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Abstract

Most modern semiempirical quantum-chemical (SQC) methods are based on the
neglect of diatomic differential overlap (NDDO) approximation to ab initio molecular
integrals. Here we check the validity of this approximation by computing all relevant
integrals for 32 typical organic molecules using Gaussian-type orbitals and various basis
sets (from valence-only minimal to all-electron triple-ζ basis sets) covering in total more
than 15.6 million one-electron (1-e) and 10.3 billion two-electron (2-e) integrals. The
integrals are calculated in the nonorthogonal atomic basis and then transformed by
symmetric orthogonalization to the Löwdin basis. In the case of the 1-e integrals,
we find strong orthogonalization effects that need to be included in SQC models, for
example by strategies such as those adopted in the available OMx methods. For the
valence-only minimal basis, we confirm that the 2-e Coulomb integrals in the Löwdin
basis are quantitatively close to their counterparts in the atomic basis and that the 2-e
exchange integrals can be safely neglected in line with the NDDO approximation. For
larger all-electron basis sets, there are strong multi-shell orthogonalization effects that
lead to more irregular patterns in the transformed 2-e integrals and thus cast doubt
on the validity of the NDDO approximation for extended basis sets. Focusing on the
valence-only minimal basis, we find that some of the NDDO-neglected integrals are
reduced but remain sizable after the transformation to the Löwdin basis; this is true
for the two-center 2-e hybrid integrals, the three-center 1-e nuclear attraction integrals,
and the corresponding three-center 2-e hybrid integrals. We consider a scheme with a
valence-only minimal basis that includes such terms as a possible strategy to go beyond
the NDDO integral approximation in attempts to improve SQC methods.
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The evaluation of 2-e integrals in the nonorthogonal atomic basis ({φi}) dominates the
computational cost of ab initio Hartree-Fock calculations. We demonstrate that both the
1-e and 2-e integrals in the molecular Hamiltonian are reduced significantly in the Löwdin
basis ({φ̄µ}), albeit to different extent for different types of integrals. Based on our analysis
we consider the novel NAX scheme (Neglect of Atomic eXchange) for molecular integrals
that goes beyond the semiempirical NDDO approximation.
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Introduction

Quantum-chemical methods for molecules normally expand the wavefunction in terms of

atom-centered basis functions and thus involve the calculation of molecular integrals over

these basis functions. [1] Gaussian-type orbitals (GTOs) [2] are the most popular choice of basis

functions since all necessary integrals can be computed analytically. [3] Repeated evaluation of

the two-electron (2-e) repulsion integrals in the self-consistent-field (SCF) procedure [4] is the

primary computational bottleneck of the ab initio Hartree-Fock (HF) method. [5–8] For large

molecules, the formal quartic scaling of 2-e integral evaluation with respect to system size,

e.g. the number of GTO basis functions (Ng), can be reduced to quadratic or even near-linear

scaling by a variety of algorithms and techniques developed over the past decades. These

include integral prescreening, the resolution-of-identity (RI) approach in combination with

suitable auxiliary basis functions, the pseudospectral method, the fast multipole method,

and several other algorithms for speeding up the calculation of the Coulomb matrix and the

HF exchange matrix. Excellent reviews of these approaches are available. [9–11] However, even

with such low-order scaling methods, the ab initio evaluation of the 2-e repulsion integrals

remains costly.

Semiempirical quantum-chemical (SQC) methods follow a different strategy to solve the

2-e integral problem. They neglect most of the multi-center molecular integrals and attempt

to correct for the associated errors by introducing suitable empirical representations of the

remaining terms with adjustable parameters, which are then optimized through extensive

parameterizations to reproduce theoretical [12] or experimental [13] reference data. Nowadays,

current SQC methods are successfully applied in a number of areas, for example to calculate

the electronic structure of huge molecules with up to several tens of thousands of atoms, [14] to

simulate the long-time dynamics of molecules in the ground state [15] and in excited states, [16]

and to perform high-throughput virtual screening in drug discovery. [17] Furthermore, taking

advantage of modern cutting-edge high-performance computer architectures [18–22] the capac-

ity of the SQC methods is expanding towards ever larger systems in chemistry, pharmacology,

and materials science. Several recent reviews survey the development of SQC methods and

the scope of possible applications. [23–25]
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The neglect of diatomic differential overlap (NDDO) approximation for molecular valence-

electron integrals, [26] an extension of the zero differential overlap (ZDO) approximation for

π-electrons, [27] is the foundation of most modern SQC models. In the NDDO framework,

the differential overlap of two basis functions φA and φB belonging to different atoms A and

B, respectively, equals zero

φAφB dr ≡ 0 ∀A 6= B, (1)

where r denotes the coordinates of an electron (omitted as argument of the basis functions

to simplify notation). As a consequence, NDDO-based SQC models neglect most of the

molecular integrals, e.g. all three-center (3-c) and four-center (4-c) integrals and also some

types of two-center (2-c) 2-e repulsion integrals. There were several early endeavors to justify

the NDDO approximation for the symmetrically orthogonalized basis (called Löwdin basis in

the following) [28] through polynomial expansions of the S−
1
2 matrix, where S is the overlap

matrix in the original nonorthogonal atomic basis (denoted as atomic basis in this article).

