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Abstract

Time- and frequency resolved optical signals provide insights into the properties of light
harvesting molecular complexes, including excitation energies, dipole strengths and orientations,
as well as in the exciton energy flow through the complex.

The hierarchical equations of motion (HEOM) provide a unifying theory, which allows one to
study the combined effects of system-environment dissipation and non-Markovian memory with-
out making restrictive assumptions about weak or strong couplings or separability of vibrational
and electronic degrees of freedom.

With increasing system size the exact solution of the open quantum system dynamics re-
quires memory and compute resources beyond a single compute node. To overcome this barrier,
we developed a scalable variant of HEOM. Our distributed memory HEOM, DM-HEOM, is a
universal tool for open quantum system dynamics. It is used to accurately compute all ex-
perimentally accessible time- and frequency resolved processes in light harvesting molecular
complexes with arbitrary system-environment couplings for a wide range of temperatures and
complex sizes.

Keywords: time-dependent spectroscopy; light-harvesting complexes; numerical methods; open
quantum systems; non-Markovian environment

INTRODUCTION

Quantum systems at finite temperatures are not perfectly shielded from the surrounding matter and
exchange energy with their environment. This has diametrical effects on the quantum-mechanical
coherence of the system and is the main obstacle for engineering usable quantum information
processing gates and Qbits. The environment is typically considered as many vibrational states (the
“bath”) kept at fixed temperature, while the “system” is brought to a non-equilibrium state by an
external time-dependent perturbation. In molecular complexes, the environment drives electronic
excitations towards their equilibrium occupation. The finite coupling between the system and the
bath results in an entangled, non-separable quantum state of both, system and environment.

All physical observables of the system are encoded in its reduced density matrix, where the
environmental degrees of freedom are traced out. While the time-evolution of the system with
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environment is in principle unitary, the system dynamics alone proceeds in a non-reversible way due
to decoherence, dephasing, and energy relaxation1,2. For weak system-bath couplings and for simple
structured baths (with short bath correlation time), the dynamics of the system is amendable to
analytical approximations3. With increasing system-bath couplings and more complex interactions,
these approximations break down4 and numerical solutions are required. For very strong couplings
coherence is quickly diminishing and Förster theory provides a suitable approximation.

All numerical methods for solving the open quantum system dynamics exactly, require large
computational resources and have been limited in their applicability to small systems. Exam-
ples of numerical tools include the Quasi-Adiabatic Path Integral (QUAPI)5 and time-dependent
density-matrix renormalization group (t-DMRG) methods6. Other approaches work with variants
of stochastic Schrödinger equations7 or Monte-Carlo methods8. Tanimura and Kubo showed that
for an exponentially decaying bath correlation function the system dynamics can be expanded as
Hierarchical Equations of Motions (HEOM)9. The HEOM converges fast for systems with energy
gaps smaller than the thermal fluctuations kBT . Initially developed for a few level system in contact
with many vibrational modes9,10, it has been extended to fermionic environments11 and applied to
a wide range of electronic systems within the HEOM-QUICK program12. In addition, HEOM has
been used to describe the Spin-Boson model13 and quantum heat transport14. The HEOM method
provides linear and non-linear spectra of molecular complexes15,16 and retains non-Markovian ef-
fects in the population dynamics in models of light harvesting complexes (LHCs)17,18.

Light harvesting complexes are large pigment-protein complexes in charge of the energy trans-
fer from the antenna to the reaction center where the chemical reactions take place. Electronic
excitation within the pigments is done in quanta or excitons that move within the complex via
dipole-dipole interactions and are subject to dissipation due to vibrations of the protein environ-
ment. In the past years, there has been enormous progress on the experimental manipulation of
photochemical reactions and probing of the subsystems of the photosynthetic apparatus of bacteria
and higher plants19,20. This opens up the possibility of understanding natural photosynthesis21,22,
and moreover the controlled design and fabrication of artificial photosynthetic systems23,24. With
advanced laser technology short time-scales have become accessible and put more stringent bounds
on theoretical models. Ultrafast spectroscopic techniques on the femtosecond scale are able to follow
in real time the flow of the exciton within the complex and have revealed interesting phenomena,
including the dissipation and coherence of the excited states25,26.

The interpretation of experimental spectra is done by fitting the measurements to theoretical
models. Due to computational constraints, the models underlying the fit are typically limited
with respect to the included physical processes and in their accuracy. To move beyond simplified
approaches and to address the observations of coherences and reorganizational processes in LHCs
calls for more accurate and computationally fast solutions of the exciton dynamics.

METHODOLOGY

All following computations are done with the HEOM method, which captures the system-environment
dissipation and decoherence while retaining non-Markovian effects in a non-perturbative manner.
The Distributed Memory Hierarchical Equations of Motions (DM-HEOM) provides a highly op-
timized implementation of the HEOM method and runs on many-core graphics processing units
(GPUs), CPUs in a single workstations, and also in a distributed memory fashion across up to hun-
dreds of compute nodes. This allows one to overcome the memory and compute barrier imposed
by existing single-node HEOM implementations and makes the DM-HEOM method suitable for
computing the properties of LHCs for a wide range of system sizes and temperatures.

2



We use DM-HEOM to compute different physical observables, including linear and transient
absorption spectra, static fluorescence spectra, circular dichroism, and time and frequency resolved
two-dimensional spectra.

The article is organized as follows: First we introduce the Frenkel-exciton model and the details
of the the HEOM method. We describe the theoretical framework used within DM-HEOM for
calculating different types of optical spectra. Next we provide specific examples for the Fenna-
Matthews-Olson LHC and compare the DM-HEOM results with more approximative but commonly
used approaches, including full and secular Redfield theories3,4,27. We then discuss the distributed
memory and computing approach of DM-HEOM and discuss how it speeds up the calculations for
larger systems before giving a summary and conclusions.

Frenkel exciton model with light induced dynamics

The description of the non-equilibrium dynamics of LHCs starts with the dynamics induced by
incident light. To illustrate the use of DM-HEOM we consider the interaction of a LHC with laser
pulses. The dynamics of the electronic excitation is modeled with a Frenkel exciton Hamiltonian27

which in the presence of an external electric field Hfield(t) reads

H(t) = Hg +Hex +Hbath +Hex−bath +Hfield(t). (1)

Here, Hg = ε0|0〉〈0| represents the ground state Hamiltonian (ground state energy ε0), Hex denotes
the excitation energies and interactions of the pigments, and Hbath models the effect of the sur-
rounding protein environment coupled by Hex−bath. The excitonic Hamiltonian Hsite

ex for a system
of Nsites constituents (“sites”) is parametrized as

Hsite
0 =

Nsites∑
m=1

ε0
m|m〉〈m|+

∑
n6=m

Jmn|m〉〈n|, Hsite
ex = Hsite

0 +

Nsites∑
m=1

Vm∑
v=1

λm,v|m〉〈m|, (2)

where we introduce the energy εm = ε0
m +

∑Vm
v=1 λm,v, which consists of the zero phonon energy ε0

m

shifted by the reorganization energy
∑

v λm,v, and the coupling matrix elements Jmn. The total
vibrational environment consists of B =

