
HAL Id: hal-01635863
https://inria.hal.science/hal-01635863

Submitted on 15 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Single-pass Incremental Force Updates for Adaptively
Restrained Molecular Dynamics

Krishna Kant Singh, Stephane Redon

To cite this version:
Krishna Kant Singh, Stephane Redon. Single-pass Incremental Force Updates for Adaptively Re-
strained Molecular Dynamics. Journal of Computational Chemistry, 2018, 39 (8), pp.412-423.
�10.1002/jcc.25126�. �hal-01635863�

https://inria.hal.science/hal-01635863
https://hal.archives-ouvertes.fr

Single-pass Incremental Force Updates for Adaptively
Restrained Molecular Dynamics

Krishna Kant Singh and Stephane Redon ∗

November 11, 2017

Abstract

Adaptively Restrained Molecular dynamics (ARMD) allows users to perform more
integration steps in wall-clock time by switching on and off positional degrees of free-
doms. This article presents new, single-pass incremental force updates algorithms to
efficiently simulate a system using ARMD. We assessed different algorithms for speedup
measurements and implemented them in the LAMMPS MD package. We validated
the single-pass incremental force update algorithm on four different benchmarks using
diverse pair potentials. The proposed algorithm allows us to perform simulation of
a system faster than traditional MD in both NVE and NVT ensembles. Moreover,
ARMD using the new single-pass algorithm speeds up the convergence of observables
in wall-clock time.

Keywords: Neighbor Lists, Incremental Force Update, Adaptively Restrained Molecular
Dynamics.

∗NANO-D, INRIA; Univ. Grenoble Alpes, LJK, F-38000 Grenoble, France; CNRS, LJK, F-38000 Greno-
ble, France

1

The figure represents the configuration space explore by all-atom MD and ARMD (with
different restraining parameters) simulations. Adaptively switching the positional degrees
of freedom on and off not only allows to perform more number of integration steps in wall
clock time but also produces the unbiased and equilibrium statistics of the system.

2

1 Introduction

Molecular Dynamics (MD) may serve as a computational microscope to decipher the struc-

tural and dynamical behavior of complex systems1. In particular, MD may provide atomistic

descriptions over several time scales (e.g. femtoseconds to milliseconds)2–7. Unfortunately,

simulating complex systems over experimental time scales is still computationally challeng-

ing8.

Numerous attempts have been made to either speed up simulations or enhance phase-

space sampling, for example through the use of additional biased potentials, which help

trajectories escape from local minima8–11. Complex systems can also be simplified through

coarse-grained simulations12–15. Other strategies involve modifications of the integration

time step, which may be increased either by increasing the mass associated with the fastest

mode present in the system, by repartitioning the mass, or by creating virtual sites16,17. MD

simulations have also been accelerated by optimized algorithms that perform mathematical

operations faster, sometimes on special-purpose supercomputers18.

In many simulations, most of the time is spent computing non-bonded forces, typically

divided into long-range and short-range forces. Long-range interactions involve electrostatic

interactions that are generally computed using specialized methods, including the reaction

field method19,20, the cell-multipole method, the fast multipole method21, particle Mesh

Ewald (PME)22 or the Wolf method23–28. Short-range forces decay fast and are generally

truncated at a cut-off distance rc. These forces are efficiently computed using neighbor lists.

With the Wolf method, long-range forces may also be computed using neighbor lists, and this

method recently attracted a great deal of attention for computing properties of electrolytes

and simulating biomolecules in explicit solvent25.

Adaptively Restrained Molecular Dynamics (ARMD) is a recent approach that attempts

to perform more integration steps per wall-clock second by reducing the number of com-

putations per time step29. In ARMD, positional degrees of freedom are adaptively turned

on and off during the simulation, based on their instantaneous kinetic energy. When two

particles are restrained, the forces they apply on each other do not need to be updated from

one time to the next. As a result, incremental force update algorithms, i.e. force calculations

3

that keep track of the total force applied on each particle and update forces involving active

particles, may significantly speedup the simulation29–32.

Up to now, however, such incremental algorithms have required two passes: one to sub-

tract interactions involving from the previous time step, and one to add updated interactions

for the current time step. As a result, previous incremental force update algorithms have

been useful in situations where at least half of the simulated particles were restrained. In

this article, we present a single-pass incremental force update algorithm for ARMD that

overcomes this limitation. The proposed algorithms are implemented in the LAMMPS MD

package and validated by performing simulations of diverse systems in both the NVE and

NVT ensembles.

2 Adaptively Restrained Molecular Dynamics

For completeness, we briefly review the ARMD methodology29. In ARMD, the time evo-

lution of a system containing N particles is obtained by the Adaptively Restrained (AR)

Hamiltonian:

HAR(q,p) =
1

2
pTΦ(q,p)p + V (q), (1)

where Φ(q,p) is the inverse inertia matrix that adaptively imposes restraints during the

simulation. Precisely, particles whose kinetic energy is smaller that a restrained-dynamics

threshold (εri) are restrained, and their positions remain unchanged. Particles whose kinetic

energy is greater than a full-dynamics threshold εfi are considered as active, and have normal

dynamics. Transition particles have kinetic energies between εri and εfi (in the context of

force calculations, transitioning particles are mobile, and are thus treated as, and called,

active particles). The status of each particle can evolve during the simulation, and the

Adaptively Restrained Hamiltonian (1) ensures that stable simulations can be performed.

Equilibrium statistics can be recovered when performing AR Langevin dynamics33. In order

4

to compute position-dependent equilibrium averages, equation 1 can be re-written as:

HAR =
1

2
pTM−1p + V (q) +

1

2
pT(φ(q,p)−M−1)p

HAR = H + VAR.

(2)

In equation 2, VAR is a biased term that depends upon the momenta of particles and

averages can be estimated29. In particular, correct position-dependent equilibrium averages

can be estimated as29:

< A(q) >HAR
=

∫
A(q)e

−H(q,p)
KT dq∫

e
−H(q,p)

KT dq
=< A(q) >H . (3)

From equation 3, it is to be noted that position-dependent averages from an ARMD and an

MD simulations are the same.

Due to the biased term VAR, ARMD might not be directly useful to compute dynamical

properties or properties that depend upon the fluctuations of kinetic energies.

3 Algorithms for AR Molecular Dynamics

Let C denote the complete list of particles, A denote the list of active particles, and R denote

the list of restrained particles. Let SA (resp. SR) denote the list of particles that switched

to being active (resp. restrained) between the previous and current time step.

