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Abstract

This study proposes a novel approach to quantifying uncertainties of constitutive
relations inferred from noisy experimental data using inverse modelling. We focus on
electrochemical systems in which charged species (e.g., Lithium ions) are transported in
electrolyte solutions under an applied current. Such systems are typically described by
the Planck-Nernst equation in which the unknown material properties are the diffusion
coefficient and the transference number assumed constant or concentration-dependent.
These material properties can be optimally reconstructed from time- and space-resolved
concentration profiles measured during experiments using the Magnetic Resonance
Imaging (MRI) technique. However, since the measurement data is usually noisy, it is
important to quantify how the presence of noise affects the uncertainty of the recon-
structed material properties. We address this problem by developing a state-of-the-art
Bayesian approach to uncertainty quantification in which the reconstructed material
properties are recast in terms of probability distributions, allowing us to rigorously
determine suitable confidence intervals. The proposed approach is first thoroughly val-
idated using “manufactured” data exhibiting the expected behavior as the magnitude
of noise is varied. Then, this approach is applied to quantify the uncertainty of the
diffusion coefficient and the transference number reconstructed from experimental data
revealing interesting insights.

Keywords: electrolytic transport, Planck-Nernst equation, inverse problems, Bayesian
uncertainty quantification, Markov chain Monte-Carlo
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1 INTRODUCTION

In this study we develop and validate a probabilistic framework for quantifying uncertainty in
the reconstruction of unknown material properties of electrochemical system from experimen-
tal data using inverse modelling. Electrochemical systems have been studied for a long time
and play a major role in advancement of technology and the way humans live. For instance,
novel energy-storage solutions based on Lithium-ion batteries have already revolutionized
personal-electronics industry [1] and are changing the automotive industry [2]. Lately this
progress has increasingly relied on mathematical models of the transport of charged species
which are typically derived from the Planck-Nernst equation [3]. These models crucially
depend on a number of material properties such as, e.g., the diffusion coefficients of active
ions in electrodes and electrolyte, specific to the different materials used in electrochemical
systems. The material properties of interest to us here represent the constitutive relations
describing how thermodynamic fluxes depend on the corresponding thermodynamic forces.
Unfortunately, for many materials, especially new ones, they are notoriously difficult to ob-
tain either from first principles or via direct measurements, which hampers the modelling
efforts.

One remedy to this situation is offered by the methods of inverse modelling which in-
tegrate in a systematic matter measurements of a system with its mathematical model in
order to infer certain unknown properties of the system. While inverse modelling has seen
many successful applications in natural sciences (see, e.g., the monograph [4] for some ex-
amples), its applications in the field of electrochemistry have been rather limited and as
some notable exceptions we can mention the studies [5–8]. From the mathematical point
of view, inverse problems are often formulated in the optimization setting where a suitable
error functional representing the mismatch between the actual measurements and the obser-
vations predicted by the model is minimized with respect to the unknown material property
[9, 10]. This is the approach we followed in our earlier study [11] in which we developed and
validated an inverse-modelling approach allowing one to extract the effective diffusivity and
the transference number characterizing an electrolyte solution from space- and time-resolved
measurements of the concentrations of the charged species in a galvanostatic experiment. A
key novelty of this approach as compared to earlier studies is that the material properties
are inferred in a very general continuous setting subject only to minimal assumptions. This
problem can be therefore viewed as learning an optimal form of a nonlinear constitutive
relation from data

Since the measurements are usually contaminated with noise, an important question is
how this affects the accuracy of the reconstructed material properties. The reason is that
inverse problem often tend to be “ill-posed” [9], meaning that small modifications of the
input data (measurements) may result in significant changes of the obtained solution (here,
the reconstructed material properties). Therefore, in order to have confidence in the ob-
tained results, it is necessary to quantify how the measurement uncertainty translates into
the uncertainty of the reconstructed material properties and, if more than one quantity is
reconstructed (as was the case in [11]), whether the uncertainties of the reconstructed quan-
tities are mutually correlated. An emerging approach which casts the problem of uncertainty
quantification in probabilistic terms is Bayesian inference. In this framework, which blends
prior hypotheses on unknown parameters with information from measurements in a system-
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atic manner, the reconstructions of parameters are given in terms of suitable probability
densities. General references to Bayesian inference include [12, 13], whereas a more general
perspective which also involves continuous problems described by differential equations was
developed in [14]. Recently, there has been a growing interest in Bayesian approaches to
the solution of inverse problems with applications in electrical impedance tomography [15],
atmospheric science [16, 17], contaminant source identification [18], ground water modelling
[19], etc. However, in the field of electrochemistry such techniques are not very common and
have been applied to quantify uncertainty in diagnostics and prognostics of batteries [20] and
state estimation in battery management systems [21]. The goal of the present investigation
is to develop and validate a Bayesian approach to uncertainty quantification in inverse recon-
struction of state-dependent material properties in electrochemical systems. The proposed
approach is quite general and as such may be applicable to a broad range of similar problems
in chemistry governed by macroscopic models. The main novelty, and at the same time the
largest difficulty which had to be overcome, is that the uncertainty needs to be quantified
for material properties reconstructed in the continuous setting.

The structure of the paper is as follows: in the next section we describe the class of
electrochemical systems of interest to us, review their models and the inverse-modelling
approach, and then introduce the Bayesian formulation of uncertainty quantification; the
proposed approach is validated using synthetic data in Section 3.1, whereas an application
involving actual experimental data is presented in Section 3.2; conclusions and final remarks
are deferred to Section 4.