∑
m Vm uncorrelated baths, where Vm baths Hbath,m,v =∑

i
~ωm,v,i(b†m,v,ibm,v,i + 1

2) of harmonic oscillators of frequencies ωm,v,i, with bosonic creation and

annihilation operators bm,v,i are assigned to each pigment site m. The oscillator displacement of

each bath mode (b†m,v,i + bm,v,i) is coupled to the exciton system by

Hex−bath =
∑
m

|m〉〈m| ⊗
∑
v

∑
i

~ωm,v,idmvi(b†m,v,i + bm,v,i), (3)

where dmvi denotes the coupling strength related to the spectral density

Jm,v(ω) = π
∑
i

~2ω2
mvid

2
mviδ(ω − ωmvi). (4)

The spectral density is connected to the reorganization energy

λm,v =

∫ ∞
0

Jm,v(ω)

πω
dω. (5)
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For DM-HEOM, we implement a superposition of (shifted) Drude-Lorentz spectral densities at each
site:

Jm(ω) =

Vm∑
v=1

(
λm,vωνm,v

(ω − Ωm,v)
2 + ν2

m,v

+
λm,vωνm,v

(ω + Ωm,v)
2 + ν2

m,v

)
, (6)

with inverse bath correlation time ν−1
m,v. The parameter Ωm,v shifts the peak position of the spectral

density and allows one to vary the pure dephasing and relaxation processes, while maintaining the
reorganization energy λm,v

28,29.

Distributed memory hierarchical equations of motion (DM-HEOM)

HEOM formalism

The dynamics of an open quantum system is described by the Liouville-von Neumann equation for
the full (system and bath) density matrix ρtot(t),

∂

∂t
ρtot(t) = − i

~
[H(t), ρtot(t)]. (7)

The physical observables of the exciton system are computed from the reduced density matrix ρ(t)
by taking the partial trace of ρtot(t) with respect to the bath modes

ρ(t) = Trbath [ρtot(t)] . (8)

We solve Eqs. (7,8) with the HEOM method introduced by Tanimura and Kubo9, following Ref.
30. We assume a system with Nstates coupled to B baths with K Matsubara/Padé modes for every
bath. Multiple states can share one bath, or multiple baths can couple to the same state (for
instance a two-exciton state is coupled to two sites, or all the V baths of the parametrized spectral
density in Eq. (6).

HEOM consists of a hierarchy of equations for a set of complex-valued matrices σu with N2
states

entries. Each σu is uniquely identified by an integer tuple ~nu with W = BK entries of positive
(including 0) integers. The tuples are built up from all possible integer partitions up to depth D
defined by

∑W
i=1 nu,i ≤ D. This results in a total number of matrices given by the binomial

Nmatrices =

(
W +D
W

)
(9)

Within a linear memory layout, the σu matrices are also addressed by the consecutive numbering
u = 0, . . . , Nmatrices − 1. Each matrix element of σu is possibly linked to other matrices {σ+, σ−}
by “+” and “−” vertices. The “+”-links are established by taking the tuple ~n and adding one of
the W permutations of the unit tuple (1, 0, 0, 0, 0 . . . , 0) of length W to ~n. The “+”-connection is
only valid if the resulting ~n+ elements satisfy

∑W
i=1 n

+
u,i ≤ D. Similarly, for the − connection one

of the W permutations of (1, 0, 0, 0, 0 . . . , 0) is subtracted from ~n. The “−”-connection is only valid
if all elements in the resulting ~n− tuple remain ≥ 0. The graph of all “±” connections is computed
in a first step to obtain the mapping u → {u±}. The position l of the unit element within the
permutation of (1, 0, 0, 0, 0 . . . , 0) encodes the bath index b of the addressed bath and its Matsubara
mode k by the relation

l = (b− 1)K + k + 1, b = 1, . . . , B k = 0, . . . ,K − 1. (10)
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The inverse relation becomes using the quotient and remainder of integer divisions

(b, k) = (((l − 1) div K) + 1, (l − 1) mod K). (11)

The hierarchy equation is expressed as

∂σu
∂t

= − i

~
[H,σu] (12)

− σu

B∑
b=1

K−1∑
k=0

nu,(b,k)γ(b, k) (13)

−
B∑
b=1

S(b)∑
s=1

[
2λb
β~2νb

−
K−1∑
k=0

c(b, k)

~γ(b, k)

]
V×bs(b)V

×
bs(b)σu (14)

+
B∑
b=1

S(b)∑
s=1

K−1∑
k=0

iV×bs(b)σ
+
(u,b,k) (15)

+
B∑
b=1

S(b)∑
s=1

K−1∑
k=0

nu,(b,k)θMA(b,k)σ
−
(u,b,k) (16)

θMA(b, k) = i c(b, k)V×bs(b) + δk,0
λbνb
~

V◦bs(b), (17)

with the definitions

S(b) = number of states coupled to bath b (18)

γ(b, k) =


νb k = 0

2πk/(β~) k > 0
(19)

c(b, k) =


νbλb cot(β~νb/2) k = 0

4λbνb
β~

γ(b,k)

γ(b,k)2−ν2b
k > 0

(20)

bs(b) map bath b to state s (21)

nu(b, k) gives the l = (b− 1)K + k + 1 entry in tuple u, (22)

and (
V×s A

)
ij

= (δi,s − δs,j)Aij (23)(
V×s V×s A

)
ij

= (1− δi,j)(δi,s + δs,j)Aij (24)

(V◦sA)ij = (δi,s + δs,j)Aij . (25)

The top hierarchy element
ρ(t) ≡ σ0(t) (26)

coincides with the reduced density matrix and encodes the exciton dynamics, while the rest of the
hierarchy matrices σu (u ≥ 1) are called auxiliary density operators (ADOs).
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DM-HEOM replaces the Matsubara expansion of the Bose-Einstein distribution νk = 2πk
β~ by a

faster converging Padé expansion31 based on the diagonalization of two matrices

(Λ)m,n =
δm,n−1√

(2m+ 1)(2n+ 1)
+

δm,n+1√
(2m+ 1)(2n+ 1)

, m, n = 1, . . . 2K (27)

(Λ′)m,n =
δm,n−1√

(2m+ 3)(2n+ 3)
+

δm,n+1√
(2m+ 3)(2n+ 3)

, m, n = 1, . . . 2K − 1 (28)

and determining

ηi =

(
K2 +

3

2
K

) ∏K−1
j=1 (ζ2

j − ξ2
j )∏K

j=1(ξ2
i − ξ2

j + δi,j)
, i = 1, . . . ,K (29)

from the list of decreasing eigenvalues

ξi =
2

eigenvaluei(Λ)
, i = 1, . . .K (30)

ζi =
2

eigenvaluei(Λ
′)
, i = 1, . . .K − 1. (31)

Within the HEOM equation, the switch from the Matsubara to the Padé expansion requires to
replace γ(b, k) and c(b, k) by:

γ(b, k) =


νb k = 0

ξk/(β~) k > 0
(32)

c(b, k) =


2λb
β~

(
1−

∑K
j=1

2ηkν
2
b

(ξk/(β~))2−ν2b

)
k = 0

4λbνb
β~

ηkξk/(β~)