These early efforts were either based on purely mathematical analysis [29–37] or on numerical

validation for a small number of integrals in small molecules, e.g. dinitrogen, [32] water and

ethane, [38] and benzene. [39]

Nowadays, a much more extensive analysis of the NDDO approximation is technically

feasible. This is the subject of the present “Big Data” study of molecular integrals. We

compute 15.6 million 1-e integrals and 10.3 billion 2-e integrals for 32 closed-shell organic

molecules and classify them into 14 different types. We first establish quantitative correla-

tions between the ab initio 2-e integrals in the atomic basis and in the Löwdin basis. The

emerging patterns are rationalized by examining the Löwdin basis, the symmetric orthogo-

nalization matrix, and the pertinent 2-e integrals in the linear H4 model system. Thereafter,

we turn to the 1-e integrals in the core Hamiltonian and demonstrate the strong orthogo-

nalization effects on these integrals. We address the connection between the multi-center

1-e nuclear attraction integrals in core Hamiltonian and the contracted 2-e part in the Fock

matrix, and quantify the coupling effects in terms of 3-c coupled potential integrals and 2-c

penetration integrals. Finally, we perform a systematic series of HF-SCF calculations with

GTOs, for basis sets ranging from a valence-only minimal to an all-electron triple-ζ basis,

using seven distinct schemes of integral approximation in the Löwdin basis that take us from
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an NDDO to a full ab initio HF-SCF calculation. This allows us to quantify the effect of

the NDDO-neglected integrals on the electronic energy. On the basis of this extensive anal-

ysis, we consider the NAX scheme (Neglect of Atomic eXchange) for SQC calculations with

a minimal valence-electron GTO basis, which goes beyond NDDO by including the most

important NDDO-neglected integrals.

After submission of this paper, another comprehensive analysis of the NDDO approxima-

tion was published online, which compares the values of 2-e integrals in the atomic basis and

the Löwdin basis, examines the effect of the NDDO approximation on molecular energies,

and proposes system-specific error corrections in the two-electron matrices that enter the

Fock operator. [40] This analysis is complementary to our present study but targets different

objectives.

Methodology

A total of 32 typical organic molecules (see Figure 1) were chosen and divided into six groups

representing simple aliphatic compounds, homocyclic and heterocyclic aromatic molecules,

saturated carbocycles and heterocycles, and common amino acids. Equilibrium geometries

of these molecules were obtained at the B3LYP/6-31G(d) level of theory by using the ORCA

program. [41]

Molecular integrals over GTOs were computed at these geometries using an in-house

modified version of the libcint library. [42] These integrals were stored on disk for statistical

analysis. Single-point HF-SCF calculations were performed for different levels of integral

approximation with our in-house Löwdin program. The convergence threshold was set to

1.0 × 10−10 for the maximum variation of the density matrix elements in successive SCF

iterations.

The integral evaluations and the HF-SCF calculations were done for six basis sets, namely

the valence-only minimal basis set CEP-4G [43] used in SQC methods and five all-electron

basis sets used in ab initio work: single-ζ STO-3G and STO-6G, [44] double-ζ 3-21G [45] and

6-31G, [46] and triple-ζ 6-311G, [47] in order to complete a systematic survey. Due to technical

constraints it was impossible to store all 6-311G integrals for tryptophan, the largest molecule
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in the test set. Altogether, more than 15.6 million 1-e integrals and 10.3 billion 2-e integrals

were eventually collected for the Big Data analysis. The exact number of computed integrals

for each type of integral and each basis set is reported in the Supporting Information (see

Tables S1 and S2). For data visualization we focus on the integrals in the valence-only

CEP-4G basis, since these are most relevant for NDDO-based SQC models.

The symmetric orthogonalization of ab initio molecular integrals is a linear transforma-

tion between two finite function spaces, i.e. L : {φi} 7→ {φ̄µ}, where {φi} and {φ̄µ} represent

the nonorthogonal atomic basis and the orthonormal Löwdin basis, respectively. The trans-

formation matrix X is the inverse square root of the overlap matrix in the {φi} basis

φ̄µ =

Ng∑
i=1

φiXiµ, X = S−
1
2 . (2)

X is a real symmetric matrix.

The 1-e kinetic integrals, 1-e nuclear attraction integrals (NAIs), and 2-e repulsion inte-

grals in the {φ̄µ} basis, i.e. T̄µν , V̄µν,A, and ḡµν,κτ , respectively, are linked to the corresponding

integrals in the {φi} basis by

T̄µν =
∑
ij

XiµTijXjν (3)

V̄µν,A =
∑
ij

XiµVij,AXjν (4)

ḡµν,κτ =
∑
ij,kl

XiµXjνgij,klXkκXlτ . (5)

An integral in the Löwdin basis is denoted throughout this article by a bar above the corre-

sponding symbol, for the sake of convenience.

In the single-point HF-SCF calculations (see above) the molecular integrals were trans-

formed from the atomic basis to the Löwdin basis by symmetric orthogonalization, see

Eqs. (3), (4), and (5). The two different sets of molecular integrals were used in separate HF-

SCF calculations, and identical results were obtained in the {φi} and {φ̄µ} representations

for each molecule and each basis set. This verified the correctness of our Löwdin program by

confirming that the molecular electronic energy is invariant to symmetric orthogonalization.
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Results and Discussion

This Big Data study of ab initio molecular integrals is primarily aimed at providing insights

into the approximations underlying NDDO-based SQC models. The computed molecular

integrals are therefore classified into seven and five different types of 2-e and 1-e integrals,

respectively, according to the NDDO integral convention that is widely adopted in many

popular SQC methods, e.g. MNDO, [48] AM1, [49] PMx, [50–53] and the OMx series. [54–57] In

addition, we define two extra types of molecular integrals associated with the interplay be-

tween attractive 1-e and repulsive 2-e terms in the molecular Hamiltonian. The classification

of all these integrals is summarized in Table 1. The 2-e integrals are explicitly labeled in

terms of the involved atomic centers. The 1-e integrals and the combined 1-e and 2-e inte-

grals are likewise labeled according to the NDDO convention, which specifies the affiliation

of a basis function to an atom as {φA
µ , φ

A
ν } ∈ A, {φB

λ} ∈ B, and {φC
ρ , φ

C
σ} ∈ C, where φA

µ and

φA
ν are different basis functions on atom A, φC

ρ and φC
σ may refer to the same basis function

on atom C, and A, B, and C symbolize three distinct atoms.

2-e integrals

The statistical measures for each type of ab initio 2-e molecular integrals in the Löwdin basis

are listed in Table 2. These 2-e integrals can be categorized into three distinct groups in

accordance with the convention used by Roothaan and Rüdenberg, [58–60] namely Coulomb,

exchange, and hybrid integrals.