2 METHODOLOGY

In this section we describe different constituents of our methodology: we start with the
measurement data, then introduce the Planck-Nernst system as a mathematical model for
the problem, after that we review the inverse-modelling approach which is followed by the
presentation of a Bayesian strategy for uncertainty quantification.

2.1 Experimental Measurements

To fix attention, we focus on a galvanostatic experiment in an electrochemical cell for which
the set-up is shown schematically in Figure 1. The experiment monitors the gradual build-
up of the ionic concentration gradient in an electrolyte solution which results from the
application of a constant current, starting from an initially uniform concentration throughout
the solution volume. The experiment is carried out under galvanostatic conditions in a
symmetric Li-Li electrochemical cell constructed from a 17 mm long and 4.2 mm diameter
NMR tube, shown in Figure 1, filled with a 1 M LiTFSI solution in Propylene Carbonate
(PC). A constant current of 50 µA was applied to the cell for 16 hours. Concentration
profiles were acquired using magnetic resonance imaging (MRI). For this experiment we
chose to monitor the 19F nuclei, which significantly reduces the data acquisition time in
comparison to monitoring the 7Li nuclei, since the relative NMR sensitivity to a 19F nucleus
is approximately 3 times higher than to a 7Li nucleus. One-dimensional 19F NMR images
were obtained using a gradient spin-echo pulse sequence with the magnetic field gradient
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Figure 1: Experimental setup and the measured concentration data c̃(x, t) used in the present
study.

applied along the axis of the cell, with a 3 ms echo time and a 20 G/cm reading gradient. In
the course of the experiment 256 frequency-domain points were collected over the spectral
width of 200 kHz. The combination of the magnetic field gradient and spectral resolution
yielded a spatial resolution of 40 µm. A total of 64 scans with a relaxation delay of 3.5 s
were collected for each image, resulting in an acquisition time of 4 minutes per image. The
imaging measurement sequence was repeated at 2-hour intervals uniformly spread over 16
hours duration of the galvanostatic experiment. The experimentally obtained concentration
profiles, hereafter denoted c̃(x, t), are shown in Figure 1 at different times t ∈ [0, 16 hours]
as functions of the space coordinate x. Further details concerning this experiment can be
found in [11].

2.2 The Planck-Nernst Model

Here we recall the classical Planck-Nernst model used to describe the transport of charged
species in dilute electrolytes [3]. The concentrations of cations and anions are denoted by
c+ and c− respectively. We make the following modelling assumptions in order to obtain
the mathematical description of the mass transport during the galvanostatic experiment
described in Section 2.1 [11]:

A1: isothermal conditions;

A2: the driving force for mass transport of a species is the gradient of its chemical potential;

A3: the lack of thermodynamic ideality (i.e., activity coefficient different from one) and the
effect of the solution viscosity accounted for by an a priori undetermined dependence
of the material properties on the salt concentration;
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A4: ion transport occurs only in the axial direction and transport in the radial direction of
the cell is negligible;

A5: the electrolyte solution is homogeneous at the beginning of the experiment;

A6: the system satisfies local electrical neutrality at every location in the bulk, which
implies that c+ = c− = c, were c is the salt concentration;

A7: mass transport occurs only by diffusion and migration in the applied electric field (i.e.,
convective transport is neglected);

A8: the cation flux at the two boundaries (x = 0 and x = L) corresponds to the applied
electric current and results in lithium deposition and stripping, respectively [3, 22].

We therefore consider a 1D problem with the spatial coordinate x ∈ [0, L], where L is
the length of the electrolyte filled region in the cell, and time t ∈ [0, T ], where T denotes the
duration of the experiment. The above assumptions lead to the following partial differential
equation (PDE) describing mass transport in the electrolyte solution (1a), subject to the
boundary conditions (1b) and the initial condition (1c):

∂c

∂t
=

∂

∂x

[
D
∂c

∂x
+

(1− t+) I

FA

]
in (0, L)× (0, T ], (1a)

∂c

∂x

∣∣∣∣
x=0,L

= −(1− t+) I

DFA
in (0, T ], (1b)

c|t=0 = cinit in (0, L), (1c)

where cinit is the initial concentration, A is the cross-sectional area of the cell, F is Faraday’s
constant, whereas I denotes the applied constant current. We note that the effective Fickian
diffusion coefficient D and the transference number t+ are considered unknown and will be
reconstructed from the experimental data using the inverse modelling approach described in
the following subsection. In the standard Planck-Nernst theory, both the diffusion coefficient
D and the transference number t+ are assumed constant. In addition to this formulation,
we will also consider a more general set-up with the diffusion coefficient and the transference
number depending on the concentration, i.e., D = D(c) and t+ = t+(c), which accounts for
the thermodynamic non-ideality of the electrolyte solution. To simplify our notation, we will
denote the pair of unknown material properties m, regardless of whether these properties
are constant (m = [D, t+]), or concentration-dependent (m = [D(c), t+(c)]). The solutions
of system (1) then define a map  L from the material properties m to the space- and time-
dependent concentrations, i.e.,

c(x, t;m) =  L(m), 0 ≤ x ≤ L, 0 ≤ t ≤ T. (2)

2.3 Inverse Modeling

The unknown material properties, D and t+, can be reconstructed based on the assumed
transport model (1) using the concentration profiles obtained in the NMR experiment de-
scribed in Section 2.1. We will use the deterministic inverse modelling approach developed
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and validated in [11] in which the problem is framed as minimization of an error func-
tional representing the least-squares deviation between the concentration values c predicted
by model (1) for a given set of material properties m and the experimentally determined
concentration values c̃. The error functional can thus be represented as

J (m) =
1

2

NT∑
i=0

∫ L

0

[c(x, ti;m)− c̃(x, ti)]2 dx, (3)

where NT is the number of time levels ti where the concentration profiles are acquired during
the experiment. We will consider two distinct formulations corresponding, respectively, to
constant and to concentration-dependent material properties.