(ξk/(β~))2−ν2b
k > 0

(33)

(34)

The different hierarchy layers correspond to higher order time derivatives of the ADOs and quickly
take numerical large values. To counter this effect and achieve a more uniform numerical range of
all ADOs, we apply the ADO rescaling32 and substitute

B∑
b=1

S(b)∑
s=1

K−1∑
k=0

iV×sb(b)σ
+
(u,b,k) →

B∑
b=1

S(b)∑
s=1

K−1∑
k=0

i
√

(nu,(b,k) + 1)|c(b, k)|V×sb(b)σ
+
(u,b,k) (35)

B∑
b=1

S(b)∑
s=1

K−1∑
k=0

nu,(b,k)θMA(b,k)σ
−
(u,b,k) →

B∑
b=1

S(b)∑
s=1

K−1∑
k=0

√
nu,(b,k)/|c(b, k)|θMA(b,k)σ

−
(u,b,k). (36)

HEOM memory and compute requirements

The HEOM map the exact solution of the open quantum system dynamics to an infinite hierarchy
of ADOs. For practical computations HEOM is evaluated at a finite truncation depth D and for
a finite number of Padé modes K at the expense of a (small) numerical error. The truncation
at a finite layer works similar to a Taylor expansion of the time-derivative of the density matrix,
where higher order derivatives (corresponding to a deeper layer D) contribute with less weight. The
truncated HEOM equations consist of Nmatrices = (W +D)!/(W !D!) ADOs represented by matrices
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with N2
states complex-valued floating point numbers which are stored in memory. For systems with

more than 100 states (as found in molecular supercomplexes), the available memory of a single
compute node is exhausted (Fig. 1) and it is mandatory to distribute the memory allocation and
computation across several nodes. Low temperature calculations also require of high number of
Padé modes and thus a DM-HEOM implementation.

HEOM convergence and accuracy

To study the impact of the truncation level on the accuracy of the results, we analyze the error
of the truncated solution with respect to a reference computation at highest feasible truncation
level. This systematic study provides guidelines for choosing the appropriate HEOM depth D
and the number of Padé modes K to guarantee a prescribed numerical accuracy of the different
spectroscopic quantities. The deviations of HEOM from the exact solution can also be studied
analytically by analyzing how well HEOM encodes the analytically known line-shape function for
a given (D,K) truncation33. In addition, systematic error bounds are established in Ref. 34. A
suitable metric to measure the differences of two matrices is the Frobenius norm of the difference
matrix. The Frobenius norm is defined for a matrix C by

||C||F =
√

Tr{CC∗}. (37)

An exemplary error analysis is carried out in the results section.
The choice of depth D and Padé modes K determines the largest possible time-step for the

Runge-Kutta integration. Convergence at lower temperatures requires to increase both D and K,
which results in increased Padé or Matsubara frequencies. The integration method must resolve
these frequencies, which gives an upper limit for the time step ∆t for each forward time-step:

∆t� 1/γk. (38)

Fig. 2 shows for every Matsubara and Padé modes the corresponding time periods (1/γk) as function
of temperature.

Redfield approach

For comparison with commonly used approximations, it is instructive to repeat the computation
within the secular and full Redfield approaches. The full and secular Redfield approaches are given
as a closed set of differential equations for the reduced density matrix of a quantum system, but
with the known limitation to require a weak system-environment coupling. The Redfield tensor is
usually expressed in the energy representation rather than the site representation used for HEOM.
We denote the unitary transformation between the two basis sets by the diagonalizing matrix A

Hexc = AHsiteA
T , (39)

which leads to a diagonal matrix Hexc with i = 1, . . . , Nsites eigenenergies Ei = ~ωi. The Fourier
transform of the bath correlation function corresponding to the spectral density in Eq. (6) is given
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in terms of the Digammma function z:

C(ω) = − iλ~
2

[
ν+ (−ω + iν−) cot

(
1
2βν+~

)
+ iν− (ν + iω+) cot

(
1
2βν−~

)
− 2

(
ν2 + iνω + Ω2

)
Ω2 + (ν + iω)2

+
iν+

(
ν2 + ω2

+

)
z
(
βν+~

2π + 1
)

π (ν − iω−)
(
ν2 + ω2

+

) (40)

+
iν−

(
ν2

+ + ω2
)
z
(
βν−~

2π + 1
)
− iν+

(
Ω2 + (ν − iω)2

)
z
(

1− βν+~
2π

)
π (ν − iω−)

(
ν2 + ω2

+

)
+

2νω
(

1
ν2+ω2

+
+ 1

ν2+ω2
−

)
z
(

1 + iβω~
2π

)
π

+
ν−z

(
1− βν−~

2π

)
π (−ω + iν−)

]
,

ν± = ν ± iΩ (41)

ω± = ω ± iΩ (42)

The full Redfield tensor is expressed in terms of the correlation function by

Rµνµ′ν′ = Γµνµ′ν′ + (Γµνµ′ν′)
∗ − δνν′

Nsites∑
κ=1

Γµκκµ′ − δµµ′
Nsites∑
κ=1

Γνκκν′ , (43)

Γµνµ′ν′ =
1

~2

Nsites∑
m=1

AµmAνmAµ′mAν′mC(ων′ − ωµ′) (44)

For the secular Redfield approximation all entries are set to zero which fulfill (ωµ−ων) = (ωµ′−ων′).
The time evolution of the density matrix elements ρµν in energy representation of the exciton
Hamiltonian (2) is given by

∂ρexc
µν (t)

∂t
= −i(ωµ − ων)ρexc

µν (t) +

Nstates∑
µ′=1

Nstates∑
ν′=1

Rµν,µ′ν′ρ
exc
µ′ν′(t) . (45)

The first term in eq. (45) describes the coherent evolution governed by the diagonalized Hamiltonian,
while the second term leads to decoherence and relaxation governed by the coupling to the baths.
For comparisons with the reduced density matrix given by HEOM, we transform the Redfield tensor
back to the site representation

ρRedfield(t) = AT ρexc(t)A. (46)

Optical spectra

Here, we discuss the most commonly used spectroscopy for the characterization of the exciton
dynamics in LHCs. To describe the molecular interaction with the electric field, we start from the
dipole operator35

Hfield(t) = −
∑
p

ep · µ̂Ep(r, t), (47)

where ep is the unit vector in the Cartesian electric field component Ep(r, t) and the dipole matrix
operator is given by µ̂ = µ̂+ + µ̂−, where

µ̂+ =

Nsites∑
a=1

da|a〉〈0| , (48)
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µ̂− =

Nsites∑
a=1

da|0〉〈a| = (µ̂+)†. (49)

In general, E(r, t) = E+(r, t) + E−(r, t), such that E−p (r, t) = (E+
p (r, t))∗ and

E+(r, t) = Ẽ(t− tc)ei(ωct+kr) (50)

where Ẽ(t) denotes the pulse envelope, centered at tc, ωc the carrier frequency, and ϕ = k · r is the
phase of the laser pulse.