In ARMD, a system of N particles can be referred to as a combination of NA active and

NR (= N −NA) restrained particles. Thus, at any time-step, interactions between particles

can be categorized as active interactions (interactions involving at least one active particle)

and restrained interactions (interactions between restrained particles only). Precisely, active

interactions involve forces between either two active particles (FAA) or one active particle

and one restrained particle (FAR), while restrained interactions involve forces between two

restrained particles (FRR). Figure 1 shows the three types of interactions on an example.

Most often, forces acting on particles only depend upon their relative positions. At a given

time step, relative positions between restrained particles do not change; hence, restrained

interactions and associated forces remain unchanged. This eliminates the need to compute

5

FRR force components involving restrained interactions, and the FRR force components from

the previous time step can be cached and reused. However, active particles update their

positions, and the associated force components (FAA and FAR) need to be updated at each

time step.

3.1 Active neighbor lists

In order to compute forces due to active interactions, we previously introduced Active Neigh-

bor Lists (ANLs) i.e. lists of active neighbor particles at a given time-step32. The ANLs are

constructed from Full Neighbor Lists (FNLs), and the ANL of an active particle i can be

described as ANL(i) = {∀j ∈ FNL(i) : j ∈ R∪ (j ∈ A∩ (j < i))}. In other words, ANL(i)

contains all the restrained neighbors of i, and the active neighbors of i with smaller indices

(due to the condition j < i).

3.2 Two-pass incremental force update algorithm

In MD, the forces acting on all particles are typically computed once, after updating particles

positions. In contrast, in ARMD, only the positions of active particles are updated, and forces

are updated based on the new positions of active particles, thereby eliminating the need to

compute all forces. In our previous approach, active interactions were incrementally updated

using an algorithm that involved two force update steps29,30,32:

1. First pass or subtraction step: This pass removes the force increments involving active

particles based on the old positions, by computing the force increments due to active

particles and subtracting them from the total force.

2. Position update step: This involves updating the positions of active particles only,

instead of updating the positions of all particles.

3. Second pass or addition step: This step involves computing force increments based on

the updated positions of active particles, which are then added to the forces obtained

from the subtraction step.

6

This incremental force update algorithm requires force increments to be calculated twice

in a single integration step, limiting the usefulness of ARMD to cases where at least 50% of

particles are restrained32. Furthermore, if all particles are active, the proposed incremental

force algorithm would be twice times slower than the normal MD algorithm.

3.3 Single-pass incremental force updates

In order to overcome the aforementioned limitation, we have designed a single-pass incre-

mental force computation algorithm.

In ARMD, the force Fi acting on a particle i can be written as Fi = FiAA
+ FiAR

+ FiRR

(figure 1), where FiAA
refers to forces between two active particles, FiAR

refers to forces

between an active and a restrained particle and FiRR
refers to the force between two restrained

particles.

Assume there are no switching particles between the n-th and (n+1)-th time step. Using

the two-pass incremental force computation algorithm, the position of an active particle i is

updated, and the total force Fi = FiAA
+ FiAR

applied to it is updated during the addition

step. Since the new position is not updated after the addition step, though, the next

substraction step substracts the same force increments, yielding Fi = 0 after the subtraction

step. Therefore, in case of an active particle, the subtraction step can be replaced by assigning

zero to the associated force.

In case of a restrained particle i, the total force applied to it is Fi = FiAR
+FiRR

. As noted

above, FiRR
can be cached and reused, so that we only have to compute FiAR

. In single-

pass algorithm, force on the particle i is assigned as Fi = FiRR
before computing the force

component, unlike the previous algorithm that adds and removes FiAR
force component (as

the FiRR
force component remains unchanged and could be retained from the previous time

step). Also, this algorithm eliminates the need to carry out subtraction step and subtraction

step can be removed with algorithm 1. However, the time evolution of the system switches

the state of the particles, force components associated with these switched particles need to

be computed, before applying algorithm 1. Particles can switch their states in two ways:

1. Switching to active state

7

2. Switching to restrained state

It is likely that the switching in the state of particles may cause the change in the

type of interaction (to an active or restrained interaction) and hence the associated force

components.

An active interaction associated with pair i− j can switch to a restrained interaction in

the following two ways:

• Assuming at time step n both particles i and j are active and they switch to a restrained

state at n+ 1 time step, the FAA force component associated with the pair i− j would

now switch to the FRR force component. As ANLs avoid computation of FRR force

component, this switched force component needs to be computed and stored for next

time steps.

• On the other hand, if we assume particles i and j to be active and restrained respec-

tively at a time step n (associated force component has type FAR), and at n+ 1 time

step the particle i changes to a restrained state, this switching updates the interaction

type from active to restrained and associated force component from FAR to FRR. As

mentioned previously, the updated FRR force component needs to be computed and

stored for the next time-steps.

Similarly, a restrained interaction belonging to a pair i − j can switch to an active

interaction in the following ways:

• In case, particle i or j switches their state from restrained to an active state, force

component FRR associated with this pair switches to FAR. This updated FAR force

component needs to be computed and subtracted from the forces of restrained neighbors

of the this switched particle i.

• Another possibility wherein both particles i and j switch from active to restrained state,

the associated FRR force component switches to the FAA force components. This type

of switching does not require any force computation as zero can be assigned for the

forces associated with i and j.

8

In order to compute the switched force components (FRR or FAR), we used a modified

active neighbor list ANL′. The ANL′ of a switched particle i is an extracted ANL that

contains only restrained neighbors. Algorithm 2 gives a description of extracting the ANL′

from the ANL. Algorithm 3 shows the pseudo-code to compute switched force components.

Line 3 of algorithm 3 computes FRR force components and stores them in F+ and line 9

computes FAR force components and stores then in F− for the switched particles.

Algorithm 1 gives the pseudo-code to perform the ARMD integration step using the

ANLs and incremental force update algorithm. In this algorithm, before computing forces

based on the new positions, zeros (line 3) and the force components FRR (line 6) are assigned

to the forces corresponding to active and restrained particles respectively.