When both D and t+ are constant, we obtain a simple unconstrained optimization prob-
lem (which is exact in the limiting case of an ideal solution, i.e., at very dilute salt concen-
trations)

P1 : [D̂, t̂+] = argmin
[t+,D]∈R2

J ([D, t+])

(henceforth carets “̂·” will denote optimal reconstructions). Problem P1 can be solved in a
straightforward manner using commercially available software tools such as the minimization
routines in MATLAB. It was in fact already solved in the seminal study by Klett et al. [7] and
is also solved here as a preliminary step in a more complete analysis.

A more complicated optimization problem arises when bothD(c) and t+(c) are concentration-
dependent, which reflects the physics of the problem in more realistic fashion,

P2 : [D̂(c), t̂+(c)] = argmin
[t+(c), D(c)]∈X

J
(
[D(c), t+(c)]

)
,

where X denotes a suitable function space to which the pair [D(c), t+(c)] belongs. The
functions D(c) and t+(c) are defined on the interval [cα, cβ] bounded by some minimum and
maximum concentrations cα and cβ, respectively.

We emphasize that, apart from smoothness and the behavior at the endpoints (i.e., for
c → cα, cβ), no other a priori assumptions are made about the functional forms of D(c)
and t+(c). In contrast to the simplified case (problem P1), the computational approach
required to solve the more realistic case (problem P2) with concentration-dependent material
properties is more involved and necessitates specialized tools. This approach has the general
form of iterative gradient-based minimization

D(n+1)(c) = D(n)(c)− ξ(n)
D ∇DJ

(
D(n)(c), t+(n)(c)

)
n = 1, 2, . . . , (4a)

t+(n+1)(c) = t+(n)(c)− ξ(n)

t+ ∇t+J
(
D(n+1)(c), t+(n)(c)

)
n = 1, 2, . . . , (4b)

[D(1)(c), t+(1)(c)] = [D̂, t̂+], (4c)

where ∇DJ and ∇t+J are the gradients (sensitivities) of error functional (3) with respect

to perturbations of, respectively, D(c) and t+(c), whereas ξ
(n)
D and ξ

(n)

t+ are the corresponding
lengths of the descent steps in the two directions. The initial guess for problem P2 in (4c)

is given by the constant values D̂ and t̂+ which are the optimal reconstructions obtained
from problem P1. (Problem P1 also requires an initial guess, however, this problem tends
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to have a unique minimum and therefore this initial guess may be arbitrary [23]. Thus,
the advantage of solving problem P1 first is that it provides a very robust initial guess for
problem P2.) The optimal concentration-dependent properties can then be computed using

(4) as D̂(c) = limn→∞D
(n)(c) and t̂+(c) = limn→∞ t

+(n)(c). A key element of the iterative
process (4) is the evaluation of error functional gradients ∇DJ and ∇t+J for which details
are provided in A. We also refer the reader to [24, 25] for a discussion of further mathematical
and computational details of this approach.

The estimates of the material properties obtained by solving problems P1 and P2 are
optimal, in the sense of minimizing the error with respect to measurements, cf. (3). Such
inverse problems are however known to be often “ill-posed”, meaning that the presence of
noise in the measurement data may significantly affect the reconstructed solution [4, 9]. The
sensitivity of the obtained reconstructions to perturbations of the data may be probed by
performing a Monte-Carlo analysis [11] in which problems P1 and P2 are solved repeatedly
using measurements c̃ artificially contaminated with independent noise samples with an
assumed (e.g., normal) distribution and magnitude determined by the known size of the
measurement errors. While this approach provides valuable insights about the sensitivity
of the reconstructed material properties to noise in the data, it does not quantify their
uncertainty in the sense of indicating which values of the material properties are most likely.
A solution to this problem is presented in the next subsection.

2.4 Bayesian Approach to Uncertainty Quantification

We assume here that both the measurements c̃(x, t) and the reconstructed material properties
[D, t+], or [D(c), t+(c)], are random variables characterized by certain probability density
functions (PDFs). More precisely, in the case of concentration-dependent properties, D(c)
and t+(c) are given by suitable probability distributions for all concentration values c ∈
[cα, cβ] and the same also applies to the measurements c̃ for different values of x ∈ [−0, L]
and t ∈ [0, T ].

In the Bayesian framework, the probability distribution of the reconstructed material
properties is given in terms of the posterior probability P(m|c̃), which is the probability of
m attaining a certain value (in problem P2, for a given concentration c) given observations
c̃, and can be expressed using Bayes’ rule [12–14]

P(m|c̃) =
P(c̃|m)P(m)

P(c̃)
, (5)

where P(m) is the prior distribution reflecting our a priori assumptions about the solution,
P(c̃|m) is the likelihood of observing particular experimental data for a given set of material
properties, whereas P(c̃) is a normalizing factor.

In terms of the prior distribution P(m), one can take the distribution of m obtained
by performing a Monte-Carlo sensitivity analysis of the deterministic inverse problems P1
and P2, as described at the end of section 2.3. This is accomplished by solving problems
P1 and P2 N ≥ 1 times, each time using the original measurements c̃ perturbed with
normally-distributed noise with magnitude given by the known size of experimental errors.
The obtained material properties m are then used to construct the prior distribution P(m).
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This step appears as STAGE 1 in Algorithms 1 and 2 below. We note that this analysis does
not account for how good the fits are, in terms of the value of the error functional (3), for
various samples of the noise perturbing the measurements. A alternative, neutral, approach
would be to take “uninformative” priors given by uniform distributions of m.