Within the rotating-wave approximation (RWA), the complex valued electric field is combined
with the respective excitation and de-excitation parts of the dipole operator35,36:

Hfield(t) = −
∑
p

ep · [µ̂+E−p (r, t) + µ̂−E+
p (r, t)] (51)

The optical spectra can be obtained from the evolution of the time-dependent optical response of
the molecular complex, the non-linear polarization P (t) induced by a single (or a combination of)
weak probe laser pulse. The time-dependent polarization is given by

P (t) = Tr[ρ(t)µ̂+], ρ(t = 0) = |0〉〈0| (52)

where ρ(t) denotes the time-evolved density matrix from the time-dependent Hamiltonian (1). The
trace is taken with respect to the system and bath. For weak laser pulses the polarization function
can be expanded in powers of the electric field37 and written as a convolution of the electric field
with the response function S(n)(tn, .., t1) or calculated using a non-perturbative approach.

Dipole operators and rotational averaging

The computation of spectra requires to specify the dipole operator, which accounts for the charge
redistribution in the presence of an external electric field in each molecule in the complex dm. For
short pulses it is a Nsites + 1 dimensional matrix vector Eq. (48), that reads for each direction p,

µ̂+
p =

Nsites∑
m=1

ep · dm|m〉〈0| . (53)

For longer pulses or multiple short pulses, the excitation of an additional exciton is possible and re-
quires to extend the dipole representation to the two exciton states, which enlarges the Hamiltonian
and dipole matrix to Nstates entries38,39,

Nstates = 1 +Nsites + [Nsites(Nsites − 1)] /2. (54)

In typical experiments, an ensemble of randomly oriented molecules with respect to the laser
direction is probed. To simplify the theoretical description, we work in the molecular fixed frame and
take the rotational average by integrating over different laser directions kp. For linear spectroscopy
which probes the first order response function, rotational averaging can be done by considering
three representative electric fields39 along the Cartesian unit vectors:

e1 = {1, 0, 0}, e2 = {0, 1, 0}, e3 = {0, 0, 1} . (55)

For two-dimensional spectra, the rotational averaging becomes more involved due to the four dipole
interactions involved. If all laser pulses are equally polarized, 10 representative electric field direc-
tions along the vertices of a dodecahedron suffice39, while for more complex polarization sequences
up to 21 electric field combinations have to be considered40.
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Linear absorption spectra

A general approach to the computation of spectra is to evaluate the time evolution of dipole
correlation functions (see the review by Gordon41 for early references) and after time-propagation
to take the Fourier transform to switch to the frequency domain.

For a linear absorption spectra with a short initial excitation, the Fourier transform of the
polarization correlation function Eq. (52) for the sum over polarization directions ep becomes

〈LA(ω)〉rot = Re
∑
p

∫ ∞
0

dt exp(iωt)Tr[µ̂p(t)µ̂p(0)ρ(0)] , (56)

where the dipole operators are calculated in the interaction picture37. The trace operates on the
system matrix only, since the trace over the environment is already contained in the reduced density
matrix.

The evolution of the dipole matrix and the linear absorption Eq. (56) is calculated here using
the HEOM Eqs. (12), with all the ADOs initially set to zero and the initial density matrix at t = 0
is in the ground state ρ(0) = σ0(0) = |0〉〈0|.

At non-zero temperature, decoherence and relaxation towards the thermal state eventually lead
to a vanishing correlation function. In this case, it is possible to shorten the numerical propagation
time to a finite interval and to pad remaining time-intervals with zero to increase the resolution in
the frequency domain after the Fourier transform.

Static Fluorescence Spectra

To compute the static fluorescence (steady-state emission) spectra, we follow42, to obtain

〈FL(ω)〉rot =
3∑
p=1

Re

∫ ∞
0

dt exp(iωt)Tr[µ̂−p (t)µ̂+
p (∞)σ∗0(∞)]. (57)

This expression looks similar to the one for the linear absorption, in particular all dipole operations
affect all the ADOs. However, the initial density matrix and ADOs differ from linear absorption,
since fluorescence emission starts from the thermal state of the exciton system, augmented by the
ground state. The thermal equilibrium state of all ADOs is denoted by σu(∞), and can be obtained
in two different ways. Either one propagates the density matrix and ADOs using HEOM for a long
time, using as an initial state the Boltzmann distribution function for the reduced density matrix
of the system

ρBoltzmann = e−H
site
0 /kBT /Tr[e−H

site
0 /kBT ], (58)

where Hsite
0 denotes the exciton Hamiltonian with the site dependent reorganization energies sub-

tracted Eq. (2). An alternative method to faster drive HEOM towards the thermal state is the
thermal state search method43. Both alternatives result in an entangled system-bath state σu(∞)
differing from the simple Boltzmann distribution state. This is inherent to the non-separability
between the vibrational and electronic modes of the HEOM44.

The computation of the static fluorescence with the Redfield approach is simplified for the
secular Redfield case (which assumes separable system and environment), since there the thermal
state takes the Boltzmann value (58). For full Redfield, the thermal state needs to be obtained in a
separate computation. The possible violation of positivity by the Full Redfield approach makes it
less useful for computing fluorescence spectra, as shown in the results section for the FMO complex.
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Circular dichroism spectra

The circular dichroism spectrum differs from the linear absorption spectra only by the definition
of the excitation dipole matrix, with µ̂−p replaced by

m̂−p =

Nsites∑
a=1

(Ra × da) · ep|0〉〈a|, (59)

where the rotational moment is given by the cross product of the radius vector to the center of the
ath pigment Ra and the transition dipole moment. The time evolution of the density matrix in
the zero exciton ground state and then excited with the operator eq. (59) yields

m̂+
p (0) = m̂+

p |0〉〈0|, m̂+
p (t) ≡ σ0(t), (60)

which gives the rotationally averaged circular dichroism

〈CD(ω)〉rot =

3∑
p=1

Re

∫ ∞
0

dt exp(iωt)Tr[µ̂−p m̂
+
p (t)], (61)

In the framework of Redfield (secular or full) approach, the averaged circular dichroism spectra is
computed as described for the linear absorption case with the same substitution µ̂(0) → m̂(0) for
the excitation operator.