Algorithm 1: SinglePassIncrementalForceComputation()

1 for i ∈ C do

2 if i ∈ A then

3 F+
i ← 0

4 end

5 else

6 F+
i ← F+

i − F−i
7 end

8 F−i ← 0

9 end

10 F ← F+ + ComputeForces(A,ANL)

4 Analysis

In this section, we assess different algorithms for constructing ANLs and incrementally up-

date forces. We compare these algorithms with brute-force MD algorithms which have a

running time equal to τMD = N ∗ τFNL +N ∗ τF , where N is the total number of particles,

τFNL is the time needed to build the FNL of one particle, and τF is the time required to

9

Algorithm 2: ExtractANL′(i)

1 ANL′(i)← ∅

2 for j ∈ ANL(i) do

3 if (i ∈ R and j ∈ R) or(i ∈ A and (j ∈ R and j /∈ S)) then

4 ANL′(i)← ANL′(i) ∪ j

5 end

6 end

Algorithm 3: SwitchedForces()

1 for i ∈ SR do

2 ExtractANL′(i)

3 F+ ← F+ + ComputeForces(i, ANL′(i))

4 ClearANL(i)

5 end

6 for i ∈ SA do

7 BuildANL(i)

8 ExtractANL′(i)

9 F− ← F− + ComputeForces(i, ANL′(i))

10 end

10

Algorithm 4: ARMD integration step

1 Update momenta

2 Update A,R, SA, SR

3 if (UpdateNeeded) then

4 for i ∈ C do

5 if i ∈ A then

6 Build FNL(i) and ANL(i) simultaneously

7 end

8 else

9 BuildFNL(i)

10 end

11 end

12 end

13 else

14 SwitchedForces()

15 end

16 Update Positions

17 SinglePassIncrementalForceComputation()

11

compute the total force acting on one particle due to its neighbors. To simplify the analysis,

we consider the timing required to construct the FNL rather than the HNL.

4.1 Time complexity

In this algorithm, the FNLs of all particles and the ANLs of active particles were constructed

at the same time. The ANLs of particles that become active were constructed using the FNL

of the corresponding particle, as building the ANLs from scratch is relatively more time con-

suming. The force components FAR or FRR for switched particles were then computed in

two steps (Algorithm 3). The first step involves extracting ANL′ from ANL, and the second

step involves computing specific force components with ANL′.

The computation time for algorithm 4 is given by:

τARMD1 = N ∗ τFNL +NA ∗ τF +NSA ∗ τFANL +NSA ∗ τSF +NSR ∗ (τSF + τCL) +NS ∗ τEx (4)

τEx : Time to build the ANL′ for one particle.

τFANL : Time to construct the ANL from the FNL.

τSF : Time to compute specific force components (FAR or FRR).

τCL : Time to clear an ANL.

NSA : Number of particles switching to an active state.

NSR : Number of particles switching to a restrained state.

NS : Total number of switched particles (NSA +NSR).

Note that Equation (4) does not include τANL, the time to compute an ANL, since, when

neighbor lists are update from scratch (lines 3-12), Algorithm 4 computes FNLs and ANLs

simultaneously.

Algorithm 4 is more efficient than classical MD when τARMD1 < τMD, i.e.:

NA ∗ τF +NSA ∗ τFANL +NSA ∗ τSF +NSR ∗ (τSF + τCL) +NS ∗ τEx < N ∗ τF . (5)

To simplify the analysis, we assume the following worst cases:

Assumption 1: All switching particles switch to an active state, making it necessary to

construct ANLs for all switched particles: NSR = 0 and NS = NSA.

12

Assumption 2: Computing a force component FAR or FRR for a particle takes as much

time as computing the total force on this particle: τSF = τF .

Assumption 3: Even though a) computing the ANL of a particle from its FNL and

b) extracting the ANL′ of a particle from its ANL are both much more efficient than

computing the FNL of a particle, we assume that the sum of τFANL and τEx is equal to

τFNL: τFNL = τFANL + τEx.

Considering these three assumptions, inequality 5 holds when:

NA ∗ τF +NS ∗ τFNL +NS ∗ τF < N ∗ τF , (6)

i.e. when:
NA

N
+
NS

N
(1 +

τFNL

τF
) < 1. (7)

4.2 Optimization

Although Algorithm 4 computes the ANLs and ANL′s required to perform the single-

pass force update algorithm, it computes the FNLs of all particles when neighbor lists are

updated from scratch. Since the FNL of a restrained particle is only useful when it switches

to an active state, however, Algorithm 4 may be optimized by maintaining hasFNL, a list

of particles for which the FNL has been computed, and using this list to determine when

to update the various neighbor lists.

Algorithm 5 describes the optimized version. When a particle switches to a restrained

state, the ANL of this particle is cleared, while retaining its FNL. When a particle switches

to an active state and it does not have a FNL, its ANL and FNL are constructed on-the-fly

(i.e. outside the neighbor list construction step). When a particle switches to an active state

and already has an FNL (such as when a particle switches states multiple times between two

neighbor list construction steps), the ANL of this particle is constructed from the existing

FNL. Algorithm 6 shows how Algorithm 3 is modified in the optimized case, when hasFNL

is available.

The computation time for Algorithm 5 is given by:

τARMD2 = NA∗τFNL+NA∗τF+N ′SA∗τFNL+(NSA−N ′SA)∗τFANL+NSA∗τF+NSR∗(τSF+τCL)+NS∗τEx,

(8)

13

Algorithm 5: ARMD integration step

1 Update momenta

2 Update A,R, SA, SR

3 if (UpdateNeeded) then

4 hasFNL← ∅

5 for i ∈ A do

6 Build FNL(i) and ANL(i) simultaneously

7 hasFNL← hasFNL ∪ {i}

8 end

9 end

10 else

11 SwitchedForces′()

12 end

13 Update Positions

14 SinglePassIncrementalForceComputation()

14

Algorithm 6: SwitchedForces′()

1 for i ∈ SR do

2 ExtractANL′(i))

3 F+ ← F+ + ComputeForces(i, ANL′(i))

4 ClearANL(i)

5 end

6 for i ∈ SA do

7 if i ∈ hasFNL then

8 BuildANL(i)

9 end

10 else

11 Build FNL(i) and ANL(i) simultaneously

12 hasFNL← hasFNL ∪ {i}

13 end

14 ExtractANL′(i)

15 F− ← F− + ComputeForces(i, ANL′(i))

16 end

15

where N ′SA is the number of particles without a FNL that have switched to an active state.

In order to compare the time complexity of Algorithm 5 with the MD algorithm, we

considered the same assumptions as in the Algorithm 4) (NSR = 0, τFANL + τEx = τFNL and

τF = τSF), and added another worst-case scenario assumption, where all switching particles

switch to an active state and do not have an FNL: NS = NSA = N ′SA.