As regards the likelihood function, the following ansatz is typically adopted in Bayesian
inference [12–14]

P(c̃|m) ∝ e−J (m), (6)

which expresses the assumption that for a given set of material properties m, measurements
resulting in large values of the error functional (3) are less likely to be observed. The
likelihood function P(c̃|m) is approximated by sampling the distribution in (6) using the
Metropolis-Hastings algorithm [26] to produce M samples. This algorithm is based on the
Markov-Chain Monte-Carlo (MCMC) approach [27] employed to randomize m and at each
step involves solution of the governing system (1) for modified (trial) material properties m∗

followed by the evaluation of the error functional (3). At each step the algorithm moves in
the probability space collecting samples from the probability distribution (5). A move in
the probability space is accepted or rejected based on a sample acceptance ratio γ defined
based on the posterior distribution (5) (see Algorithm 1 and 2). If one attempts to move to
a point in the probability space that is more probable than the existing point, the move is
accepted. On the other hand, if one attempts to move to a less probable point, the algorithm
reject the move with some probability based on the steepness of the probability decrease in
the given direction. Thus, the trajectory tends to sample frequently from high-probability
regions while occasionally also sampling from low-probability regions. The MCMC algorithm
involves a “burn-in” process in which a certain number (usually the first 10%) of the total
number M of accepted samples is discarded to avoid outliers common at initial stages.

While application of the Metropolis-Hastings algorithm is fairly straightforward in the
finite-dimensional setting of problem P1, it is more delicate in the continuous setting of prob-
lem P2. The main difficulty is in constructing random perturbations of the concentration-
dependent material properties D(c) and t+(c) in a way that they will remain smooth enough
for the Planck-Nernst system (1) to be well defined (normally, these functions should be at
least once continuously differentiable and this issue is also addressed at the end of A). This is
achieved by parameterizing the material properties in terms of their truncated cosine-series
representations

mP (c) =
m̂0

2
+

P∑
k=1

m̂k cos

[
2πk(c− cα)

cβ − cα

]
, c ∈ [cα, cβ] (7)

where m̂k =
2

cβ − cα

∫ cβ

cα

m(c) cos

[
2πk(c− cα)

cβ − cα

]
dc, k = 1, . . . , P

and the number of terms P is a discretization parameter. The choice of the cosine-series ex-
pansion is dictated by the assumed behavior of D(c) and t+(c) at c = cα, cβ. The Metropolis-
Hastings algorithm is initialized with a function mP (c) for which the cosine-series coefficients
in (7) vanish as |m̂k| ∼ O(k−2). New trial samples are generated by multiplying the cosine-
series coefficients m̂1, . . . , m̂P by independent random numbers ηk, k = 1, . . . , P , chosen such
that |ηk| < C for all k, where C > 0 is a parameter. For sufficiently large P this approach ap-
proximates a continuous random distribution while preserving the required smoothness of the
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trial material properties [D(c), t+(c)]. The proposed computational approach for Bayesian
uncertainty quantification is summarized as Algorithms 1 and 2 for the problems with con-
stant and concentration-dependent material properties, respectively, and is validated in the
next section.

We note that, somewhat unconventionally, both the prior distribution and the likelihood
function are derived here from the same experimental data, albeit in fundamentally different
ways. In the absence of other possibilities, an alternative solution would be to use an
uninformative prior. However, the proposed approach is preferred as it results in tighter
bounds.

Algorithm 1 : Two-stage algorithm to estimate the posterior probability distribution of constant material properties
(normrnd and fminsearch are MATLAB functions).
Input:

c̃ — experimental data,
N,M — numbers of samples generated in STAGE 1 and STAGE 2
εJ — tolerance in the solution of problem P1 in STAGE 1

m(0) — initial guess in the solution of problem P1 in STAGE 1
m̄(0) — initial guess sample in STAGE 2
C — parameter controlling randomization in in STAGE 2

Output:
an approximation of the posterior probability distribution P(m|c̃)

STAGE 1: Construct N samples for prior distribution P(m)
repeat

perturb measurements c̃ with normally-distributed noise (magnitude given by the size of experimental
errors)
find m̂ by solving problem P1 (using function fminsearch and initial guess m(0))
store m̂ as a sample for prior distribution

until N prior distribution samples are obtained
assimilate samples to construct P(m̄)

STAGE 2: Construct M samples for posterior distribution P(m|c̃)
construct initial sample m̄(0)

k ← 1
repeat

create a new trial position m̄∗ = m̄k + normrnd(0̄, C)

calculate acceptance ratio γ = P(m̄(∗)|c̃)
P(m̄(k)|c̃)

if γ ≥ rand(1): m̄(k+1)=m̄(∗); k ← k + 1,
else: discard m(∗)
k = k + 1

until M +M/10 samples are obtained for posterior distribution
discard the first M/10 samples
assimilate the remaining samples to construct posterior probability distribution P(m|c̃)

3 RESULTS

3.1 Validation

In this section we validate the Bayesian approach to uncertainty quantification introduced
in Section 2.4. In addition to establishing its consistency, this will also allow us to assess
how the results it produces depend on key numerical parameters and properties of the data.
We will do this for both problems P1 and P2 using an approach based on “manufactured
solutions” [24, 25], where certain values of D and t+ (in problem P1), or functional forms of
D(c) and t+(c) (in problem P2), are initially assumed and used to generate ”measurements”
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Algorithm 2 : Two-stage algorithm to estimate the posterior probability distribution of constant material properties
(normrnd and fminsearch are MATLAB functions).
Input:

c̃ — experimental data,
N,M — numbers of samples generated in STAGE 1 and STAGE 2
εJ — tolerance in the solution of problem P2 in STAGE 1
m̂ — initial guess in the solution of problem P2 in STAGE 1, (here the solution of problem P1 is used as m̂)
m̄i — initial sample in STAGE 2 (chosen such that m̄i ∈ X )
C — parameter controlling randomization in in STAGE 2