Transient Absorption Spectra

The transient absorption spectra is measured using a pump-probe laser scheme, where a finite
pump pulse Epu prepares a non stationary state, which is monitored by the time-delayed τdel weak
probe pulse Epr. The TA spectra is obtained from the third order response function using the
non-perturbative approach45–47

TA(ω, τdel) = 2ωpr Im[Epr(ω)(P̄∗(ω)− P∗only pr(ω))], (62)

where we use the Fourier transformed polarization P(ω) and electric field E(ω). For a heterodyne
phase averaged detection scheme, four propagations of the initial density matrix with different
phases of the pump field are required to calculate the non-linear polarization

P (t) =
∑
p

Tr[ρ(t)µ̂+
p ]. (63)

The dipole operator includes the two-exciton manifold, which gives rise to excited state absorption
(ESA). The phase of the probe field is set to zero45, (3.13a):

P̄ (t) =
1

4

[
P (t, ϕpu = 0) + P (t, ϕpu =

π

2
) + P (t, ϕpu = π) + P (t, ϕpu =

3π

2
)
]
. (64)

2D spectra

In two-dimensional spectroscopy, a separation of the third order response function along two fre-
quency axes is obtained by taking the Fourier transform along the t1 and t3 time intervals, while
the central interval t2 (delay time) is kept parametrically fixed37,48. The computation of 2D spectra
within the HEOM formalism is described in39,49. Here, we consider in addition the possibility of
more complicated polarization sequences, which enhance specific processes.
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The computation of two-dimensional spectra is demanding due to the need to propagate the
density matrix from t0 = 0 to times t1, t2, and t3. The corresponding time intervals are T1 = t1,
T2 = t2− t1, T3 = t3− t2. In the impulsive limit, the 2D spectra are written in terms of six possible
pathways, three rephasing

SGB,RP(T3, T2, T1|p0, p1, p2, p3) = +i Tr
[
µ̂−p3(t3)µ̂+

p2(t2)ρ0µ̂
−
p0(0)µ̂+

p1(t1)
]

(65)

SSE,RP(T3, T2, T1|p0, p1, p2, p3) = +i Tr
[
µ̂−p3(t3)µ̂+

p1(t1)ρ0µ̂
−
p0(0)µ̂+

p2(t2)
]

(66)

SESA,RP(T3, T2, T1|p0, p1, p2, p3) = −i Tr
[
µ̂−p3(t3)µ̂+

p2(t2)µ̂+
p1(t1)ρ0µ̂

−
p0(0)

]
(67)

and three non-rephasing ones

SGB,NR(T3, T2, T1|p0, p1, p2, p3) = +i Tr
[
µ̂−p3(t3)µ̂+

p2(t2)µ̂−p1(t1)µ̂+
p0(0)ρ0

]
(68)

SSE,NR(T3, T2, T1|p0, p1, p2, p3) = +i Tr
[
µ̂−p3(t3)µ̂+

p0(0)ρ0µ̂
−
p1(t1)µ̂+

p2(t2)
]

(69)

SESA,NR(T3, T2, T1|p0, p1, p2, p3) = −i Tr
[
µ̂−p3(t3)µ̂+

p2(t2)µ̂+
p0(0)ρ0µ̂

−
p1(t1)

]
. (70)

For a sequence of laser pulses with different relative polarization it is necessary to adjust the
electric field directions p0, p1, p2, p3 accordingly. In addition, an isotropic rotational average of the
molecular dipole directions is required for randomly oriented complexes. We follow Refs. 40,50 and
implement the tensorial averaging by

〈S(T3, T2, T1)〉rot =
3∑

k=1

3∑
l=1

3∑
m=1

3∑
n=1

CklmnS(T3, T2, T1|p0,k, p1,l, p2,m, p3,n). (71)

The tensorial average requires to select for the ith dipole interaction (i = 0, 1, 2, 3) a specific
Cartesian component k (k = 1, 2, 3) of the dipole moment at each pigment:

µ̂+
pi,k

=

Nsites∑
a=1

ek · da|a〉〈0| (72)

µ̂−pi,k =

Nsites∑
a=1

ek · da|0〉〈a|. (73)

The factors Cklmn are determined by

Cklmn = δklδmn [4(f0 · f1)(f2 · f3)− (f0 · f2)(f1 · f3)− (f0 · f3)(f1 · f2)] /30 (74)

+ δkmδln [4(f0 · f2)(f1 · f3)− (f0 · f1)(f2 · f3)− (f0 · f3)(f1 · f2)] /30

+ δknδlm [4(f0 · f3)(f1 · f2)− (f0 · f1)(f2 · f3)− (f0 · f2)(f1 · f3)] /30,

where fi denotes the unit vector of the electric field of the ith pulse pi. Symmetry reduces the
34 = 81 Cklmn terms to a maximum of 21 non-zero terms, which are further reduced for specific
polarization sequences.

The ESA pathways access the two-exciton manifold38,39, which enlarges the number of states
to propagate from 1 + Nsites to 1 + Nsites + Nsites(Nsites − 1)/2 and increase the time required to
compute the commutator and the bath interactions considerably.

To obtain the time and frequency resolved 2D spectra for a specific delay time T2 = (t2 − t1),
S(T3, T2, T1) = SRP + SNR is computed separately for the three rephasing (RP) and non-rephasing
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(NR) pathways for equidistantly spaced times T1 = 0,∆t, . . . , t1 and T3 = 0,∆t, . . . , (t3 − t2) and
Fourier transformed with different ω1 signs according to

SRP(ω3, T2, ω1) =

∫ ∞
0

dT1

∫ ∞
0

dT3 e−iT1ω1+iT3ω3SRP(T3, T2, T1) (75)

SNR(ω3, T2, ω1) =

∫ ∞
0

dT1

∫ ∞
0

dT3 e+iT1ω1+iT3ω3SNR(T3, T2, T1). (76)

Transient absorption and 2D spectra are related in the impulsive limit via

TAimpulsive(ω, T2) = Re

∫ ∞
−∞

dω1S(ω, T2, ω1). (77)

The last relation can be used to validate results from the two approaches.

RESULTS

Fenna-Matthews Olson complex (FMO)

One of the first applications of HEOM to light harvesting complexes has been the study of the
exciton population dynamics in the Fenna-Matthews Olson complex18 and its optical proper-
ties39,49. The FMO is one of the few LHCs where the structural and electronic properties are
well parametrized. A large body of experimental spectra has been published. This singles out the
FMO as one of the simplest LHCs to compare theory and experiments51. DM-HEOM provides a
unified framework for computing all optical spectra for a broad temperature range (30 K-300 K). In
particular the low temperature application of HEOM has been difficult before, since the increasing
number of Matsubara terms quickly exhausts the available memory and prolongs the computations.

In the following, we consider the seven pigment model of the Fenna-Matthews-Olson (FMO)
complex parametrized by the following Hamiltonian52

Hsite
ex =



12410 −87.7 5.5 −5.9 6.7 −13.7 −9.9
−87.7 12530 30.8 8.2 0.7 11.8 4.3

5.5 30.8 12210 −53.5 −2.2 −9.6 6.0
−5.9 8.2 −53.5 12320 −70.7 −17.0 −63.3
6.7 0.7 −2.2 −70.7 12480 81.1 −1.3
−13.7 11.8 −9.6 −17.0 81.1 12630 39.7
−9.9 4.3 6.0 −63.3 −1.3 39.7 12440


cm−1. (78)

The arrangement of the seven pigments and further parameters are listed in Table 1. To facility a
comparison of other theories and methods with the HEOM reference calculation, we do not consider
static disorder.

