extended the two fragments (from the reducing-end β-D-GlcpNAc and the non-reducing-end 

β-D-Galp) by setting all glycosidic torsion angles to 180° to form an open loop. With this 

starting structure, we used our PyRosetta protocol described above to close the loop and 

sample alternate loop conformations. After generating 500 model structures, 40% showed 

closed glycan loops with heavy-atom RMSDs less than 0.25 Å from the crystal structure 

(Figure 6, Supplemental Video).

Docking of Carbohydrates

Docking is an important modeling application that attempts to capture the interactions 

among multiple molecules within a system; it is crucial for understanding biological 

processes. Standard sampling moves in Rosetta docking algorithms involve rigid-body 

translations and rotations. If performing flexible docking, backbone motions are sampled 

with side-chain packing during refinement steps. Rosetta has had success in solving protein–

protein,[27,66] protein–ligand,[28] and protein–peptide[67,68] docking problems, and our early 

attempts at docking carbohydrate ligands placed us seventh among 31 teams during CAPRI 

challenge round 27.[41,69] The docking algorithm we describe here for carbohydrate ligands 

expands and generalizes the method we used in CAPRI round 27, which was modeled after 

the FlexPepDock algorithm.[67,68]

Before docking, we prepack native structures to remove side-chain clashes and unusual 

conformations. Each distinct docking trajectory is then started from a pose with randomly 

oriented ligand in both rigid-body and glycosidic-bond torsion space.

Each trajectory’s pose undergoes 100 Monte-Carlo cycles in which the ligand’s rigid-body 

orientation is perturbed, slid into contact with the interface, and minimized into a local rigid-

body orientation, followed by random, small backbone movements, packing (including both 

glycan and peptide interface side-chains), and another minimization step, before accepting 

or rejecting each pose with the Metropolis criterion (Figure S4). 100 cycles were selected, 

because convergence of the score was observed within this number during early testing of 

the protocol.
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The talaris2014 scoring function was used for scoring,[44] with terms adjusted with 

multipliers found favorable for docking.[70] We ramp the attractive and repulsive scoring 

term weights down and up, respectively, to the standard values throughout the course of the 

100 cycles. A site constraint with a flat harmonic function,

is used to ensure that carbon C1 of the first residue of the glycan ligand is held close to the 

protein surface (any atom of any residue of both heavy and light antibody chains). Without 

this constraint, glycans tend to escape into the solvent.

The C++ application for glycan docking is included with the current release version of 

Rosetta.

Docking Benchmark—To compare results to previous work, we tested our protocol using 

a set of antibody–glycoantigen pairs from Agostino et al., who compared the capabilities of 

four docking algorithms.[71] In that report, the eleven test cases were chosen for the small 

size of the glycan ligands (four or fewer monosaccharide residues), and all ligands were 

antigens in an antibody–carbohydrate complex with a solved structure in the PDB. For our 

test, we modeled nine of the eleven cases, (omitting the single glycolipid case—which was 

noted as problematic for all four algorithms tested in the Agostino report—and a case 

containing a deoxyrhamnose, for which we did not have parameters at the time of our test.) 

The nine glycoantigens docked included two Lewis series antigens, two high-mannose 

fragments, and three derivatives of α-D-Galp-(1→2)-[α-D-Abep-(1→3)]-α-D-Manp 
(Figure 7). Two of the glycoantigens were docked in two separate test cases each to different 

antibodies. The diverse set thus contained deoxy sugars, N-acetylhexosamines, methyl 

glycosides, and branched and linear molecules.

As in the Agostino study, we performed local bound–unbound docking, where we started the 

simulation with the antibody coordinates from the PDB and the carbohydrate ligand 

coordinates from a randomized backbone conformation and a randomized rigid-body 

orientation in the vicinity of the biding site. Following Agostino et al., we kept ring 

conformations locked in their starting orientations.

We generated 5,000 decoys for each protein–ligand pair. We compared all decoys resulting 

at the end of the protocol to the prepacked native structures and calculated root-mean-

squared deviations (RMSDs).

Agostino et al. also performed “flexible receptor docking” in which the bound antibody 

structure was allowed to move during the simulation. We also performed such flexible 

receptor docking but found no qualitative difference from our “rigid receptor docking” 

results. We only describe the rigid-receptor results here.
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Docking Results—We consider three criteria indicative of a successful docking 

calculation: A) that we have sampled structures close to the native complex, B) that our 

lowest-scoring decoys are closest to the native complex, and C) that the distribution of our 

decoys “funnels” toward only a single structure. We consider Rosetta to have been 

successful if all of the above criteria are true and partially successful if only two of the above 

criteria are true. For our benchmarking sample, Rosetta was fully successful in four of nine 

cases and partially successful in three. A summary of the results are shown in Table 1.