After substitution, Equation 8 changes to:

τARMD2 = NA ∗ τFNL +NA ∗ τF +NS ∗ τFNL +NS ∗ τF +NS ∗ τEx. (9)

Since both NS and τEx are small, we may neglect their product. As a result, Algorithm 5 is

more efficient than classical MD when NA +NS ≤ N , which is generally true for ARMD.

The difference in the computation times of Algorithms 4 and 5 is:

τARMD1 − τARMD2 = (N −NA −NSA) ∗ τFNL. (10)

If the sum of the number of active particles and the number of particles that switch to

an active state is smaller than the total number of particles (which is true most of the time

since the number of switching particles is small), then Algorithm 5 performs better than

Algorithm 4.

5 Results and discussions

The algorithms introduced above were validated on the following benchmarks:

1. Systems of Lennard-Jones particles.

2. Simulation of Crystal NaCl.

3. High-velocity impact of nanodroplet.

4. Simulation of a polymer in the solvent.

We note that, since the ARMD methodology has been validated beforehand29,31, the aim

of these benchmarks is to validate the single-pass incremental force update algorithms.

16

5.1 Systems of Lennard-Jones particles

We performed simulations of different numbers (500, 4000 and 108000) of Lennard-Jones

particles using the AR integrator in the NVE ensemble. All simulations were carried out in

reduced units (lj units) using the LAMMPS MD package. Particles were generated on a fcc

lattice with density 0.8442 and initial velocities were assigned according to the Boltzmann

distribution at temperature kBT = 1.44. For all simulations, we used a time-step of 0.005

and interactions beyond a distance of 2.5σ were ignored. Periodic boundary conditions were

employed in all three directions.

We performed two series of benchmarks. In the first series, the percentage of restrained

particles was constrained by assigning very high AR parameters to a specific number of

particles (and zero AR values to the others), to ensure they would not switch their state and

remain restrained. In the second series, we let particles switch their state and assigned all

particles the same (lower) AR parameters.

We compared the run time of our algorithms with that of LAMMPS algorithms. The

reference simulations were performed using LAMMPS neighbor lists and force algorithms,

whereas ARMD simulations were performed using the ANLs and single-pass incremental

force algorithms. The neighbor list was updated at every 20 time-steps. For speedup mea-

surements, we computed the average time spent at each integration step and the time spent

in the construction of the ANL as well. These values were then compared to the average time

spent per integration step and per construction of neighbor list in the reference simulations.

Series 1 (constrained number of restrained particles): Figure 2 shows the achieved

speedup in constructing the ANL vs. the percentage of restrained particles. The construction

of both the ANL and the FNL required a 27r3c volume to be searched, in contrast to the

HNL, which required half of that volume. As a result, the construction time for building

the ANL or the FNL was twice that of the HNL. However, in order to have a speedup when

constructing the ANL, at least 50% of the particles are required to be restrained. Also, we

found that the obtained speedup in constructing the ANL was the same regardless of the

number of particles present in the systems. In conclusion, we observed a 2X (resp. 4X)

speedup in constructing the ANL while restraining 80% (resp. 90%) of the particles.

17

Figure 3 shows the achieved speedup per integration step with respect to the percentage

of restrained particles in the system. Thanks to the new single-pass force update algorithm,

there is no constraint on the minimum number of restrained particles. In fact, even with

only 40% of particles restrained, we achieved a 1.5X speedup. With 60% of the particles

restrained, our algorithm performed twice as fast as the LAMMPS algorithm. Furthermore,

3X to 5X speedups were observed when 80− 90% particles were restrained.

Finally, we measured the overall speedup which encompasses the time to built the NLs and

the time to perform integration steps. Figure 4 shows the overall speedup vs. the percentage

of restrained particles. For less than 50% of restrained particles, the new single-pass incre-

mental algorithm is twice faster than the two-pass incremental algorithm. As expected, the

single-pass incremental algorithm is always faster than the two-pass incremental algorithm

due to the reduced number of force computations. When comparing with traditional MD

and the number of restrained particles was less than 20%, however, no speedup was achieved.

This is explained by the cost of constructing the ANL, which is approximately twice the cost

of constructing the HNL. Overall, A similar trend to the speedup in Figure 3 was observed

with the overall speedup: a 2X speedup was observed with 60% particles restrained and up

to 5X speedup with 90% particles restrained (Figure fig:case1overallspeedup).

Series 2 (identical AR parameters for all particles): In this series of benchmarks,

particles were allowed to switch states during simulation. Table 1 shows that the average

number of switched particles at each time step was much smaller than the number of particles

in the system. Thanks to this, switched particles did not have much influence on the obtained

speedup, which reproduced the patterns observed in Series 1, and the single-pass force update

algorithm always performed better than the two-pass incremental algorithm.

For the system containing 500 particles, with the single-pass incremental algorithm, a

2.1X to 3.5X speedup was observed with 81% to 86% particles restrained, and a maximum

speedup of 4.5X was achieved when 92% of the particles were restrained. The AR parameters,

the average number of switched particles and the average number of restrained particles can

be found in Table 1.

For the system containing 4000 particles, a 3.8X speedup was attained when 91% of the

18

particles were restrained, whereas in Series 1 the corresponding speedup was 4.5X with the

same number of restrained particles. When 96% and 98.5% of the particles were restrained,

we achieved a 6X and 8.9X speedup respectively. A 1.2X speedup was observed with the

57% of the particles as restrained particles. In another system containing 32000 particles,

a 2X speedup was achieved with 46% of restrained particles. A 4X to 6X speedup was ob-

served with 85% to 98% of particles restrained. For the system containing 108000 particles,

a maximum speedup of 7.5X was observed with 97% of restrained particles. The reduction

in overall speedups in Series 2 as compared to Series 1 is due to switched particles (build-

ing ANL and computing force components), and the fact that the observed percentages of

restrained particles are averages.

5.2 Simulation of NaCl

In order to validate our algorithm on a computationally expensive potential, we simulated

a system containing 8000 (4000 Na+ and 4000 Cl−) NaCl particles. In this NaCl system,

charged particles Na+ and Cl− interact via electrostatic interactions. In MD, during force

calculations, most of the computational time is used in calculating electrostatic forces. In

the NaCl system, around 90% of the total time is spent in the computation of electrostatic

interactions.

The NaCl system was simulated using the Tosi-Fumi (TF) potential augmented with a

coulombic potential. The TF potential is given by equation 11, and this potential is broadly

used in simulation of alkali halides.