Convergence analysis

We start by establishing the numerical convergence of the DM-HEOM method applied to the FMO
complex from a long-time population dynamics up to tmax = 10 ps. The reference case is provided
by the reduced density matrix ρ(t)D=6,K=6 calculated with truncation depth D = 6 and Padé
number K = 6. For the FMO complex we have computed as example one bath is assigned to each
of the pigment sites B = Nsites = 7. This results in Nmatrices = 12271512 matrices in the hierarchy
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(Eq. (9)), which are propagated efficiently in parallel. The deviation of the lower truncation levels
to the reference computation is provided by the Frobenius norm Eq. (37) denoted by

||∆ρ(D,K)||F = ||ρ(t)(D,K) − ρ(t)(6,6)||F. (79)

Fig. 3 shows the function ||∆ρ(D,K)||F for various values of the hierarchy truncation depth D
and Padé nodes K at three different temperatures (T = 30 K, T = 77 K, T = 300 K). Increasing
the truncation depth D from 2 to 6 in conjunction with increasing K moves the results closer to
the reference case. We observe that the requirement in depth truncation D is more stringent that
for the number of Padé nodes K, specially at high temperatures. In the calculations of optical
spectra presented in the following sections, we take as working accuracy results differing less than
10−2 from the reference computation. This establishes D = 3, K = 1 for T = 300 K, D = 3, K = 2
for T = 77 K, and D = 3, K = 4 for T = 30 K.

The time step ∆t used for the integration depends on the Padé mode. For instance, the reference
computation with K = 6 implies a time step of ∆t = 0.2 fs at T = 300 K (Fig. 2).

Linear Absorption Spectra

Fig. 4 illustrates the linear absorption spectra Eq. (56) at three different temperatures T = 30, 77
and 300 K computed with HEOM, secular Redfield, and full Redfield theories. The linear absorption
spectra is rotationally averaged over three perpendicular laser directions for a linearly polarized
laser, but to facilitate a comparison of the theoretical results no inhomogeneous broadening due to
disorder is taken into account.

The HEOM spectra are computed by propagating the density matrix with a step size ∆t = 2 fs
up to 2 ps. Depending on the temperature considered, a shorter propagation time can be chosen,
since the polarization signal decays faster at higher temperatures.

The agreement between the three methods increases at low temperatures, but the HEOM
method shows a different temperature-dependent homogeneous broadening, which leads to narrower
spectra at T = 300 K compared to the secular and full Redfield approaches.

Experimentally measured spectra25,53 show a similar trend, but in addition require to add an
inhomogeneous broadening on the order of 80 cm−1. An analysis of the impact of disorder on the
linear absorption spectra of FMO calculated with HEOM has been performed in Ref. 39.

Fluorescence Spectra

We calculate the rotationally averaged static fluorescence spectra (Fig. 5) at low T = 30 K, inter-
mediate T = 77 K, and room temperature 300 K. The computation starts from the thermal state as
initial condition, see Eq. (57), which increases the computation time for the effort to determine the
thermal equilibrium state. DM-HEOM also implements a faster method to obtain the (entangled)
system-bath thermal state following Ref. 43.

At low temperature (T = 30 K), the lowest FMO state is dominantly occupied, resulting
in a single pronounced peak. The line-shape of the HEOM result differs from the one obtained
with Redfield theory. HEOM encodes (up to truncation errors) the exact line-shape function
related to the prescribed bath correlation function33. An additional difference between HEOM and
Redfield theories is the entanglement between bath and exciton modes in the HEOM thermal state
and the deviation from the Boltzmann thermal equilibrium, which becomes more relevant at low
temperatures.

At T ≤ 77 K, the full Redfield method yields negative fluorescence emission, which is unphysical.
This indicates the known lack of positivity of the full Redfield theory54,55. For T = 300 K, secular
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and full Redfield methods provide very similar results, which differ both from the HEOM approach,
especially in the region of high frequencies.

Circular dichroism Spectra

Fig. 6 shows the circular dichroism spectra averaged over three perpendicular directions, calculated
using HEOM, full and secular Redfield approaches for the FMO example system at different tem-
peratures. The density matrix was propagated to 3 ps with a time step of 2 fs. We observe better
agreement between the HEOM and secular Redfield approaches, specially at T = 300 K where the
disagreement of the full Redfield approach is very pronounced. The calculated spectra are similar
to the experimental CD spectra of FMO at 6K in Ref. 53.

Transient absorption spectra

In addition to the static spectra presented before, the HEOM time-dependent propagation method is
well suited to compute time-resolved spectra. To demonstrate the fully time-dependent formalism,
we consider the pump-probe laser scheme shown in Fig.7.

Depending on the pulse duration a selective excitation in a specific energy range is achieved,
which determines the initial dynamics. At later times, the system approaches the thermal equilib-
rium, and is typically probed by a broad bandwidth pulse to reveal the complete redistribution of
the deposited energy. The multiple, finite pulses, require to consider the possibility of excited state
absorption in the system and require to carry out the computation in the enlarged state-space,
including the two-exciton states, resulting in 29 states in total for FMO.

Transient absorption spectra Eq. (62) for FMO are shown in Figs 8, 9 and 10 for different
parameters of delay times and temperatures. All spectra are laser-phase averaged Eq. (64) and in
addition rotationally averaged over 10 different orientations of the molecular complex with respect
to the laser polarization.

The HEOM system was propagated to 3 ps with a time step of 0.2 fs to fully resolve the time-
dependent laser field which oscillates with the frequencies in the visible spectrum. Fig. 8 shows the
transient spectra as a function of delay time τdel and temperature. By increasing the temperature
we observe the blurring of the peaks and a shift of the dynamics to lower frequencies. The impact
of different pump-pulse durations τpu is demonstrated in Fig. 9 for a fixed delay time τdel = 250 fs.
By exciting the system with a narrow in time domain pump laser pulse one covers all the frequency
domain (see Fig. 7) as it includes all eigenvalues of Hex.

Experimental observations of transient absorption spectra of the FMO complex at T = 10 K
are presented in Ref. 56, Fig. 3A for similar laser pulses considered here. A comparison of the
HEOM simulation at T = 77 K (Fig 10) shows qualitatively similar dynamics: the peaks at longer
wavelengths get populated with increasing delay time due to the thermalization. In addition at
higher wavelength the modulation of the positive signal becomes more pronounced.

2D spectra

2D spectra are one of the computationally most demanding applications for DM-HEOM, since they
require to evaluate the third order optical response function systematically along three time axes.
The computation can be parallelized across several parameters, for instance different pathways can
be computed independently, as well as differing delay times and rotational averages. The largest
computational part is the evaluation of the excited state absorption, which for FMO requires to
propagate a 29× 29 density matrix.
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Fig. 11 shows the FMO 2D spectra for a series of increasing delay times T2 at T = 100 K.
Starting at T2 = 100 fs cross peaks below the diagonal appear, which get more pronounced at
longer delay times. The appearance of the cross peaks is a signature of energy transfer from higher
states towards the thermal occupation probabilities25,26. The exciton energies are correlated with
the spatial arrangement of the FMO bacteriochlorophylls to form an energetic funnel from the
antenna to the reaction center20,53,57,58. FMO 2D spectra for different parametrization of the
spectral density (including more localized vibrational modes) are discussed in Ref. 28. Localized
vibrational modes affect the 2D spectra, in particular the ground state bleaching pathway59, while
the pure dephasing time, associated with the slope of the spectral density J(ω) at ω = 0, determines
the life-time of electronic coherences28,59.