Coulomb integrals

The Coulomb integrals are always retained in the NDDO approximation. The correlation

diagrams for g1cc and g2cc in the {φi} and {φ̄µ} representations are shown in Figure 2 for

the valence-only minimal basis. In both cases, good linear correlations are evident, with

correlation coefficients r2 of 0.996 and 0.994 for ḡ1cc and ḡ2cc, respectively (see Table 2).

Closer inspection of Figure 2 reveals that ḡ1cc is generally shifted up considerably with

respect to g1cc: the associated standard deviation σ of 0.75 eV is significantly larger than the

corresponding value of 0.16 eV for ḡ2cc vs. g2cc. In current NDDO-based SQC methods such
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as OMx, the 1-c 2-e integrals are derived from experimental atomic data while the 2-c 2-e

integrals are represented by g2cc values that are scaled to account for dynamic correlation

effects in an average manner.

Corresponding correlation diagrams are shown in the Supporting Information for the

Coulomb integrals obtained with the larger all-electron basis sets (see Figures S1 to S5). In

contrast to the valence-only minimal basis set, no regular patterns are found for these larger

all-electron basis sets. In an attempt to find correlations in the case of the triple-ζ 6-311G set,

we divided the Coulomb integrals into several sub-types according to the involved 1S, 2SP ,

2S ′P ′, and 2S ′′P ′′ shells (see Figures S6 to S11 in the Supporting Information) but there were

still no satisfactory linear correlations for any of these sub-types. Hence, when using multi-

shell all-electron basis functions, the symmetric orthogonalization among different shells can

give rise to fairly strong and non-uniform changes in the Coulomb integrals, which will make

it difficult to devise useful approximate expressions for these integrals in the Löwdin basis.

This may be an obstacle for attempts to improve SQC models by introducing extended

multi-shell basis function.

Exchange integrals

The 2-e exchange integrals include ḡ2cx, ḡ3cx, and ḡ4cx. All these are completely neglected

in NDDO-based SQC models. As shown in Figure 3 these integrals are non-negligible in

the atomic basis: their absolute magnitudes range up to 2 eV, 4 eV, and more than 5 eV

for g4cx, g3cx, and g2cx, respectively. By contrast, all these exchange integrals are very small

in the Löwdin basis (see Figure 3). The statistical measures given in Table 2 quantify this

observation: the standard deviations σ from zero are 0.033, 0.004, and 0.001 eV for ḡ2cx,

ḡ3cx, and ḡ4cx, respectively; the absolute magnitude of these integrals is less than 10−5 eV

for 29%, 30%, and 48% of ḡ2cx, ḡ3cx, and ḡ4cx, respectively (see Table S3 in the Supporting

Information). Therefore the neglect of the 2-e exchange integrals in NDDO-based SQC

models is justified for the valence-only minimal basis.

For the larger all-electron GTO basis sets, there are billions of 2-e exchange integrals to

be computed and analyzed for our 32 test molecules. We refrain from a detailed analysis

but just report the most negative and the most positive values of these integrals for the five
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all-electron basis sets (see Table S4 in the Supporting Information). Evidently, the exchange

integrals in the {φi} basis are much too large to be neglected; for example, in the 6-311G case,

the maximum absolute values exceed 4, 5, and 7 eV for g4cx, g3cx, and g2cx, respectively. In

the Löwdin basis, these integrals are much reduced through the symmetric orthogonalization

but they do not become generally negligible: for example, in the double-ζ (3-21G, 6-31G)

and triple-ζ (6-311G) case, the maximum values of ḡ2cx reach 1.1 and 1.3 eV, respectively.

Hence, when using multi-shell all-electron basis functions, the neglect of the 2-e exchange

integrals in NDDO-based SQC models is not well supported by considering their values in

the Löwdin basis.

Hybrid integrals

The 2-e hybrid integrals ḡ2ch and ḡ3ch describe the interaction between a Coulomb density

on one atom (A) and the exchange density between two atomic centers (A-B or B-C). The

correlation diagrams of the 2-c and 3-c hybrid integrals in the atomic basis and the Löwdin

basis are shown in Figure 4. As in the case of the exchange integrals, the absolute magni-

tude of the hybrid integrals is significantly decreased by symmetric orthogonalization. The

standard deviations from zero are fairly small in the Löwdin basis, 0.120 eV for ḡ2ch and

0.033 eV for ḡ3ch (see Table 2). However, individual hybrid integrals may remain fairly large

in the Löwdin basis, as indicated by maximum values greater than 2 eV for ḡ2ch and 1 eV

for ḡ3ch. Hence, the NDDO approximation is less well justified for hybrid integrals than for

exchange integrals.

This conclusion is reinforced when going from the valence-only minimal basis (consid-

ered above) to larger all-electron GTO basis sets, where the maximum values of the hybrid

integrals in the Löwdin basis are found to range from 3.0 to 3.5 eV for ḡ2ch and from 1.0 to

2.4 eV for ḡ3ch (see Table S4 in the Supporting Information).

Linear H4 model

To understand the patterns identified in the preceding Big Data analysis we scrutinize a

simple model, linear H4 with an internuclear distance of 1.40 Bohr described by the minimal
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STO-3G basis. Figure 5 contains plots of the Löwdin basis ({φ̄µ}, in solid lines) and of

the nonorthogonal atomic basis ({φi}, in dotted lines) as well as the coefficient matrix of

the symmetric orthogonalization. The {φ̄µ} basis is designed to resemble the parental {φi}

basis as closely as possible by minimizing the sum of the squared deviations between the two

sets of basis functions. [28] Since each {φ̄µ} is comprised of contributions from all {φi} of a

molecule, see Eq. (2), it is usually deemed to be more delocalized.

However, inspection of the plots in Figure 5 shows that the {φ̄µ} basis seems somewhat

“slimmer” than the parental {φi} basis in the H4 model: the solid lines representing the {φ̄µ}

basis are more squeezed toward the atomic centers and decay even faster than the dotted

lines (the {φi} basis) in the covalent region between two neighboring hydrogen atoms. The

Coulomb densities are thus quite localized in the {φ̄µ} representation, even more so than in

the parental {φi} representation, and both will be dominated by the contributions from the

region of the corresponding atoms. This explains the good correlation between the Coulomb

integrals in the two representations, and also why the Coulomb integrals tend to be somewhat

larger in the {φ̄µ} basis.