Output:
an approximation of the posterior probability distribution P(m|c̃)

STAGE 1: Construct N samples for prior distribution of P(m̄)
repeat

perturb measurements c̃ with normally-distributed noise (magnitude given by the size of experimental
errors)
m̄(0) ← m̂ (initial guess)
n← 1
repeat

solve governing system (2)
evaluate ∇m̄J .
compute the conjugate direction g [∇m̄J ]

perform line minimization: τ
(n−1)
m̄ ← argmin

τ

{
J
(
m̄(n−1) − τ g [∇m̄J ] ,

)}
update: m̄(n) ← m̄(n−1) − τ (n−1)

m̄ g [∇m̄J ]
n← n+ 1

until |J (m̄(n))− J (m̄(n−1))| < εJ |J (m̄(n)|
store m̄(n) as prior distribution sample

until N prior distribution samples are obtained
assimilate samples to construct P(m̄).
STAGE 2: Construct M samples for posterior distribution P(m̄|c̃)
m̄(0) ← m̄i

k ← 1
repeat

create a new trial position f̄∗ = f̄k × normrnd(0̄, C)
using inverse Fourier transform obtain m̄(∗)

calculate acceptance ratio γ = P(m̄(∗)|c̃)
P(m̄(k)|c̃)

if γ ≥ rand(1): m̄(k+1)=m̄(∗); k ← k + 1,
else: discard m̄(∗)

until M+M/10 samples are obtained for posterior distribution
discard the first M/10 samples
assimilate the remaining samples to obtain posterior probability distribution
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(a) (b)

Figure 2: Concentration profiles c̃(x, ti), i = 1, . . . , NT , manufactured by solving problem
(1) using (a) assumed constant material properties [D, t+] and (b) assumed concentration-
dependent material properties [D(c), t+(c)]. In both cases the added noise has variance
ξ = 25 mol m−3.

by solving system (1). After being contaminated with noise of prescribed magnitude, this
data is used to solve inverse problems P1 and P2 and then to quantify the uncertainty of
the obtained reconstructions using Algorithms 1 and 2. In particular, this approach allows
one to determine how the uncertainty of the reconstructions depends on the level of noise in
the data.

For problem P1 we assume D = 10−10 m2s−1 and t+ = 0.4, whereas the assumed func-
tional forms of D(c) and t+(c) in problem P2 are shown with thick dashed lines in Figures 5a
and 5b, respectively. We also assume that the electrochemical cell has length L = 0.002 m
and diameter 0.001 m, the applied current is I = 100 µA and the initial salt concentration is
cinit = 1000 mol m−3, whereas the duration of the experiment is T = 20 hours, all of which are
in the ballpark of parameters used in practice. System (1) and its adjoint (19) are solved nu-
merically in MATLAB with the routine pdepe which uses adaptive spatial discretization and
adaptive time-stepping adjusted such that the relative and absolute tolerances, respectively,
10−8 and 10−10 are satisfied at all points in time and space. Computed concentration profiles
recorded at NT = 10 equispaced time levels ti, i = 1, . . . , NT , are used as the measurements
c̃(x, ti) (the integral with respect to time t in (3) is therefore replaced with summation over
i = 1, . . . , NT ). Thus generated measurements are then perturbed with normally-distributed
noise with the frequency 20 kHz and variance ξ = 25 mol m−3. The concentration profiles
c̃(x, ti), i = 1, . . . , NT , obtained with constant [D, t+] and concentration-dependent material
properties [D(c), t+(c)] are shown in Figures 2a and 2b, respectively. When sampling the
likelihood function P(c̃|m) in Algorithm 2 expression (7) is used with P = 50 terms.

We begin the presentation of the results by analyzing the effect of the number of samples
used to approximate the prior probability distribution and the likelihood function P(c̃|m) on
the convergence of the expected values of the constant material properties in Figure 3. For
simplicity, we set M = N in Algorithm 1. In Figures 3a and 3b we see that as the number
of Monte-Carlo samples N increases the expected values of D and t+, estimated based on
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(a) (b)

Figure 3: Convergence of the expected (constant) values of (a) D and (b) t+ to the true
values indicated with horizontal lines as the number of samples N and M = N used in
Algorithm 1 is increased. Measurement data is available at NT = 10 time levels and the
noise variance is ξ = 25 mol m−3.