The relative contributions of stimulated emission, ground state bleaching, and excited state
absorption, as well as the relation between 2D spectra and transient absorption spectra is analyzed
in Ref. 58 for an enlarged model of the FMO complex. The energy transfer and relaxation towards
lower lying states is directly reflected in the stimulated emission signal. In addition the stimulated
emission signal is off-diagonally shifted to lower emission frequencies ω3 after the reorganization
process takes place.

To demonstrate the impact of pulse sequences with varying polarizations, we consider two laser
setups: one with all pulses having the same polarization direction SV = {0, 0, 0, 0}, and one where
the electric field of the first two pulses is rotated π/2 counter-clockwise around the propagation
direction SH = {π2 ,

π
2 , 0, 0}. The 21 Cklmn coefficients for this polarization sequence are listed in

Table 2. Fig. 12 shows the resulting rephasing spectra of the FMO complex at delay time t2 = 40 fs.
The SH polarization sequence enhances the cross-peaks and by choosing the SY linear combination
of the signals, the diagonal peaks are effectively removed. Corresponding experimental results for
(c,d) by Thyrhaug et al are shown in Fig. 2, Ref. 60.

Distributed memory HEOM implementation

Previous implementations of the HEOM equations used many-core processors for the parallel com-
putation of the hierarchy equations using threads on CPUs (PHI-HEOM61) or on graphics pro-
cessing units (GPU-HEOM62). Apart from efficiency one key goal in the development of the
DM-HEOM framework was to provide code portability over several computer architectures ranging
from notebooks to GPUs, many-core systems, and supercomputers. Using the Open Computing
Language (OpenCL) allows to share a similar code base for both, CPUs and GPUs (QMaster33)
and thus facilitates the incremental optimization process. One important difference between GPUs
and CPUs is the overhead to launch a compute thread: CPUs typically perform better with fewer
threads (one per core/hardware thread), but more computationally intense ones compared to GPUs
which excel at thousands of lightweight threads.

An important figure of merit is the arithmetic intensity, i.e. the number of floating point opera-
tions (FLOP) of the algorithm compared to the amount of memory (bytes) accessed to perform this
computation63. The commutator term in HEOM (Eq. 12) requires 16N3

states FLOP for each ADO.
To copy the complex valued ADO into memory and writing to it entails 2×2×8×N2

states bytes, re-
sulting in an arithmetic intensity of Nstates/2 FLOP/byte. This number has to be compared to the
typical CPU and GPU peak floating point performance divided by the memory bandwidth. For high
end GPUs this value ranges from 2−7 FLOP/byte, while many-core CPUs reach 7−10 FLOP/byte.
Both compute architectures are in principle well suited for the HEOM method.

The main limitation of the existing HEOM implementations is the memory limit imposed by
the single-node GPU memory or CPU accessible RAM. Molecular systems with more than 100 sites
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are exceeding the 100 GB memory threshold (see Fig. 1) of workstations. The required memory
increases rapidly upon inclusion of more Matsubara or Padé modes K or truncation depth D.

To move beyond this barrier requires to distribute the data across multiple compute nodes,
which are interconnected to exchange results required for the next propagation step. The ADOs of
the different layers of the HEOM equations are represented as vertices in a graph, where the edges
encode the links between the ADOs. DM-HEOM splits the ADOs into self-contained parts and halo
regions that are shared between interconnected nodes. While the compute time decreases ideally
in proportion with the number of compute nodes thrown at the problem, the communication time
does not decrease beyond a problem-specific number of nodes. This is due to the large amount of
transferred data and the high connectivity between the partitions of the problem. Even when trying
to overlap communication with computation as much as possible, the synchronization overhead
eventually limits the scalability of the code in terms of total runtime. However, it can still be useful
to run DM-HEOM with more nodes if the memory requirements of the physical system would
otherwise be prohibitive to obtain a result with less nodes.

To illustrate the reduction in compute time with a distributed run, Fig. 13 charts the runtime
for the FMO population dynamics in Fig. 3 with D = 6, K = 5 with Nmatrices = 44964388. On
a single node this computation is feasible, but requires 4 × 3.3 = 13.1 GiB memory to store the
4 copies of the ADOs required for an RK4 integration step. To advance the HEOM system for
one 0.2 fs step (with 4 intermediate results) takes 5.8 s on a 24 core Intel Xeon Haswell CPU (E5-
2680 v3) operated at 2.50 GHz. The 50000 steps propagation to obtain the 10 ps result (Fig. 3)
take 80 h. Using DM-HEOM on 16, 32 or 64 nodes, the runtime is reduced to 17.9 h, 12.0 h,
10.8 h respectively. Increasing the number of nodes to 128 increases the runtime due to the larger
communication overhead.

A fast network connection, as realized on current supercomputers, is essential to maintain best-
possible performance for the largest problem sizes considered. The node distributed results shown
here are obtained on the HLRN supercomputing facilities hosting a Cray XC40 with an Aries
interconnected network. The DM-HEOM tools is written such that it runs also on single compute
nodes equipped with one or multiple GPUs/CPUs, or across networked compute nodes64.

Other aspects of the evaluation of optical spectra are computed in parallel without additional
overhead: the rotational averaging and the polarization sequences can be computed independently,
cutting down computational times by factors of 3 or up to 21 for linear absorption and 2D spectra
respectively.

For the accuracy discussed before (relative error < 0.01) the computation of the FMO dynamics
takes about 5.5 s on a single Intel Xeon Haswell CPU node withD = 3, K = 1 up to 10 ps with 10000
steps. The computation of the first order response function for the spectra takes a similar time.
DM-HEOM64 is written in C++ and can be easily extended to higher-order optical sequences or
other applications of the HEOM equations. An open source release of DM-HEOM is in preparation,
a ready-to-run GPU accelerated HEOM implementation is available at nanoHub.org65.

CONCLUSIONS

HEOM is a unique exact method to compute the dynamics in open quantum systems and is fre-
quently used as a benchmark and reference method for more approximative methods, but has also
seen limited application to larger systems due to its computational demands.

In this paper, we have provided a comprehensive review of the HEOM formalism and how it is
used in DM-HEOM to efficiently calculate the optical response properties of LHCs. We have shown
that the DM-HEOM framework provides an accurate and fast implementation of HEOM to compare
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theoretical models with the most common experimental spectral signals used to characterize light
harvesting systems for a new range of parameters. DM-HEOM extends the applicability of HEOM
to lower temperatures (T = 30 K) and to bigger systems than previously accessible with HEOM.
We conducted a systematic analysis of the accuracy and convergence of HEOM with respect to the
truncation depth and the Padé modes. This provides a guideline for choosing the optimal time-
steps and truncation levels in practical applications, as demonstrated here for the exemplary FMO
complex. The DM-HEOM framework allows one to compute the different optical spectra (linear
absorption, fluorescence, and circular dichroism spectra) and to compare them to approximative
approaches (here: secular and full Redfield theories) or other exact methods. Moreover, DM-
HEOM implements the efficient calculation of 2D spectra for different polarization sequences and
the polarization for finite laser pulses.