The four cases involving Gal-[Abe]-Man antigens showed similar results. In three of those 

four cases (1MFC was the exception), we observe a docking funnel in which the best ranked 

decoys by total Rosetta score are among the decoys with the lowest ligand root-mean-square 

deviation (RMSD). In the case of 1MFA, Rosetta’s lowest-scoring decoy was the best decoy 

by ligand RMSD (Table 1), but the docking funnel was not deep for total score vs. ligand 

RMSD in any of the cases (Figure S5). However, when we plot the interface score 

(ΔEinterface = ΔEtotal − ΔEsplit, where ΔEsplit is the Rosetta score when the ligand is pulled 

away from the anitbody) vs. ligand RMSD, we see steep funnels in all cases (Figure 8a, 

Figure S5). Four out of five lowest-interface-score structures for 1MFA recover better than 

85% of native contacts, three out of five structures for 1MFC recover better than 75%, five 

of five for 1MFD recover better than 90%, and ten out of ten recover better than 80% for 

1MFE. (We consider a receptor and ligand residue to be in contact if any heavy atom of one 

residue is within 5 Å of a heavy atom of the other residue.) These cases are complete 

successes.

For benchmark cases 1OP3, 1S3K, and 1ZLU (Figure S6), we see funnels both for total 

score vs. ligand RMSD and interface score vs. ligand RMSD, but they are not steep. On the 

contrary, some structures well beyond 10 Å RMSD drop lower in score then near-native 

decoys. We judge this a problem of scoring/discrimination. In the case of 1OP3, we sample 

very close to the native complex, with many decoys having 100% of native contacts 

received. Our second-best decoy has a ligand RMSD of 0.74 Å and recovers 100% of native 

contacts, yet our best decoy has an RMSD of 15.48 Å and recovers no contacts (Figure 

8b,e). In contrast with our four fully successful cases, with 1OP3, Rosetta is better at 

predicting a correct structure using total score than it is by relying on interface score.

Case 1S3K shows, instead, a sampling failure. None of the 5,000 decoys generated have a 

ligand RMSD less than 2.5 Å. Even so, one structure with an RMSD of 2.65 Å recovers 88% 

of native contacts, but that is the only structure among the ten best decoys by interface score 

to recover more than 75%. While we do observe a steep funnel in the interface score vs. 

ligand RMSD plot (Figure S6), Rosetta did not sample well enough to consistently generate 

good models.

The same glycoantigen as in case 1OP3 was docked in complex 1ZLU, and the results were 

similar. Though the best model by total score was also the best model by ligand RMSD and 

half of the ten lowest-scoring decoys by interface score recovered 95%, we consider this 

only a partial success because the funnels in neither plot (Figure S6) were steep, leading to 

many false positives.
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Thus, we consider our tests with the above three cases, 1OP3, 1S3K, and 1ZLU, to be partial 

successes. Taking the above seven success cases together, if we were to blindly take the top 

ten best interface-scoring decoys, we would have at least one extremely close model in all 

cases.

As an example of a failure case, as shown in Figure 8c and f, the decoy with the best 

interface does not superimpose with the native ligand at all. Even in the decoy with the 

lowest RMSD, the ring of the galactose residue of the LewisX ligand is flipped 180° relative 

to the native structure. Both sets of failure case docking funnels are shown in Figure S7. 

Failure cases indicate areas of future improvement to be made in Rosetta’s sampling and 

scoring methods.

Summary & Outlook

We have created a new framework within the Rosetta modeling and design suite to permit 

structural modeling of saccharides and glycoconjugates. In doing so, we have also expanded 

Rosetta’s handling of polymer branching and ring conformations in general. We have 

introduced functionality for virtual glycosylations of structures in Rosetta and demonstrated 

applications of glycan loop modeling and ligand docking. Our initial glyco-ligand 

benchmarking tests show great promise in recovering native-like docked structures for 

oligosaccharide ligands: we can recover multiple structures with high levels of native-like 

contacts in six of nine test cases and at least one native-like structure in an additional case.