Figure 4: Joint posterior probability distribution of the constant diffusion coefficient D and
transference number t+. Measurement data is available at NT = 10 time levels and the noise
variance is ξ = 25 mol m−3.
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Figure 5: Posterior probability densities of (a) the diffusion coefficient D(c) and (b) the
transference number t+(c) as functions of the concentration c. Measurement data is available
at NT = 10 time levels and the noise variance is ξ = 25 mol m−3. The thick dashed lines
represent the true distributions of D(c) and t+(c).

the posterior probability distributions P(m|c̃) produced by Algorithm 1, converge to their
true values. Acceptable accuracy is achieved already for N = 5, 000 and this is the number
of samples we will use below. Next, in Figure 4, we present the joint probability density
of the constant material properties D and t+ based on the posterior distributions obtained
with Algorithm 1. The approximately symmetric shape of the isolines in this figure indicates
that there is no significant correlation between the uncertainties in the reconstruction of the
diffusion coefficient and the transference number. The corresponding results obtained with
Algorithm 2 for the problem with concentration-dependent material properties are presented
in Figures 5a and 5b for D(c) and t+(c), respectively, together with the corresponding true
distributions. The contour plots shown in these figures should be interpreted such that
their sections at a given value of c produce the posterior probability distributions functions
P(D(c)|c̃) and P(t+(c)|c̃). We observe that, unlike in Figure 5b where the most likely values
of the transference number t+(c) are quite close to the true distribution for all values of c,
in Figure 5a a systematic difference between the most likely reconstructed values of D(c)
and the true values is evident. We remark here that in the absence of noise in the data, the
concentration-dependent diffusion coefficient D(c) obtained by solving problem P2 is inferred
very accurately and coincides with the true distribution up to the graphical resolution for
all values of c (this result is not shown). Hence, we can conclude that the differences evident
in Figure 5a are induced by noise and as such can be attributed to the ill-posedness of the
inverse problem (cf. the discussion in Introduction).

We now move on to characterize the impact of the noise level in the data c̃ on the
uncertainty of the reconstructed material properties. This is done by using noise with three
different variances ξ = 25, 50, 75 mol m−3 and computing the posterior distribution of the
constant and concentration-dependent material properties, [D, t+] and [D(c), t+(c)], using
Algorithms 1 and 2. The results are presented, respectively, in Figures 6a and 7, where they
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(a) (b)

Figure 6: Boundaries of the 95% confidence regions in the joint posterior probability distri-
butions of the constant diffusion coefficient D and transference number t+ obtained with (a)
concentration profiles c̃(x, ti) available at NT = 10 time levels and perturbed with noise of
different magnitudes (dashed — ξ = 25 mol m−3, dot-dash — ξ = 50 mol m−3, dotted —
ξ = 75 mol m−3) , (b) concentration profiles c̃(x, ti) available at different numbers of time
levels (dashed — NT = 10, dot-dash — NT = 7, dotted — NT = 4) and perturbed with
noise of magnitude ξ = 25 mol m−3.

are shown in terms of the 95% confidence bounds defined as the boundaries of parameter
regions over which the posterior probability density integrates to 0.95. We observe in these
figures that the confidence regions corresponding to different noise levels have similar shapes
and in all cases shrink as the noise level is reduced, which is the expected behavior.

We close this section by analyzing the effect of the amount of available measurement
data on the uncertainty of the reconstructed material properties. This is done by varying
the number NT of the time levels ti where measurements c̃(x, ti), i = 1, . . . , NT , are available
(NT = 4, 7, 10) while keeping the noise variance fixed at ξ = 25 mol m−3. The results ob-
tained for problems with constant and concentration-dependent material properties, [D, t+]
and [D(c), t+(c)], are presented, respectively, in Figures 6b and 8, again using the 95% con-
fidence bounds for the posterior probability distributions determined with Algorithms 1 and
2. We can conclude from these figures that the effect of reducing the amount of available
data is qualitatively similar to the effect of increasing the noise level in the data, as the
uncertainty grows when NT is decreased.

3.2 Application to Experimental Data

In this section we apply the methodology for uncertainty quantification described in Section
2.4 and validated in Section 3.1 to the inverse problems P1 and P2 involving, respectively,
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Figure 7: Boundaries of the 95% confidence regions in the posterior probability distributions
of (a) the diffusion coefficient D(c) and (b) the transference number t+(c) for different con-
centration values. The results are obtained using concentration profiles c̃(x, ti) available at
NT = 10 time levels and perturbed with noise of different magnitudes (dashed — ξ = 25
mol m−3, dot-dash — ξ = 50 mol m−3, dotted — ξ = 75 mol m−3). The thick solid lines
represent the true distributions of D(c) and t+(c).
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Figure 8: Boundaries of the 95% confidence regions in the posterior probability distributions
of (a) the diffusion coefficient D(c) and (b) the transference number t+(c) for different con-
centration values. The results are obtained using concentration profiles c̃(x, ti) available at
different numbers of time levels (dashed — NT = 10, dot-dash — NT = 7, dotted — NT = 4)
and perturbed with noise of magnitude ξ = 25 mol m−3. The thick solid lines represent the
true distributions of D(c) and t+(c).
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Figure 9: (a) Joint posterior probability distribution of the constant diffusion coefficient D
and transference number t+, posterior probability densities of (b) the diffusion coefficient
D(c) and (c) the transference number t+(c) as functions of the concentration c, all obtained
based on the measurement data described in Section 2.1.

constant and concentration-dependent material properties and using the experimental data
described in Section 2.1. The joint posterior probability density obtained for constant [D, t+]
is shown in Figure 9a, whereas the posterior probability densities of D(c) and t+(c) as
functions of the concentrations c are shown in Figures 9b and 9c. In addition, in Figures
10a–10c we also present the joint posterior probability densities of [D(c), t+(c)] for three
selected concentration values (these distributions are extracted from the data in Figures 9b
and 9c by constructing sections at the indicated values of c).