The absolute magnitude of the 2-e exchange and hybrid integrals is generally reduced

in the {φ̄µ} basis (see Figures 3 and 4). This can be traced back to typical patterns in

the coefficient matrix of the symmetric orthogonalization, i.e. X in Eq. (2). In the case

of the linear H4 model (Figure 5) we can identify the following patterns: i) The diagonal

elements Xµµ are close to but slightly larger than unity. ii) The off-diagonal elements Xµ,µ±1

for neighboring atoms are negative; their absolute values are smaller than unity but still

sizable. iii) When going from the closest neighboring atom to distant atoms, the off-diagonal

elements Xµν alternate in sign, and their absolute values decay steeply. A term-by-term

analysis of the symmetric orthogonalization in the linear H4 model shows that the negative

Xµ,µ±1 coefficients (ii) are largely responsible for cancellations in ḡµν,κτ , see Eq. (5), and thus

for the decrease in the absolute magnitudes of the exchange and hybrid integrals.

1-e core Hamiltonian

The 1-e core Hamiltonian Hcore represents the electron kinetic energy and the nuclear-

electron attraction energy. Instead of decomposing Hcore into individual Tµν and Vµν,A
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contributions for each atom, the 1-e integrals are classified as diagonal one-center integrals

Uµµ, 2-c NAIs Vµν,B, 2-c resonance integrals βµλ, off-diagonal one-center integrals Uµν , and

3-c NAIs Vµλ,C, in accord with the integral conventions adopted in most NDDO-based SQC

methods. [48–57] A complete list of these integrals and their mathematical definitions is given

in Table 1. Having demonstrated that the NDDO approximation is less justified for the 2-e

integrals when using multi-shell all-electron GTO basis sets, we will focus in the following

discussion on the 1-e integrals obtained with the valence-only CEP-4G basis set.

NDDO-retained integrals

In NDDO-based SQC models, the integrals Ūµµ, V̄µν,B, and β̄µλ are retained. The correlation

diagrams of these integrals in the atomic and Löwdin bases and the associated statistical

measures are given in Figure 6 and Table 2, respectively.

We find a roughly linear correlation for Ūµµ (r2 = 0.983) but there are large deviations

between the values in the {φi} and {φ̄µ} representations, with a standard deviation σ of

7.0 eV. Evidently, Ūµµ is severely affected by orthogonalization effects, which should be

taken into account explicitly in SQC models (as e.g. in the OMx methods [54–57]).

There is a satisfactory linear correlation for V̄µν,B (r2 = 0.994). The deviations between

the values in the {φi} and {φ̄µ} representations are smaller than those for Ūµµ but not

negligible (σ = 0.77 eV). Hence, it is reasonable to add suitable orthogonalization corrections

to the 2-c NAIs in NDDO-based SQC methods (as e.g. in the OMx methods [54–57]).

The resonance integrals β̄µλ are retained in all SQC models because they describe the

strength of bonding between the orbitals φA
µ and φB

λ on atoms A and B. They are most

severely affected by the symmetric orthogonalization, being often reduced by about one order

of magnitude (Figure 6). However, they are clearly not negligible in the {φ̄µ} representation

(note that the NDDO approximation does not apply to the resonance integrals because

of the presence of the kinetic energy operator, see Table 1). Given the lack of a clear

correlation between βµλ and β̄µλ (r2 = 0.740) and the order-of-magnitude difference between

their values, it is understandable that NDDO-based SQC methods normally attempt to

model the resonance integrals directly through suitable empirical functions (rather than

relating them to their analytical counterparts). Nevertheless, it has been found advantageous
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in the OM2 and OM3 methods to include small 3-c orthogonalization corrections in the

resonance integrals to properly account for subtle environmental effects. [55–57]

NDDO-neglected integrals

In NDDO-based SQC methods, Uµν and Vµλ,C are neglected on different grounds: Uµν is zero

by symmetry in the atomic basis, while Vµλ,C is zero according to the NDDO approximation

since it involves the charge distribution of orbitals φA
µ and φB

λ on different atoms A and B.

The correlation diagrams of Uµν and Vµλ,C in the {φi} and {φ̄µ} representations are shown

in Figure 7. It is obvious that the off-diagonal one-center energies are no longer zero in the

{φ̄µ} basis but adopt rather large values upon symmetric orthogonalization. The standard

deviation from zero is 0.9 eV for Ūµν (see σ in Table 2), and individual values can be as

large as ±6.5 eV (see Figure 7). The neglect of Ūµν in conventional NDDO-based SQC

methods [48–53] may result in intrinsic errors, which may be avoided in methods that include

corresponding orthogonalization corrections. [54–57]

Concerning the 3-c nuclear attractions integrals, the correlation diagram of Vµλ,C in the

{φi} and {φ̄µ} representations shows no simple pattern (see Figure 7). The orthogonalization

again leads to a significant decrease in the values of the integrals: Vµλ,C and V̄µλ,C range up

to ±28 eV and ±4.7 eV, respectively. The standard deviation from zero is 0.2 eV for V̄µλ,C

(see σ in Table 2). Hence, V̄µλ,C does not vanish as assumed by the NDDO approximation,

which may be an intrinsic source of error in current NDDO-based SQC models.

Combined 1-e and 2-e integrals

The Fock matrix of a molecular system is composed of the 1-e core Hamiltonian and a 2-e

part containing 2-e integrals contracted with electron density matrix elements. Overall, the

former is attractive and the latter is repulsive. In SQC models it is essential to achieve a

proper balance between attractive and repulsive terms, and hence it is appropriate to explore

combinations of such terms when analyzing SQC integral approximations.

We first consider the total 3-c contribution to the Fock matrix arising from the 3-c 1-e

and 2-e integrals that are normally neglected in NDDO-based SQC models. To quantify this
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contribution we define the coupled potential (CP) integral as

V CP
µλ,C = Vµλ,C +

C∑
ρ

C∑
σ

Dρσ

(
gµλ,ρσ −

1

2
gµσ,ρλ

)
,

where Vµλ,C is the 3-c 1-e NAI, gµλ,ρσ and gµσ,ρλ denote the 3-c 2-e hybrid and exchange

integrals, respectively, and Dρσ is a converged density matrix element at atom C.