U(r) = A exp

(
σ − r
ρ

)
− C

r6
+
D

r8
r < Rc (11)

The first term in equation 11 is the Born-Mayer exponential repulsive term and the second

term involves 8, 6 Van der Waals attractive interaction. Parameters for TF potential are

taken from reference34. Instead of calculating electrostatic forces based on Ewald summation

method, we used Wolf summation. The Wolf method is computationally efficient (O(N))

as compared to the Ewald-based methods. Furthermore, the Wolf method can use neighbor

19

lists for computing electrostatic forces:

EWolf =
1

2

N∑
i=1

∑
j 6=i

rij<Rc

[(
qiqj erfc(αrij)

rij
− qiqj erfc(αRc)

Rc

)]
−
(

erfc(αRc)

2Rc

+
α√
π

) N∑
i=1

q2i
4πε0

(12)

In equation 12, erfc is the complementary error function, qi and qj represent the point

charges on particles i and j, α is the damping parameter and Rc is the cut-off radius. Details

regarding the Wolf method can be found from references23–28. For the Wolf method, we used

the same parameters as those mentioned in the literature35.

Cut-off distances of 7.5Å and 15Å were used for the TF potential and Wolf summation

respectively. The system was simulated for 100000 time-steps using an integration time-step

of 2fs in the NVE ensemble. In order to measure the speedup, we performed reference

MD simulations as well as ARMD simulations with different AR parameters. For timing

measurements, we ran 50 independent simulations (MD and different ARMD simulations)

for each combination of parameters and timings were averaged over these 50 simulations.

Different AR parameters (Table 2) give rise to different average numbers of active and

switched particles. Figure 6 shows the speedup obtained with ARMD compared to MD.

We achieved a 2X speedup with 65% of restrained particles, and a 4X to 10X speedup was

achieved with 82% to 96% of restrained particles. This benchmark shows that combining

the Wolf method with ARMD significantly reduces the number of calculations, which may

result in a significant speedup.

5.3 High-velocity impact of a nanodroplet

The high-velocity impact of a nanodroplet on a crystal surface changes the state of the crystal

to an amorphous state, and this process is known as amorphization36,37. We performed this

benchmark to show that ARMD simulations may offer important speedups on such processes.

Our model system contains three types of particles, namely 1) nanodroplet, 2) target slab

and 3) boundary particles. The nanodroplet consists of 2891 identical particles that are

spherically distributed in a hexagonal close-packed arrangement (blue particles shown in

Figure 7); the target slab consist of 344,988 identical atoms on the fcc lattice (grey and red

20

particles shown in Figure 7); the boundary of the slab remains fixed and has no velocity

(green particles shown in Figure 7). Interactions among particles were computed using the

Lennard-jones potential. All simulations were performed using a 1 fs integration time step

and ran for 75 ps. The initial velocity of the nanodroplet was set to 4 km/s (in negative z

direction). Due to the high velocity of the nanodroplet, the neighbor list was constructed

every fifth time step.

In order to measure the amorphization process, we observed the radial distribution func-

tion (RDF) of the impact volume of the target slab (red particles in Figure 7) for different

sets of AR parameters, and compared the obtained RDFs with the one obtained with a

reference MD simulation. In this benchmark, most slab particles were initially restrained,

and gradually started to switch to an active state after impact.

As shown in Figure 7, the crystalline structure at the impact area completely changes to a

non-crystalline structure (amorphous state). This figure also shows that ARMD simulations

allow us to trade between speed and accuracy. Lower values of AR parameters produce a

trajectory similar to the MD trajectory, but higher values of AR parameters produce higher

speedups. Figure 8 shows the obtained RDFs of the impact area (particles denoted as red in

figure 7) at different time-steps. At the beginning of the simulation (at t = 0ps), the impact

area had a crystalline structure. As the simulation proceeds, this crystalline structure started

to deform and changed to an amorphous state (RDFs at t = 15, 30, 45, 60 and 75ps). During

the amorphization process, the RDFs obtained from ARMD simulations mostly coincide with

the RDF obtained using MD (Figure 8). The RDFs of the impact area at 75ps obtained

using both ARMD and MD had their first peak at 2.35Å and second peak at 4.5Å. In order

to measure the speed obtained by ARMD, we ran each simulation 50 times and computed the

average time spent. We measured the speedup with respect to the reference MD simulation.

ARMD achieved 2.3-7X speedup with 56 − 85% restrained particles as compared to MD.

Table 3 shows the speedup obtained with different AR parameters. This benchmark shows

that ARMD saves wall-clock time while obtaining the structural properties of a specific part

of the system much faster than classical MD, thanks to the automatic particle state switching

resulting from the AR Hamiltonian29.

21

5.4 A single polymer chain in solution

This model is used to study the properties of a polymer in solution. This model is also

a representative model of the biological coarse-grained model of protein in water. In this

benchmark, we test the possibility for ARMD to obtain statistical averages faster than with

MD. We performed ARMD of the system with different AR parameters and compared our

results with those obtained using MD. A polymer chain of 30 monomers immersed in 4000

solvent particles was simulated in the NVT ensemble at temperature kBT = 1.2 with density

ρ = 0.86, while using a time step of 0.001. Periodic boundary conditions were imposed in all

the three directions. The FENE potential was used for the backbone (eq. 13) and truncated

Lennard-jones (WCA) potential was used for pair interactions. Initial velocities were assigned

according to the Boltzmann distribution.

UFENE(r) = −K
2
R2

0 ln

(
1− r2

R2
0

)
(13)

The system was initially minimized and then equilibrated for 10000 steps. After the

equilibration period, the system was simulated for 109 steps in the NVT ensemble. Initial

velocities were assigned using Maxwell-Boltzmann distribution at temperature kBT = 1.2.

One of the main goal of MD is to compute the statistical properties of the system by

calculating averages. Averages obtained by MD are time averages and, if simulation is long

enough to be converged, these time averages are equal to ensemble averages (ergodic hypoth-

esis). However, averages over a trajectory are subject to two types of errors: systematic bias

and statistical errors. Systematic bias is due to the use of a discrete time step, and statistical

errors occur due to the quality of sampling (and may be large if averages are obtained from

an undersampled trajectory).

Statistical errors in time averages may be estimated by measuring the variance of an

observable l. The variance can be measured either by correlation time analysis or by a

block-averaging scheme38–41. In previous studies of ARMD, time correlation analysis was

used to measure errors and variance33, and we use the same approach for error estimations

of ARMD trajectories in the present paper. The correlation time τl of an observable l is

the simulation time required for a trajectory to de-correlate its value from an initial value

l0. Therefore, the correlation time for an observable provides an estimation of N ind
l , the

22

number of statistically independent values of the observable present in the trajectory: if tsim

denotes the simulation length of a trajectory, then N ind
l ∼ tsim/τl. Larger values of N ind

l

suggests good sampling for the given observable. The time τl depends upon the nature of

observable42.