First, in Figure 9 we note that the expected values of both constant and concentration-
dependent material properties as well as the trends with changes of the concentration revealed
in the latter case agree with the results known from the literature [11]. In Figure 9a we also
observe that the reconstructed constant material properties exhibit significant uncertainties
which, unlike the validation results from Figure 4, are correlated in the sense that larger
values of the diffusion coefficient D are likely to occur together with smaller values of the
transference number t+, and vice versa. On the other hand, in the concentration-dependent
case the reconstruction uncertainty is significantly reduced for both D(c) and t+(c) for all
concentration values c. In both cases this uncertainty is small relative to the variation of
D(c) and t+(c) over the entire range of c. Moreover, Figures 10a–10c demonstrates that,
in contrast to the case of constant material properties, cf. Figure 9a, in the concentration-
dependent case there is no significant correlation between the uncertainties of D(c) and t+(c)
at particular values of c.

4 CONCLUSIONS

In this study we have developed and carefully validated a state-of-the-art Bayesian approach
to quantify the uncertainty of material properties reconstructed from experimental data.
This approach combines a recently developed inverse-modelling technique capable of infer-
ring general concentration-dependent material properties subject to minimal assumptions
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Figure 10: Joint posterior probability distribution of the concentration-dependent diffusion
coefficient D(c) and transference number t+(c) at the concentrations (a) c = 900 mol m−3,
(b) c = 1, 000 mol m−3 and (c) c = 1, 100 mol m−3, cf. Figures 9b and 9c, obtained based
on the measurement data described in Section 2.1.

[11] with a Markov-Chain Monte-Carlo method for sampling the likelihood function. We
emphasize that while the present study focuses on an electrochemical system modeled by
the Planck-Nernst equation (1), the proposed approach is in fact also applicable to a broad
range of problems in chemistry where macroscopic models are used. Extensive numerical
tests of the method confirm that it exhibits the expected behavior as different parameters
are varied.

Application of the proposed approach to actual experimental data allows us to place
rigorous “error bounds” in the reconstructed material properties. These results demonstrate
that while the uncertainty can be non-negligible for constant material properties, it is signif-
icantly reduced in the concentration-dependent case. The reason for this is that the required
regularity of D(c) and t+(c) as functions of c (cf. the discussion at the end of A) imposes
some constraints on how rapidly the material properties can vary with c. As a result, the
reconstruction uncertainty is small relative to the range of variation of both D(c) and t+(c),
which offers confidence in the reliability of inverse modelling.
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A Error Functional Gradients

The gradients of the error functional (3) with respect to concentration-dependent properties
D(c) and t+(c) can be calculated starting from the directional derivatives defined as follows
(to simplify the notation, we will not indicate the dependence on c in this appendix)

J ′([D, t+];D′) = lim
ε→0

ε−1
[
J ([D + εD′, t+])− J ([D, t+])

]
, (8a)

J ′([D, t+]; t+
′
) = lim

ε→0
ε−1
[
J ([D, t+ + εt+

′
])− J ([D, t+])

]
, (8b)

where D′ and t+
′

are the perturbations of control variables D and t+, respectively, and for
simplicity of notation here and below we omit the dependence on c. In order to identify
expressions for the gradients of the error functional as elements of a functional (Hilbert)
space, we use the Riesz representation theorem [28]

J ′([D, t+];D′) =
〈
∇DJ , D′

〉
X
, (9a)

J ′([D, t+]; t+
′
) =

〈
∇t+J , t+

′
〉
X
, (9b)

where 〈·, ·〉X denotes the inner product in functional space X (to be specified below). To
fix attention, we begin with the directional derivative (8a) with respect to the diffusion
coefficient D which can be evaluated as follows

J ′([D, t+];D′) =

NT∑
i=1

∫ T

0

∫ L

0

[
c(x, t; [D, t+])− c̃(x, t)

]
δ(t− ti)c′(x, t;D,D′) dx dt, (10)

where δ(·) is the Dirac delta distribution and c′ is the solution of the PDE system obtained as
a perturbation of the governing system (1). Then, the following transformations is invoked

V (x, t) =

∫ c(x,t)

cα

D(s) ds, x ∈ [0, L] and t ∈ [0, T ], (11)

where cα = mint∈[0,T ], x∈[0,L] c(x, t). We will define the identifiability interval I = [cα, cβ],
where cβ = maxt∈[0,T ], x∈[0,L] c(x, t), as the range of concentration values spanned by solutions
of (1). To simplify the notation, we also denote

Q(x, t) =
(1− t+)I

FA
. (12)

Using these definitions, the perturbation system takes the form

∂c′

∂t
=

∂

∂x

(
∂V ′

∂x
+Q′

)
in (0, L)× (0, T ], (13a)(

∂V ′

∂x
+Q′

)∣∣∣∣
x=0,L

= 0 in [0, T ], (13b)

c′|t=0 = 0 in [0, L], (13c)
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where the perturbation variables V ′ and Q′ are expressed as

V ′(x, t) =

∫ c(x,t)

cα

D′(s)ds+D(c)c′(x, t;D′), (14)

Q′(x, t) = −
[
(V s

m)
dt+

dc
c′(x, t;D′)+

]
I

FA
. (15)

We now observe that directional derivative (10) is not in a form consistent with Riesz repre-
sentation (9a), because the perturbation variable D′ does not appear explicitly in it, but is
instead hidden (as V ′, cf. (14)) in the perturbation system (13). In order to transform the
directional derivative (10) into the Riesz form (9a) we will employ adjoint analysis.