The implementation of DM-HEOM overcomes the excessive memory requirements of the HEOM
method required for numerical simulations in the very low-temperature regime, which hinders the
use of HEOM for investigating quantum phase transitions12. Future extensions of DM-HEOM will
focus on implementing the Spin Boson variant of HEOM13, which allows DM-HEOM to perform
calculations at sufficiently low temperatures to model quantum-technology applications.
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pigment center (nm) direction λ cm−1, ν−1 (fs), Ω

1 2.651,+0.260,−1.135 −0.741,−0.561,−0.3696 35,50,0
2 1.560,−0.152,−1.725 −0.857,+0.504,−0.107 35,50,0
3 0.339,−1.361,−1.385 −0.197,+0.957,−0.211 35,50,0
4 0.668,−2.085,−0.604 −0.799,−0.534,−0.277 35,50,0
5 1.938,−1.857,−0.108 −0.737,+0.656,+0.164 35,50,0
6 2.184,−0.718,+0.063 −0.135,−0.879,+0.457 35,50,0
7 1.027,−0.821,−0.554 −0.495,−0.708,−0.503 35,50,0

Table 1: Centers and orientations of the FMO dipoles, taken from the PDB:3ENI structure. The
parameters for the spectral density (reorganization energy λ) and bath correlation time ν−1 are
from Ref. 39.

(k, l,m, n) Cklmn
(1, 1, 1, 1), (1, 1, 2, 2), (1, 1, 3, 3) 1

15 , 2
15 , 2

15
(1, 2, 1, 2), (1, 2, 2, 1), (1, 3, 1, 3) − 1

30 ,− 1
30 ,− 1

30
(1, 3, 3, 1), (2, 1, 1, 2), (2, 1, 2, 1) − 1

30 ,− 1
30 ,− 1

30
(2, 2, 1, 1), (2, 2, 2, 2), (2, 2, 3, 3) 2

15 , 1
15 , 2

15
(2, 3, 2, 3), (2, 3, 3, 2), (3, 1, 1, 3) − 1

30 ,− 1
30 ,− 1

30
(3, 1, 3, 1), (3, 2, 2, 3), (3, 2, 3, 2) − 1

30 ,− 1
30 ,− 1

30
(3, 3, 1, 1), (3, 3, 2, 2), (3, 3, 3, 3) 2

15 , 2
15 , 1

15

Table 2: Cklmn coefficients for isotropic averaging of the SH = {π2 ,
π
2 , 0, 0} polarization sequence.
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Figure 1: Memory requirement for HEOM for increasing truncation depth D and increasing system
size Nstates = {2, 10, 100}, and different number of Padé modes K = 2, 4.
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Figure 2: Temperature dependence of the (a) Matsubara and (b) Padé modes. For a stable numer-
ical result, the integration step-size should be smaller than the period of largest chosen mode at the
desired temperature 1/γk(T ). In addition, enough modes must be included to achieve convergence
with respect to the exact solution.
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Figure 3: Accuracy of DM-HEOM for increasing truncation level of HEOM. The error is measured
by the Frobenius norm of the difference of the density matrix at truncation levels (D,K) ρD,K(t =
10 ps) with respect to the higher order reference ρ6,6(t = 10 ps). Temperatures: (a) T = 30 K, (b)
T = 77 K, (c) T = 300 K.
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Figure 4: Linear absorption spectra of FMO. HEOM (black solid), secular Redfield (red dashes),
and full Redfield (blue short dashes) theories. (a) T = 30 K (HEOM truncation D = 3, K = 4); (b)
T = 77 K (HEOM truncation D = 3, K = 2); (c) T = 300 K (HEOM truncation D = 3, K = 1).
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Figure 5: Stationary fluorescence of FMO for temperatures (a) T = 30 K, (b) T = 77 K, (c)
T = 300 K. HEOM (black solid), secular Redfield (red dashes), full Redfield (blue short dashes)
theories. Full Redfield theory yields unphysical negative populations at T = 30 K and T = 77 K
and should not be used to compute fluorescence spectra for these parameters.
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Figure 6: Circular dichroism spectra of FMO normalized to its positive area for temperatures (a)
T = 30 K, (b) T = 77 K, (c) T = 300 K. HEOM (black solid), secular Redfield (red dashes), and
full Redfield (blue short dashes) theories are shown.
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Figure 7: Wavelengths covered by the laser pulse Ep(t−tc,p) = Ep exp[−(t−tc,p)2/2τp] for different
pulse widths (a) τpu = 5 fs (Full width at half maximum (FWHM) is 11.77 fs) and (b) τpu = 50 fs
FWHM= 117.74 fs). The time-dependent electric field amplitude is shown in the inset. The
pump-probe excitation is applied with Epr = 106 V/m, Epr = 5 × 104 V/m, τpr = 5 fs and
ωpu = ωpr = 12454.8 cm−1 (corresponding to a wavelength of 802.9 nm). The eigenvalues of the
FMO Hamiltonian Hex are indicated by the vertical lines.
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Figure 8: Transient absorption spectra of FMO at different delay times and temperatures for
τpr = 5 fs (HEOM only) for temperatures (a) T = 30 K, (b) T = 77 K, (c) T = 300 K

(a) (b) (c)

Figure 9: Transient absorption spectra of FMO (HEOM only) at different pump laser widths τpu

and temperatures (a) T = 30 K, (b) T = 77 K, (c) T = 300 K at fixed delay time τdel = 250 fs and
τpr = 5 fs.
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Figure 10: Transient absorption spectra of FMO at different delay times τdel and T = 77 K.
Computational parameters of the laser pulses are included in caption of Fig. 7. The pump pulse
has a width of τpu = 128 fs (corresponding FWHM is 300 fs as in the experiment56), the probe
pulse width is τpr = 5 fs. With increasing delay time the peaks at longer wavelengths get more
populated.
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Figure 11: Rotationally averaged FMO 2D spectra (real part of the rephasing signal) at T = 100 K
for increasing delay time (40,100,500) fs (HEOM truncation D = 3, K = 1). The color bar is inset
in panel (a) (arbitrary units).
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Figure 12: Rotationally averaged FMO 2D spectra (real part of the rephasing and non-rephasing
signal) at T = 77 K for delay time 40 fs for different polarization sequences. (a) SV = {0, 0, 0, 0},
(b) SH = {π2 ,

π
2 , 0, 0}, (c) synthetic: SZ = 1

3(SV + 2SH)(5 SV −SH
SV +2SH

+ 1), (d) synthetic: SY =
1
3(SV + 2SH)(2− 5 SV −SH

SV +2SH
). The color bar is inset in panel (d) (arbitrary units).
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Figure 13: Runtime per propagation step for the FMO calculation using 44964388 ADOs (K = 5,
D = 6) evaluated on a Cray XC40 supercomputer with Intel Xeon Haswell CPUs. By distributing
the computation across 16, . . . , 64 nodes, the runtime is reduced from 5.8 s to 0.8 s on 64 nodes for
each propagation step (consisting of 4 HEOM evaluations for the RK4 integration). The computa-
tional part decreases ideally with the number of nodes at the cost of increased communication and
synchronization overhead. As required in such strong scaling measurements, the single node result
does not involve any communication overhead.
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