In ARMD, restraining positions of particles introduces additional correlation in the sys-

tem, thus yielding a larger correlation time for a given observable, as compared to MD

(τARMD
l ≥ τMD

l). If ARMD simulations have the same length as MD simulations, then

statistical errors are larger:

τARMD
l ≥ τMD

l and tARMD
sim = tMD

sim =⇒ N ind
lARMD

≤ N ind
lMD

Fortunately, statistical errors of averages obtained by ARMD may be reduced, and more

statistically independent values may be obtained, by performing simulations with longer

lengths (more time steps), since each time step costs less in wall-clock time. Therefore, the

overall speedup in the NVT ensemble is a function of the speedup obtained in wall-clock

time at each time step, and the time required to attain a given precision in the estimation

of a given observable33. This speedup can be expressed as:

S = Salgo
σ2
MD

σ2
ARMD

(14)

where Salgo represents the computational speedup at each time step adaptive algorithms

(ANLs and single-pass incremental force update algorithms), σ2
MD is the variance of a given

observable when using MD, and σ2
ARMD is the variance of the same observable when using

ARMD.

In this benchmark of a polymer in solvent, we chose the end-to-end distance of the poly-

mer as an observable, and computed the correlation times with different AR parameters.

Figure 10 shows the time correlation functions computed for end-to-end distances. As ex-

pected, the correlation function in the MD case is reduced in fewer time steps compared to

the correlation functions in ARMD simulations. In wall-clock time, however, some ARMD

trajectories decorrelate the end-to-end distance faster than MD, due to the reduction in the

average cost of a time step.

Table 4 shows the averaged values of end-to-end distances and radius of gyration of the

polymer chain. The averages obtained with MD and ARMD are approximately the same.

23

This experimentally shows how, when the observable is converged, averages obtained with

ARMD are the same as the ones obtained with MD (see29 for a mathematical proof). Figure

11 shows the 2D projection of all trajectories as a function of end-to-end distance and radius

of gyration of the polymer. Here as well we obtain unbiased position-dependent averages.

This illustrates that ARMD samples the same conformational space as the MD in the NVT

ensemble29.

6 Conclusions

We have presented a novel single-pass force update algorithm to speed up ARMD simulations.

Unlike our previous two-pass algorithms, the new algorithm may result in a speedup even

when a small percentage of particles is restrained. We have validated the approach on several

benchmarks, and have shown that the single-pass algorithm may be applied to computing

electrostatic interactions with the Wolf method. We showed how ARMD may be used to

converge a given position-dependent observable faster than with MD for systems where

precise information is needed at a specific part of the system only. On the other hand,

ARMD methodology might not be useful to study dynamical properties.

All algorithms have been implemented as a modified version of LAAMPS, which will

be made available through SAMSON Connect (https://www.samson-connect.net). In

the future, we would like to investigate the development of other incremental algorithms

for long-range interactions, and apply the AR methodology to diverse systems which might

benefit from restraining some particles, including ion channels, enzymatic reactions, defect

and crack propagation, etc.

6.1 Acknowledgments

We gratefully acknowledge funding from Rhone-Alpes Region through the ARC program,

and the European Research Council through the ERC Starting Grant n. 307629.

24

https://www.samson-connect.net

References

1. R. O. Dror, R. M. Dirks, J. P. Grossman, H. Xu, and D. E. Shaw, Annual Review of

Biophysics 41, 429 (2012), 00390 bibtex: dror biomolecular 2012.

2. S. A. Adcock and J. A. McCammon, Chemical Reviews 106, 1589 (2006), ISSN 0009-

2665, 00659.

3. M. Karplus and J. A. McCammon, Nature Structural & Molecular Biology 9, 646 (2002),

ISSN 1072-8368, 01851 bibtex: karplus molecular 2002.

4. W. F. van Gunsteren and H. J. C. Berendsen, Angewandte Chemie International Edition

in English 29, 992 (1990), ISSN 1521-3773, 01454.

5. A. Amadei, A. B. M. Linssen, and H. J. C. Berendsen, Proteins: Structure, Function,

and Bioinformatics 17, 412 (1993), ISSN 1097-0134, 02111.

6. R. Elber and M. Karplus, Science 235, 318 (1987), ISSN 0036-8075, 1095-9203, 00697.

7. M. Levitt, Journal of Molecular Biology 168, 595 (1983), ISSN 0022-2836, 00400.

8. A. Laio and M. Parrinello, Proceedings of the National Academy of Sciences 99, 12562

(2002), ISSN 0027-8424, 1091-6490, 02437 bibtex: laio escaping 2002.

9. D. Hamelberg, J. Mongan, and J. A. McCammon, The Journal of Chemical Physics 120,

11919 (2004), ISSN 0021-9606, 1089-7690, 00662.

10. A. Barducci, G. Bussi, and M. Parrinello, Physical Review Letters 100, 020603 (2008),

00608.

11. A. Barducci, M. Bonomi, and M. Parrinello, Wiley Interdisciplinary Reviews: Compu-

tational Molecular Science 1, 826 (2011), ISSN 1759-0884, 00608.

12. C. Clementi, Current Opinion in Structural Biology 18, 10 (2008), ISSN 0959-440X,

00247.

13. P. J. Bond, J. Holyoake, A. Ivetac, S. Khalid, and M. S. P. Sansom, Journal of Structural

Biology 157, 593 (2007), ISSN 1047-8477, 00256.

25

14. V. Tozzini, Current Opinion in Structural Biology 15, 144 (2005), ISSN 0959-440X,

00694.

15. S. Riniker and W. F. v. Gunsteren, The Journal of Chemical Physics 137, 044120 (2012),

ISSN 0021-9606, 1089-7690, 00020 bibtex: riniker mixing 2012.

16. C. H. Bennett, Journal of Computational Physics 19, 267 (1975), ISSN 0021-9991, 00080.

17. C. W. Hopkins, S. Le Grand, R. C. Walker, and A. E. Roitberg, Journal of Chemical

Theory and Computation 11, 1864 (2015), ISSN 1549-9618, 00031.

18. D. E. Shaw, M. M. Deneroff, R. O. Dror, J. S. Kuskin, R. H. Larson, J. K. Salmon,

C. Young, B. Batson, K. J. Bowers, J. C. Chao, et al., Commun. ACM 51, 91 (2008),

ISSN 0001-0782, 00419.