Our RosettaCarbohydrate framework opens the door for many applications, two of which are 

particularly noteworthy. First is the crystal refinement of glycoproteins. Many large protein 

structures are covered in linked glycans, such as the HIV envelope protein. Historically, 

Rosetta has had great success at helping to refine the x-ray structures of large peptide 

complexes with initially poor resolutions.[24] Unfortunately, since Rosetta could not properly 

account for carbohydrate residues, poor-resolution structures with glycan density could not 

be resolved using the same methods. Our modifications to Rosetta will now permit such 

untenable structures to be resolved.

Second, our framework allows for design applications. Through the manipulation of 

biosynthetic pathways and the provision of non-native or synthetic monosaccharides and 

precursors, glycoengineers can create unique glycosylation patterns.[19] The natural diversity 

of glycans is already vast, but it multiplies when synthetic saccharides are added to the mix

—and with them endless applications for research or medicinal purposes. Rosetta’s design 

strategy capitalizes on its “residue-based” organization. During the packing stage of a design 

algorithm, when swapping out one residue’s current rotamer for another, alternative residue 

types are sampled as well. It is a conceptually simple matter to extend Rosetta design to 

include non-natural monosaccharide residues. The ability to design alternative 

glycosylations in advance would save cost and speed the advance of glycoengineering 

research.
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Code Availability

RosettaCarbohydrate is part of the Rosetta modeling suite (www.rosettacommons.org), 

which is freely available for academic and non-profit use. The supplementary material 

includes Python scripts and command-line syntax for using applications described in this 

paper. Component methods and objects are also available in the PyRosetta libraries 

(www.pyrosetta.org).[72]

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A comparison of the degrees of freedom (DoFs) found in polypeptide (a) and polysaccharide 

(b) chains. The first and second residue are labeled and colored red and blue respectively. 

Torsion angles are indicated by arrows and labeled.
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Figure 2. 
A unified modeling language (UML) diagram of the RosettaCarbohydrate framework. New 

data objects introduced in this paper are shown with bold rectangles. In UML, solid 

diamonds (◆) indicate ownership of data, (e.g., Pose owns n Residues); open diamonds (◇) 

indicate access of data; and arrows describe functional relationships.
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Figure 3. 
A branched, completely unnatural sugar generated with the PyRosetta command 

pose_from_saccharide_sequence( whacky_sugar, ‘b-D-Fruf-(2->8)-a-Neup5Ac-(2->4)-b-D-

GlcpNS6S-(1->4)-[a-D-Xylp-(1->3)]-b-L-GulpA-(1->5)-b-D-Psip’ ), to demonstrate 

Rosetta’s ability to generate and handle ketoses, uronic acids, L-sugars, sulfated sugars, 

sialic acids, furanoses, and pentoses. The structure is not refined.
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Figure 4. 
Funnel plots comparing flexible bound–unbound glyco-ligand docking of maltose-binding 

protein (MBP) with maltotetraose (G4). The docking funnel is steeper when the sugar_bb 

scoring term is used. 50 decoys were generated per plot.
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Figure 5. 
A PyRosetta script, demonstrating the glycosylate_pose_by_file() function, and its output 

structure (overlay, CFG colors). A small peptide is first created from sequence, and its main-

chain torsion angles are set to typical β-turn values (some lines omitted). After 

glycosylating, the structure is minimized to remove clashes. The man3.iupac file contains 

the sequence: a-D-Manp-(1->3)-[a-D-Manp-(1->6)]-b-D-Manp-(1->4)-b-D-GlcpNAc-(1-

>4)-b-D-GlcpNAc-.
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Figure 6. 
A superimposition of the lowest-scoring Rosetta loop model (CFG colors) and the native 

structure from IgG Fc–FcγRIII (gray, PDB ID 3AY4). Saccharide residues are shown with 

thicker lines. Hydrogen bonds are shown in green dashed lines. The initial GlcNAc and 

terminal Gal residues were fixed as the start and end of a “loop” remodeled using the cyclic 

coordinate descent (CCD) algorithm with a “cut” in the middle of the loop.
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Figure 7. 
The seven glyco-ligands selected for the glycan docking benchmark. Symbols follow 

standard CFG notation.
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Figure 8. 
A comparison of ligand docking results. (a)–(c): Plots of interface score in Rosetta energy 

units vs. ligand RMSD for 5,000 structures created from independent starting configurations. 

(d)–(f): Rosetta decoys superimposed with the relaxed native structures. Hydrogen bonds are 

shown with green dashed lines. (d): The decoy with best interface score in CFG colors. (e): 

The decoy with the second-best interface score in CFG colors and the one with best interface 

score colored by element. (f): The decoy with the lowest RMSD in CFG colors and the one 

with best interface score colored by element.
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