Multiplying equation (13a) by adjoint variable c∗ and integrating over the time and space
domain, we get ∫ L

0

∫ T

0

∂c′

∂t
c∗ dt dx =

∫ T

0

∫ L

0

[
∂2V ′

∂x2
c∗ +

∂Q′

∂x
c∗
]
dx dt. (16)

By re-organizing equation (16) and integrating it by parts with respect to both space and
time we obtain∫ L

0

{
[c′c∗]T0 −

∫ T

0

∂c∗

∂t
c′dt

}
dx

=

∫ T

0

{[
∂V ′

∂x
c∗
]L

0

−
∫ L

0

∂V ′

∂x

∂c∗

∂x
dx+ [Q′c∗]L0 −

∫ L

0

Q′
∂c∗

∂x
dx

}
dt. (17)

Using equations (13a)–(13c) we can eliminate a number of boundary terms after which we
integrate the term with ∂V ′

∂x
by parts one more time, so that we arrive at∫ L

0

{
[c′c∗]t=T −

∫ T

0

∂c∗

∂t
c′dt

}
dx

=

∫ T

0

{
−
[
∂c∗

∂x
V ′
]L

0

+

∫ L

0

V ′
∂2c∗

∂x2
dx−

∫ L

0

Q′
∂c∗

∂x
dx

}
dt. (18)

Now we assume that the adjoint system (defined on the same domain as the governing system
(1)) is in the form

−∂c
∗

∂t
= D

∂2c∗

∂x2
+
dt+

dc

I

FA

∂c∗

∂x
+

NT∑
i=1

(c− c̃) δ(t− ti), (19a)

∂c∗

∂x

∣∣∣∣
x=0,L

= 0, (19b)

c∗|t=T = 0 (19c)

which reduces identity (18) to the following expression for the directional derivative of the
error functional

J ′([D, t+];D′) =

∫ T

0

∫ L

0

[∫ c(x,t)

cα

D′(s)ds

]
∂2c∗

∂x2
dx dt. (20)
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We remark that adjoint system (19) is in fact a terminal value problem, cf. (19c), which
means that it needs to be integrated backwards in time (however, since the term with the
time derivative has a negative sign, the problem is well-posed). Although this is not the
function space we will ultimately use in the computations, for now we set X = L2(I)
meaning that our function space consists of square-integrable functions of the concentration
c. The corresponding inner product, needed in (9a), is〈

∇L2

D J , D′
〉
L2(I)

=

∫ cβ

cα

∇DJ (c)D′(c) dc. (21)

Changing the order of integration in (20) and employing (21) we arrive at the following
expression for the L2 gradient of the error functional

∇L2

D J (s) =

∫ T

0

∫ L

0

χ[cα,c(x,t)](s)
∂2c∗

∂x2
dx dt, s ∈ [cα, cβ], (22)

where χ[a,b] =

{
1, s ∈ [a, b]

0, s /∈ [a, b]
.

Starting from the directional derivative (8b) and proceeding along the same lines as above
we can derive an expression for the L2 gradient of the error functional with respect to the
concentration-dependent transference numbers

∇L2

t+J (s) =

∫ T

0

∫ L

0

∂c∗

∂x
δ(s− c(x, t)) dx dt, s ∈ [cα, cβ], (23)

where as before c∗ is a solution of adjoint system (19). Expressions (22) and (23) can be
evaluated in a straightforward manner using standard numerical techniques.

Above we derived gradient expressions in the L2 space, however, as pointed out in earlier
studies [24, 25], such gradients are not suitable for the reconstruction of material properties,
because they can potentially be discontinuous and undefined outside identifiability region
I. Therefore, in order to ensure suitable smoothness and domain of definition of the gra-
dients, we will define them in the Sobolev space H1(I) of functions of the concentration
c with square-integrable derivatives, i.e., in problem P2 we set X = H1(I). This space is
characterized by the following inner product, cf. (9a)–(9b) (as we did above, we focus here
on ∇DJ with the transformation for ∇t+J being analogous)〈

∇H1

D J , D′
〉
H1(I)

=

∫ cβ

cα

(
∇H1

D J D′ + `2d∇H1

D J
ds

dD′

ds

)
ds, (24)

where ` is a parameter with the meaning of a “length-scale”. Invoking again Riesz’ repre-
sentation theorem [28], now for the inner product (24) in the Sobolev space H1, we obtain
from (8a)

J ′([D, t+];D′) =
〈
∇L2

D J , D′
〉
L2

=
〈
∇H1

D J , D′
〉
H1
. (25)

Using integration by parts we deduce from (24)–(25)∫ cβ

cα

∇L2

D J D′(s) ds =

∫ cβ

cα

(
∇H1

D J D′ − `2d
2∇H1

D J
ds2

D′

)
ds+

[
d∇H1

D J
ds

D′

]s=cβ
s=cα

(26)
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and then, recognizing that the perturbation D′ ∈ H1(I) is arbitrary except for the as-
sumption that it satisfies the homogeneous Neumann boundary conditions at the endpoints
c = cα, cβ, we arrive at the following second-order boundary value problem defining the new
smooth gradient ∇H1

D J in terms of the L2 gradient obtained in (22)

∇H1

D J − `2d
2∇H1

D J
ds2

= ∇L2

D J on (cα, cβ), (27a)

d

ds
∇H1

D J = 0 c = cα, cβ. (27b)

Transformation of the L2 gradient into H1 Sobolev gradient can be interpreted as a low-pass
filtering which suppresses high-frequency noise and this property is necessary to eliminate
the discontinuities which may potentially arise in the L2 gradients [29]. The degree of noise
filtration is determined by the Sobolev parameter ` with higher values of ` resulting in
smoother Sobolev gradients. The boundary conditions (27b) imply a certain behavior of the

reconstructed material properties D̂(c) and t̂+(c) at the endpoints of the interval [cα, cβ],
namely, that their derivatives with respect to c are unchanged as compared to the initial
guesses D(1) and t+ (1), cf. (4c). All reconstruction results reported in this study have been
obtained using Sobolev gradients in minimization algorithm (4).
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