19. B. Garzn, S. Lago, and C. Vega, Chemical Physics Letters 231, 366 (1994), ISSN 0009-

2614, 00039.

20. I. G. Tironi, R. Sperb, P. E. Smith, and W. F. van Gunsteren, The Journal of chemical

physics 102, 5451 (1995).

21. M. Poursina and K. S. Anderson, Journal of Computational Physics 270, 613 (2014),

ISSN 0021-9991, 00001.

22. T. Darden, D. York, and L. Pedersen, The Journal of Chemical Physics 98, 10089 (1993),

ISSN 0021-9606, 1089-7690, 11098.

23. D. Wolf, P. Keblinski, S. R. Phillpot, and J. Eggebrecht, The Journal of Chemical Physics

110, 8254 (1999), ISSN 0021-9606, 1089-7690, 00716.

24. C. J. Fennell and J. D. Gezelter, The Journal of Chemical Physics 124, 234104 (2006),

ISSN 0021-9606, 1089-7690, 00331.

25. Y. Yonezawa, I. Fukuda, N. Kamiya, H. Shimoyama, and H. Nakamura, Journal of

Chemical Theory and Computation 7, 1484 (2011), ISSN 1549-9618, 00019.

26

26. J. S. Hansen, T. B. Schrder, and J. C. Dyre, The Journal of Physical Chemistry B 116,

5738 (2012), ISSN 1520-6106, 00038.

27. B. W. McCann and O. Acevedo, Journal of Chemical Theory and Computation 9, 944

(2013), ISSN 1549-9618, 00014.

28. J. A. Baker and J. D. Hirst, Faraday Discuss. 169, 343 (2014), ISSN 1359-6640, 1364-

5498, 00000.

29. S. Artemova and S. Redon, Physical Review Letters 109, 190201 (2012), 00013 bibtex:

artemova adaptively 2012.

30. M. Bosson, S. Grudinin, X. Bouju, and S. Redon, Journal of Computational Physics

231, 2581 (2012), ISSN 0021-9991, 00017 bibtex: bosson interactive 2012.

31. Z. Trstanova and S. Redon, Journal of Computational Physics 336, 412 (2017).

32. K. K. Singh and S. Redon, Modelling and Simulation in Materials Science and Engineer-

ing (2017).

33. S. Redon, G. Stoltz, and Z. Trstanova, Journal of Statistical Physics pp. 1–37 (2016),

ISSN 0022-4715, 1572-9613, 00005.

34. J. L. Aragones, E. Sanz, C. Valeriani, and C. Vega, The Journal of Chemical Physics

137, 104507 (2012), ISSN 0021-9606, 1089-7690, 00013.

35. G. S. Fanourgakis, The Journal of Physical Chemistry B 119, 1974 (2015), ISSN 1520-

6106, 00005.

36. F. Saiz and M. Gamero-Castao, Journal of Applied Physics 112, 054302 (2012), ISSN

0021-8979, 1089-7550, 00009.

37. F. Saiz and M. Gamero-Castao, AIP Advances 6, 065319 (2016), ISSN 2158-3226, 00001.

38. E. Lyman and D. M. Zuckerman, Biophysical Journal 91, 164 (2006), ISSN 0006-3495,

00087.

27

39. A. Grossfield and D. M. Zuckerman, Annual reports in computational chemistry 5, 23

(2009), ISSN 1574-1400, 00124.

40. D. M. Zuckerman, Annual review of biophysics 40, 41 (2011), ISSN 1936-122X, 00000.

41. E. Lyman and D. M. Zuckerman, The journal of physical chemistry. B 111, 12876 (2007),

ISSN 1520-6106, 00047.

42. T. D. Romo and A. Grossfield, Biophysical journal 106, 1553 (2014).

28

Figure 1: Different types of force components present in the system. Green particles are

active and blue particles are restrained. The force components FAA, FAR and FRR represent

forces acting between active particles, forces between active and restrained particles, and

forces between restrained particles.

Figure 2: Speedup when constructing the ANL (compared to the HNL) as a function of the

percentage of restrained particles.

Figure 3: Series 1: Speedup per integration step.

Figure 4: Series 1: Overall speedup obtained as a function of the percentage of restrained

particles using the single-pass and two-pass incremental algorithms. The new single-pass

algorithm always performs better than the two-pass algorithm.

Figure 5: Series 2: Speedup achieved with the single-pass and two-pass incremental algo-

rithms over MD as a function of the percentage of restrained particles.

Figure 6: Speedup achieved with ARMD for ANL construction and per time step in the

NaCl benchmark.

Figure 7: Cross-section view of the nanodroplet impact at 0, 15, 30, 45, 60 and 75 ps. Red

particles belong to the impact area. Green particles represent the fixed boundary of the

impact slab.

Figure 8: Comparison of the RDFs of the impact area obtained with MD and ARMD.

The RDFs obtained by ARMD with different AR parameters at different time-steps mostly

coincide with the RDFs obtained by MD.

Figure 9: Instantaneous temperature of the system with different AR parameters.

Figure 10: Time correlation function of the end-to-end distance of the polymer. The

left part shows that MD takes fewer iterations to decorrelate the end-to-end distance when

compared to ARMD. The right part shows that, in wall-clock time, however, some ARMD

simulations converge up to twice faster than a MD simulation.

29

Figure 11: Projection of trajectories on the end-to-end distance (R) and radius of gyration

(Rg) of the polymer (colors represent the number of conformations in each bin). This figure

illustrates that ARMD simulations produce unbiased positional statistics.

30

1 3

24

1 3

24

1 3

24

FAA FAR FRR

Figure 1
Krishna Kant Singh and
Stephane Redon
J. Comput. Chem.

31

0 10 20 30 40 50 60 70 80 90
% of restrained particles

0

1

2

3

4

5

S
p
ee

d
-u

p
500 particles

4000 particles

32000 particles

108000 particles

Figure 2
Krishna Kant Singh and
Stephane Redon
J. Comput. Chem.

32

0 10 20 30 40 50 60 70 80 90
% of restrained particles

0

1

2

3

4

5

S
p
ee

d
-u

p
500 particles

4000 particles

32000 particles

108000 particles

Figure 3
Krishna Kant Singh and
Stephane Redon
J. Comput. Chem.