The correlation diagram of the CP integrals in the {φi} and {φ̄µ} representations is

plotted in Figure 8. Compared to the 3-c NAIs Vµλ,C and V̄µλ,C in Figure 7, the corresponding

CP integrals are much smaller due to the cancellation of 1-e and 2-e contributions of nearly

equal magnitude and opposite sign. As a result, V̄ CP
µλ,C deviates much less from zero than

V̄µλ,C, as indicated by a standard deviation σ of 0.05 eV. Given this approximate mutual

balance between the 3-c 1-e and 2-e contributions to the Fock matrix, it may be qualitatively

reasonable to neglect all these 3-c terms in NDDO-based SQC methods (as commonly done).

However, closer inspection of Figure 8 shows that there exist quite a few V̄ CP
µλ,C integrals with

values around ±1 eV. For further improving current SQC methods, one might thus consider

to include parametric terms representing the total 3-c contribution to the Fock matrix.

The 2-c penetration integral (PI) was introduced first for planar π-electron systems [61,62]

and later for valence-electron SQC treatments. [63] It is defined as the sum of the attractive

2-c electron-nucleus attraction Vµν,B and a repulsive 2-c term ZB · gµAνA,sBsB , i.e. the valence

nuclear charge ZB multiplied by the 2-e interaction between the φA
µφ

A
ν and sBsB charge

distributions:

V PI
µν,B = Vµν,B + ZB · gµAνA,sBsB

The penetration integrals are often neglected in NDDO-based SQC methods, [48–53] in the tra-

dition of CNDO/2. [63] The assumption is that Vµν,B and ZB · gµAνA,sBsB are exactly equal but

of opposite signs so that Vµν,B is represented by −ZB · gµAνA,sBsB in the 1-e core Hamiltonian.

The penetration integrals in the {φi} and {φ̄µ} representations are visualized for all test

molecules in Figure 9. They are uniformly negative in the atomic basis, and mostly negative

in the Löwdin basis (with very few exceptions that are almost invisible in Figure 9). They

are fairly large in both representations, with negative values reaching −8.3 eV and −6.0 eV

in the {φi} and {φ̄µ} representations, respectively. The penetration effect thus does not
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vanish upon symmetric orthogonalization, and it is therefore advisable to include penetration

integrals explicitly in NDDO-based SQC models, as e.g. in the OMx methods. [54–57]

Induced error in molecular electronic energy

Next we address the question of how much the NDDO-neglected molecular integrals would

contribute to the molecular electronic energy if they were included. Since the NDDO approx-

imation is best justified in the Löwdin basis we investigate this issue through calculations

in this basis. We utilize our insights into the relative magnitude and importance of the

various molecular integrals in the Löwdin basis to consider eight distinct schemes that take

us from the classic NDDO model [26] to the full ab initio HF-SCF level. These schemes are

characterized as follows:

ENDDO = neg(EHF
SCF, Ūµν , ḡ2ch, ḡ2cx, V̄µλ,C, ḡ3ch, ḡ3cx, ḡ4cx) (6)

E Ūµν = aug(ENDDO, Ūµν) (7)

E ḡ2ch = aug(E Ūµν , ḡ2ch) (8)

E ḡ2cx = aug(E ḡ2ch , ḡ2cx) (9)

E V̄µλ,C = aug(E ḡ2cx , V̄µλ,C) (10)

E ḡ3ch = aug(E V̄µλ,C , ḡ3ch) (11)

E ḡ3cx = aug(E ḡ3ch , ḡ3cx) (12)

E ḡ4cx = aug(E ḡ3cx , ḡ4cx) ≡ EHF
SCF, (13)

where EHF
SCF denotes the standard HF-SCF molecular electronic energy. In all cases, the

HF-SCF converged electron density in the Löwdin basis is used for the molecular electronic

energy calculations (Eqs. from (6) to (13)) so that every quantity considered herein is fully

consistent with the Löwdin basis.

The function neg() in Eq. (6) returns ENDDO, the electronic energy evaluated in an ab ini-

tio manner while invoking the standard NDDO integral approximation. The various types

of the NDDO-neglected integrals (see Tables 1 and 2) are then incrementally introduced in

a stepwise manner, in accordance with their relative importance; this is symbolized by the

aug() function in Eqs. (7) to (13). Since all the NDDO-neglected molecular integrals are
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eventually recovered in Eq. (13), E ḡ4cx must be identical to the standard EHF
SCF. Finally, in

order to establish quantitative estimates of the contributions of the NDDO-neglected inte-

grals to the HF-SCF molecular electronic energy, the induced error ∆Ei relative to EHF
SCF is

defined by

∆Ei = E i − EHF
SCF

where the superscript i stands for the seven distinct neglect schemes introduced here (see

Eqs. from (6) to (12), respectively).

In our analysis, we ignore electron correlation effects and thus do not strive for chemical

accuracy, which is impossible to achieve at the HF-SCF level. [1] Instead, we consider the

∆Ei values as a suitable systematic measure to assess the energetic effect of neglecting

certain types of molecular integrals when applying the NDDO approximation. The results

obtained with the valence-only minimal CEP-4G basis set are plotted for all test molecules

in Figure 10. The mean induced errors (∆̄Ei) are listed in Table 3 for all the GTO basis sets

employed in this study. Detailed numerical results are collected in Tables S5 to S36 in the

Supporting Information. In the following discussion, we will go through the seven schemes

defined above and discuss the relevant energy terms (i.e. E i, ∆Ei, and ∆̄Ei) first for the

valence-only basis set and then for the all-electron basis sets.

The energies ENDDO calculated from a parameter-free NDDO model show huge devia-

tions from the reference energies EHF
SCF, with errors for the CEP-4G basis up to 181 eV for

tryptophan (see Figure 10). The errors ∆ENDDO tend to increase with molecular size. The

behavior of the parameter-free NDDO model is even more erratic when using the all-electron

GTO basis sets, especially for 6-311G (see ∆̄ENDDO in the first column of Table 3).

Compared to the parameter-free NDDO model, the energies E Ūµν calculated with the

valence-only CEP-4G basis offer almost no improvement over ENDDO (see the nearly overlap-

ping red and black lines in Figure 10); the mean induced errors are very similar (+79.1 eV vs.

+78.2 eV, Table 3). When using multi-shell all-electron GTO basis sets, the mean deviations

from the corresponding EHF
SCF values are even larger (see Table 3).

The 2-c hybrid integrals ḡ2ch are neglected in current NDDO-based SQC methods. It is

obvious from Figure 10 that inclusion of these integrals (ḡ2ch) leads to a dramatic improve-

ment and a drastic drop of the mean induced error (∆̄E ḡ2ch).
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Further addition of the 2-c exchange integrals ḡ2cx only causes minor changes in the

individual deviations (CEP-4G, see Figure 10 where the blue line (∆E ḡ2ch) largely traces the

orange line (∆E ḡ2cx)) and in the mean induced errors (all basis sets, see Table 3).

Next we consider incorporating the 3-c NAIs V̄µλ,C which has been regarded as a promising

approach to improve NDDO-based models. [64,65] However, this turns out to be disappointing

since the induced errors ∆EV̄µλ,C (see the green line in Figure 10) increase again compared

with the more approximate schemes without 3-c NAIs, i.e. ∆E ḡ2ch and ∆E ḡ2cx . The reason

is obvious from our preceding Big Data analysis on the 3-c NAIs and the CP integrals:

including only the mostly attractive 3-c V̄µλ,C terms while still neglecting the repulsive 3-c

2-e terms will lead to an imbalance in the Fock matrix, which will ultimately deteriorate the

computed total energies. The cure for this problem is then to restore the balance by also

including the 3-c 2-e integrals (ḡ3ch and ḡ3cx) in the Fock matrix. This will substantially

increase the formal computational scaling of integral evaluation from O(Ng
2) to O(Ng

3).

Following this route we first incorporate the 3-c hybrid integrals ḡ3ch because our preced-

ing analysis has shown them to be much more important than the 3-c exchange integrals.

This reduces the errors ∆E ḡ3ch in the computed energies significantly (CEP-4G, see the cyan

line in Figure 10) and leads to consistently good agreement with the reference energies EHF
SCF.

Moreover, at this stage, the mean induced errors ∆̄E ḡ3ch become reasonably small and uni-

form for all basis sets considered (typically in the range from −2 to −4 eV, see Table 3).

This suggests that the 3-c interactions are now treated in a balanced manner.

Finally, the 3-c terms in the Fock matrix can be fully restored by including the 3-c 2-e

exchange integrals. As expected, this further diminishes the deviations of the computed

energies E ḡ3cx from the reference energies EHF
SCF: the mean induced errors ∆̄E ḡ3cx drop to

−0.92 eV for the valence-only minimal CEP-4G basis set and to values between −0.36 and

−1.34 eV for the all-electron GTO basis sets. The remaining errors are due to the neglect

of many small 4-c 2-e terms. Unfortunately, the complete inclusion of all 3-c integrals will

hardly lead to efficient SQC models in practice since retaining a large portion of all 2-e

integrals will severely limit the possible speedup compared with a full HF treatment.
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The NAX scheme

Based on the considerations in the preceding section we will now discuss an improved SQC

scheme for the treatment of molecular integrals called NAX (Neglect of Atomic eXchange).

As the name implies, the NAX scheme neglects atomic exchange in the Löwdin basis com-

pletely, i.e. ḡ2cx, ḡ3cx, and ḡ4cx. In a straightforward implementation of this concept, typically

∼ 15% of the 2-e molecular integrals are still kept in our test molecules, most of them 3-c

hybrid integrals ḡ3ch.

For computational efficiency further simplifications are desirable. In particular, we should

attempt to avoid the costly computation of ḡ3ch which would reduce the number of retained

2-e molecular integrals to typically ∼ 3% in our test molecules; at the same time, however,

we should still include their effect in the Hamiltonian. This might be achieved by introducing

effective 3-c interaction terms in the 1-e core Hamiltonian consisting of the 3-c NAIs V̄µλ,C

and a term that accounts for the counterbalancing contributions from ḡ3ch (see the preceding

section). To test the viability of this idea, we contract ḡ3ch with the converged density

matrix, absorb this term into the 3-c NAIs, and use the resulting V̄ eff
µλ,C integrals in the 1-e

core Hamiltonian:

V̄ eff
µλ,C = V̄µλ,C +

C∑
ρ

C∑
σ

D̄ρσḡµλ,ρσ

Compared with the OMx methods, the resulting NAX scheme entails two additional types of

molecular integrals, namely 2-c hybrid ḡ2ch and 3-c combined V̄ eff
µλ,C integrals. In the notation

of the preceding section, the NAX energy is given by:

ENAX = aug(E ḡ2ch , V̄ eff
µλ,C).

We have computed all test molecules using this scheme. The corresponding errors

(∆ENAX) relative to the HF-SCF reference energies are plotted in Figure 11 for all basis

sets used (see Table S37 for numerical data). A comparison of ∆ENAX against ∆Ei shows

that the NAX scheme is generally less accurate than schemes including the 3-c 2-e integrals

explicitly (∆E ḡ3ch and ∆E ḡ3cx) but far more accurate than all others. Closer inspection of

Figure 11 reveals that the errors ∆ENAX increase notably when going from minimal (or

single-ζ) via double-ζ to triple-ζ basis sets, and they also tend to increase with molecular
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size, especially for the largest basis set. These trends may be related to the number of ne-

glected 2-e integrals which increases with the number of basis functions. Hence, the NAX

scheme is expected to work best for a minimal basis set.