33

0 20 40 60 80
% of restrained particles

0

1

2

3

4

5

S
p
ee

d
-u

p
500 partices using single-pass

4000 particles using single-pass

32000 particles using single-pass

108000 particles using single-pass

500 particles using two-pass

4000 particles using two-pass

32000 particles using two-pass

108000 particles using two-pass

Figure 4
Krishna Kant Singh and
Stephane Redon
J. Comput. Chem.

34

0 20 40 60 80 100
% of restrained particles

0

2

4

6

8
S

p
ee

d
-u

p
500 particles using single-pass

4000 particles using single-pass

32000 particles using single-pass

108000 particles using single-pass

500 particles using two-pass

4000 particles using two-pass

32000 particles using two-pass

108000 particles using two-pass

Figure 5
Krishna Kant Singh and
Stephane Redon
J. Comput. Chem.

35

0 10 20 30 40 50 60 70 80 90 100
% of restrained particles

0

5

10

S
p
ee

d
-u

p

0 20 40 60 80 100
0

1

2

3

4

5

6

7

8

9

10

11

ANL speed-up

Total speed-up

Simulations of NaCl

Figure 6
Krishna Kant Singh and
Stephane Redon
J. Comput. Chem.

36

t= 15 ps

t= 30 ps

t= 45 ps

t= 60 ps

t= 75 ps

ε
r
=1, ε

f
=2 ε

r
=16, ε

f
=18

MD

Figure 7
Krishna Kant Singh and
Stephane Redon
J. Comput. Chem.

37

0 2 4 6 8 10
0

10

20

30

40

0 2 4 6 8 10
0

1

2

3

4

5

6

7

0 2 4 6 8 10
0

1

2

3

4

5

6

0 2 4 6 8 10
0

2

4

6

8

10

12

0 2 4 6 8 10
0

1

2

3

4

5

6

7

0 2 4 6 8 10
0

1

2

3

4

5

r
=1,

f
=2

r
=1,

f
=5

r
=2,

f
=5

r
=5,

f
=6

r
=10,

f
=12

r
=12,

f
=14

r
=14,

f
=16

r
=16,

f
=18

MD

t=0 ps t=15 ps t=30 ps

t=45 ps t=60 ps t=75 ps

r

g
(r

)

Figure 8
Krishna Kant Singh and
Stephane Redon
J. Comput. Chem.

38

Figure 9
Krishna Kant Singh and
Stephane Redon
J. Comput. Chem.

39

0 1000 2000 3000 4000 5000 6000 7000
Number of iterations (*500)

-0.2

0

0.2

0.4

0.6

0.8

C
(t

)
MD
ε

r
=0.5, ε

f
=1.0, %<N

R
>=18

ε
r
=0.75, ε

f
=1.0, %<N

R
>=31

ε
r
=1.0, ε

f
=1.2, %<N

R
>=43

ε
r
=1.2, ε

f
=1.5, %<N

R
>=51

ε
r
=2.5, ε

f
=2.75, %<N

R
>=77

ε
r
=3.0, ε

f
=3.75, %<N

R
>=83

ε
r
=3.1, ε

f
=3.75, %<N

R
>=86

ε
r
=3.5, ε

f
=4.0, %<N

R
>=90

0 5000 10000
Wall clock time (s)

-0.2

0

0.2

0.4

0.6

0.8

C
(t

)

Figure 10
Krishna Kant Singh and
Stephane Redon
J. Comput. Chem.

40

Figure 11

Krishna Kant Singh and

Stephane Redon

J. Comput. Chem.

41

εr εf
500 4000 32000 108000

% < NR > % < NS > % < NR > % < NS > % < NR > % < NS > % < NR > % < NS >

0.5 1 8.21 0.015 36.34 0.0075 28.12 0.0011 26.97 0.0054

1 2 26.47 0.024 56.94 0.0095 36.53 0.0091 45.73 0.0041

1.5 2 57.48 0.034 82.015 0.0042 46.96 0.0084 67.99 0.0073

2 4 60.54 0.029 84.27 0.0024 57.24 0.0021 70.99 0.0011

2.5 4 68.04 0.025 87.23 0.0092 71.32 0.0062 77.81 0.0063

3 5 81.25 0.021 91.08 0.0055 79.14 0.0055 87.16 0.0077

3.5 5 86.81 0.018 96.23 0.0032 85.75 0.0031 93.36 0.0021

4 5 92.42 0.014 96.23 0.0085 98.34 0.0022 97.15 0.0015

Table 1: AR parameters for Lennard-Jones systems. The average percentage of particles

that switch states at each time step is very small, and does not significantly affect perfor-

mance.

42

εr εf % < NR > % < NS >

0.1 1 18.78 0.0032

0.5 1 38.056 0.010

1 2 53.95175 0.0087

1.5 2 66.272125 0.0063

2 5 72.53125 0.0025

2.5 5 75.0875 0.0082

3 5 81.966625 0.0042

3.5 5 87.5818625 0.0072

4 5 92.67155 0.0065

4.5 5 96.6208125 0.0054

Table 2: AR parameters used in the simulation of the NaCl system.

εr εf % < NR > speedup

1 2 56.4 2.3

1 5 60.79 2.9

2 5 61.87 3.1

5 6 66.49 4.25

10 12 72.49 4.7

12 14 75.53 5.1

14 16 79.34 5.9

16 18 84.21 6.82

Table 3: AR parameters used for performing ARMD simulations of the high-velocity impact

of the nanodroplet.

43

MD
εr/εf

.5/1 .75/1.0 1.0/1.2 1.2/1.5 2.5/2.75 3.0/3.75 3.1/3.75 3.5/4.0

% < NR > 0 18 31 43 51 77.8 83 86 90

R =< R2 >
1
2 8.4404 8.481 8.634 8.3013 8.368 8.394 8.569 8.3919 8.556

RG =< R2
G >

1
2 3.523 3.547 3.585 3.520 3.55 3.535 3.546 3.534 3.569

Table 4: Summary of statistical properties obtained by MD and ARMD for the polymer

benchmark. R is the end-to-end distance of the chain and RG is the radius of gyration.

Statistical averages obtained from ARMD and MD are similar.

44

	Introduction
	Adaptively Restrained Molecular Dynamics
	Algorithms for AR Molecular Dynamics
	Active neighbor lists
	Two-pass incremental force update algorithm
	Single-pass incremental force updates

	Analysis
	Time complexity
	Optimization

	Results and discussions
	Systems of Lennard-Jones particles
	Simulation of NaCl
	High-velocity impact of a nanodroplet
	A single polymer chain in solution

	Conclusions
	Acknowledgments