Before closing this section, we pinpoint the major hindrance that may prevent the NAX

scheme from being readily implemented in practice. In our tests, the computation of the

effective 3-c interaction terms V̄ eff
µλ,C makes use of the 3-c hybrid integrals ḡ3ch and the density

matrix, while any efficient practical implementation will need a realistic estimate of V̄ eff
µλ,C to

be computed before the SCF procedure (without knowledge of ḡ3ch and the density matrix).

A second less severe problem is the efficient semiempirical computation of the 2-c hybrid

integrals ḡ2ch (neglected in NDDO but included here) which may be achieved by suitable

scaling strategies. Given the documented importance of these extra terms, it would seem

worthwhile to explore possible implementations of the NAX scheme with the aim to enhance

the intrinsic accuracy of SQC models.

Conclusions

In this Big Data analysis of ab initio molecular integrals we computed 15.6 million 1-e

integrals and 10.3 billion 2-e integrals for 32 typical organic molecules and classified them

into 14 different types, e.g. seven for 2-e integrals, five for 1-e integrals, and two for combined

1-e and 2-e integrals.

When using the valence-only minimal CEP-4G basis for integral evaluation, the 2-e

Coulomb integrals in the Löwdin basis are quantitatively close to their counterparts in

the atomic basis and the 2-e exchange integrals can be safely neglected in line with the

NDDO approximation. These patterns can be rationalized by scrutinizing the {φ̄µ} basis,

the symmetric orthogonalization matrix, and the pertinent 2-e integrals in the linear H4

model system. The symmetric orthogonalization makes the 2-e hybrid integrals smaller but

not entirely negligible (as assumed at the NDDO level), which may limit the accuracy of

NDDO-based SQC methods.

When using large all-electron GTO basis sets for integral evaluation, there are strong

multi-shell orthogonalization effects that lead to more irregular patterns in the transformed
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2-e integrals; for example, the exchange integrals become smaller in the Löwdin basis but

remain sizable so that it would seem inappropriate to neglect them. Thus the NDDO ap-

proximation for the 2-e integrals is less well justified for large all-electron basis sets, and

it appears doubtful whether the intrinsic accuracy of NDDO-based SQC models can be

improved by using more extended basis sets.

Our Big Data analysis confirms that the 1-e integrals in the core Hamiltonian are strongly

affected by orthogonalization effects, especially the resonance integrals that are critical for

chemical bonding. The analysis provides further support for the strategies to deal with these

effects that have been introduced in the OMx series of NDDO-based SQC models.

In NDDO approximation, 3-c integrals are generally neglected. Our analysis shows that

the symmetric orthogonalization indeed makes most of these integrals negligibly small in the

Löwdin basis; however, the 1-e nuclear attraction integrals V̄µλ,C and the 2-e hybrid integrals

ḡ3ch are found to differ from zero appreciably also in the Löwdin basis. The contributions from

these two types of 3-c integrals tend to compensate each other to some extent when building

the Fock matrix. This effect can be quantified by considering the 3-c coupled potential

integral that is defined as the sum of corresponding 3-c 1-e NAIs and 2-e terms involving

3-c hybrid integrals contracted with the density matrix. The analysis demonstrates that it

may be qualitatively satisfactory to simultaneously neglect the 3-c integrals in NDDO-based

SQC methods, but it also indicates that the accuracy of such methods might be enhanced

by taking these terms into account.

Based on the insights gained from the Big Data analysis of integrals, we consider the

novel NAX scheme with a valence-only minimal basis set as a possible strategy to go beyond

the NDDO integral approximation in attempts to improve SQC methods while retaining

their computational efficiency.
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C2 and aliphatic compounds
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Figure 1: Molecules for Big Data analysis of ab initio molecular integrals.

(a) 1-c integral (b) 2-c Coulomb integral

Figure 2: Correlation diagrams of the NDDO-retained ab initio 2-e Coulomb integrals (all

in eV) in the atomic basis (abscissa) and the Löwdin basis (ordinate). The valence-only

minimal CEP-4G basis function is employed for integral evaluation. The diagonal lines

represent ideal correlation lines with slope 1 going through the origin.
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(a) 2-c exchange integral (b) 3-c exchange integral (c) 4-c integral

Figure 3: Correlation diagrams of the NDDO-neglected ab initio 2-e exchange integrals (all

in eV) in the atomic basis (abscissa) and the Löwdin basis (ordinate). The valence-only

minimal CEP-4G basis function is employed for integral evaluation.

(a) 2-c hybrid integral (b) 3-c hybrid integral

Figure 4: Correlation diagrams of the NDDO-neglected ab initio 2-e hybrid integrals (all

in eV) in the atomic basis (abscissa) and the Löwdin basis (ordinate). The valence-only

minimal CEP-4G basis function is employed for integral evaluation.
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φ1 φ2 φ3 φ4

φ̄1 = +1.28 −0.57 +0.13 −0.02
φ̄2 = −0.57 +1.65 −0.67 +0.13
φ̄3 = +0.13 −0.67 +1.65 −0.57
φ̄4 = −0.02 +0.13 −0.57 +1.28

Figure 5: The atomic basis ({φi}, dotted lines) and the Löwdin basis ({φ̄µ}, solid lines) for

the linear H4 model system with internuclear distances of 1.40 Bohr. The standard STO-3G

basis set is used. The coefficient matrix for the symmetric orthogonalization is listed for

each {φ̄µ} in different colors.

(a) diagonal atomic integral (b) 2-c nuclear attraction integral (c) resonance integral

Figure 6: Correlation diagrams of the NDDO-retained ab initio 1-e integrals (all in eV)

in the atomic basis (abscissa) and the Löwdin basis (ordinate). The valence-only minimal

CEP-4G basis function is employed for integral evaluation. The diagonal lines represent

ideal correlation with slope 1 going through the origin.
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(a) off-diagonal atomic integral (b) 3-c nuclear attraction integral

Figure 7: Correlation diagrams of the NDDO-neglected ab initio 1-e integrals (all in eV)

in the atomic basis (abscissa) and the Löwdin basis (ordinate). The valence-only minimal

CEP-4G basis function is employed for integral evaluation.

Figure 8: Correlation diagram of ab initio coupled potential integrals (all in eV) in the

atomic basis (abscissa) and the Löwdin basis (ordinate). The valence-only minimal CEP-4G

basis function is employed for integral evaluation. The correlation coefficient r2 and the

standard deviation σ with respect to the zero line are 0.969 and 0.052 eV, respectively.
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(a) V PI
µν,B in {φi} (b) V̄ PI

µν,B in {φ̄µ}

Figure 9: Comparison of ab initio penetration integrals (all in eV) for 32 organic molecules

(a) in the atomic basis ({φi}) and (b) in the Löwdin basis ({φ̄µ}). The valence-only minimal

CEP-4G basis function is employed for integral evaluation. Repulsive (almost invisible) and

attractive interactions are depicted as red and green dots, respectively.

Figure 10: Induced error (∆Ei, in eV) relative to the HF-SCF molecular electronic energy.

See the text for the seven distinct schemes of neglecting molecular integrals. The valence-only

minimal CEP-4G basis function is employed for integral evaluation.
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Figure 11: Error (∆ENAX, in eV) relative to the HF-SCF molecular electronic energy

calculated with the CEP-4G, STO-3G, STO-6G, 3-21G, 6-31G, and 6-311G basis functions.

The NAX scheme is employed in the calculations. The NAX result for tryptophan in 6-311G

is not available due to technical constraints.
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2-e integrals

notation mathematical definition NA NDDO description

g1cc (φAφA, φAφA) 1 Y 1-c Coulomb integral

g2cc (φAφA, φBφB) 2 Y 2-c Coulomb integral

g2cx (φAφB, φAφB) 2 N 2-c exchange integral

g3cx (φAφB, φAφC) 3 N 3-c exchange integral

g4cx (φAφB, φCφD) 4 N 4-c exchange integral

g2ch (φAφB, φBφB) 2 N 2-c hybrid integral

g3ch (φAφB, φCφC) 3 N 3-c hybrid integral

1-e integrals

notation mathematical definition NA NDDO description

Uµµ (φA
µ | T + VA | φA

µ ) 1 Y diagonal atomic integral

Vµν,B (φA
µ | VB | φA

ν ) 2 Y 2-c nuclear attraction integral

βµλ (φA
µ | T + VA + VB | φB

λ ) 2 Y resonance integral

Uµν (φA
µ | T + VA | φA

ν ) 1 N off-diagonal atomic integral

Vµλ,C (φA
µ | VC | φB

λ ) 3 N 3-c nuclear attraction integral

combined 1-e and 2-e integrals

notation mathematical definition NA description

V CP
µλ,C Vµλ,C +

∑C
ρ

∑C
σ Gµλ[Dρσ] 3 coupled potential integral

V PI
µν,B Vµν,B + ZB · (φA

µφ
A
ν , φ

B
s φ

B
s ) 2 penetration integral

Table 1: Classification of ab initio molecular integrals. NA denotes the number of the atomic

centers involved. “Y” and “N” are abbreviations for “Yes” and “No” specifying whether the

integral is kept or not in NDDO approximation. The subscript in the notation for the 2-e

integrals indicates the number of involved atomic centers and the integral type; the latter

is symbolized by the last character “c”, “x”, and “h” representing Coulomb, exchange, and

hybrid integrals, respectively. NDDO conventions (see the text for details) are used for

denoting the 1-e integrals and the combined 1-e and 2-e integrals. The 2-e integral part of

V CP
µλ,C is abbreviated using G matrix elements and Dρσ stands for a converged density matrix

element belonging to atom C. ZB is the valence nuclear charge on atom B.
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2-e integrals

notation

r2

σ

max−

max+

NDDO-retained

Coulomb integral

ḡ1cc ḡ2cc

0.996 0.994

0.749 0.157

−1.301 −2.595

+25.947 +12.731

NDDO-neglected

exchange integral hybrid integral

ḡ2cx ḡ3cx ḡ4cx ḡ2ch ḡ3ch

0.989 0.997 0.999 0.938 0.975

0.033 0.004 0.001 0.120 0.033

−0.236 −0.216 −0.106 −2.285 −1.343

+0.729 +0.193 +0.083 +2.282 +1.343

1-e integrals

notation

r2

σ

max−

max+

NDDO-retained

Ūµµ V̄µν,B β̄µλ

0.983 0.994 0.740

6.954 0.774 11.977

−146.816 −79.351 −15.201

−a +16.409 +17.133

NDDO-neglected

Ūµν V̄µλ,C

−b 0.969

0.911 0.196

−6.535 −4.760

+6.546 +4.678

a: Ūµµ is always negative.

b: r2 is undefined for Ūµν because Uµν is zero by symmetry in the atomic basis.

Table 2: Statistical measures of molecular integrals in the Löwdin basis. The valence-only minimal CEP-4G basis function is

employed for integral evaluation. The integral notation is specified in Table 1. The correlation coefficient r2 and the standard

deviation σ (in eV) for the NDDO-retained integrals and the NDDO-neglected integrals refer to the corresponding integrals in

the atomic basis and to zero, respectively. max− and max+ denote the most negative and most positive values of these integrals,

respectively.
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GTO ∆̄ENDDO ∆̄EŪµν ∆̄E ḡ2ch ∆̄E ḡ2cx ∆̄EV̄µλ,C ∆̄E ḡ3ch ∆̄E ḡ3cx

CEP-4G +79.06 +78.18 +19.79 +18.56 +48.85 −3.90 −0.92

STO-3G +175.33 +146.60 +14.64 +14.50 +36.83 −2.23 −0.61

STO-6G +173.50 +150.99 +14.71 +14.31 +36.52 −2.42 −0.60

3-21G −42.69 −385.57 −60.76 −56.02 −112.61 −2.10 −0.36

6-31G −169.99 −379.59 −64.90 −60.59 −124.33 −2.41 −0.58

6-311G +3143.04 −433.87 −79.39 −73.65 −157.05 −5.83 −1.34

Table 3: Mean induced error (∆̄Ei, in eV) relative to the standard HF-SCF molecular

electronic energy. See the text for the seven distinct schemes of neglecting molecular integrals.
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