
1

pNeRF: Parallelized Conversion from Internal to Cartesian Coordinates

Mohammed AlQuraishi1

Correspondence to: Mohammed AlQuraishi (E-mail: alquraishi@hms.harvard.edu)

1 Mohammed AlQuraishi
Department of Systems Biology, Harvard Medical School, 200 Longwood Ave., Boston, MA, USA, 02115
Laboratory of Systems Pharmacology, Harvard Medical School, 200 Longwood Ave., Boston, MA, USA, 02115

Introduction

Polymers can be mathematically represented by
the Cartesian coordinates of their atoms, or by a
sequence of bond lengths, angles, and torsions
of adjacent bonded atoms (internal
coordinates).[1] Each parameterization has its
own advantages and disadvantages. In Cartesian
space, spatially proximal atoms that are distant
along the polymer chain can be readily detected,
facilitating distance-based computations
involving e.g. electrostatics. When sampling
changes in polymer conformations however, the
Cartesian parameterization can be brittle,
leading to non-physical clashes which the
internal coordinates parameterization avoids by
explicitly modeling bonded interactions.[2]
Consequently, rapid interchanging between the
two parameterizations is critical for many
established molecular modeling applications,
including molecular dynamics and Monte Carlo-
based sampling.[3] Certain force fields, such as

the Rosetta[4] energy function for biomolecules,
explicitly encode Cartesian and internal energy
terms and therefore require simultaneous use of
both parameterizations. Emerging applications
using machine learning-based (ML) molecular
modeling, in which force fields[5], [6] or
molecules[7] are optimized by backpropagating
partial derivatives through the internal and
Cartesian coordinates of polymers, further
necessitate computing the derivatives of the
internal-to-Cartesian transformation equations.

A widely used method for performing this
computationally-demanding transformation is
the Natural Extension Reference Frame (NeRF)
algorithm.[1] When transforming multiple
independent chains, NeRF is embarrassingly
parallelizable, linearly scaling in parallelization
capacity with the number of polymers. However
for a single polymer, NeRF runs sequentially.
While not a bottleneck for CPUs with limited
core counts, modern CPUs and GPUs provide
massive parallelism that is seldom saturated by

ABSTRACT

The conversion of polymer parameterization from internal coordinates (bond lengths, angles, and
torsions) to Cartesian coordinates is a fundamental task in molecular modeling, often performed
using the Natural Extension Reference Frame (NeRF) algorithm. NeRF can be parallelized to process
multiple polymers simultaneously, but is not parallelizable along the length of a single polymer. A
mathematically equivalent algorithm, pNeRF, has been derived that is parallelizable along a
polymer’s length. Empirical analysis demonstrates an order-of-magnitude speed up using modern
GPUs and CPUs. In machine learning-based workflows, in which partial derivatives are
backpropagated through NeRF equations and neural network primitives, switching to pNeRF can
reduce the fractional computational cost of coordinate conversion from over two-thirds to around
10%. An optimized TensorFlow-based implementation of pNeRF is available on GitHub.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 6, 2018. ; https://doi.org/10.1101/385450doi: bioRxiv preprint

https://doi.org/10.1101/385450
http://creativecommons.org/licenses/by-nc-nd/4.0/

2

NeRF in conventional molecular modeling
pipelines. Additionally for ML-based workflows,
there are limits on the number of polymers that
can be processed simultaneously, as the
generalization quality of learned models is often
inversely related to the batch size (number of
data points used to estimate the gradient) used
in training them.[8] Combined with the fact that
ML workflows perform a large number of
evaluations during model training, the
computational cost of NeRF evaluations can be
substantial.

We derive a new algorithm, pNeRF, that is
mathematically equivalent to NeRF but is
parallelizable even for a single polymer chain,
with a total computational cost equal to NeRF
plus 𝑀 additional affine transformations, where
𝑀 is the number of parallel threads used. We
empirically show that on both modern CPUs and
GPUs, pNeRF can be over an order-of-magnitude
faster than NeRF. We further demonstrate that
on realistic ML-based workflows, use of pNeRF
reduces the fractional cost of internal-to-
Cartesian coordinate conversion from 67% to
13%. Finally we provide an empirical analysis of
optimal usage criteria based on polymer lengths,
number of independent polymers processed,
and CPU vs. GPU parallelism.

Methods

NeRF

We begin with a summary of the standard NeRF
algorithm. Given a sequence of bond lengths,
angles, and torsions of adjacent bonded atoms,
NeRF sequentially constructs a linear polymer
from one end of the molecule to the other
(extensions for branched polymers are
straightforward.) First the coordinates of each
atom, encoded by a triplet of length, angle, and
torsion, are computed in a special reference
frame (SRF), possibly in parallel. The algorithm
then sequentially moves each atom from the SRF
to its actual position using an affine
transformation derived from the coordinates of

the three previously computed atoms. Formally,
let 𝑟, 𝜃, 𝜑 be the bond length, angle, and torsion
of an atom with respect to its preceding
neighbors, then

 𝑐̃ =)
𝑟	𝑐𝑜𝑠(𝜃)

𝑟	𝑐𝑜𝑠(𝜑)𝑠𝑖𝑛(𝜃)
𝑟	𝑠𝑖𝑛(𝜑)𝑠𝑖𝑛(𝜃)

1 (1)

is its SRF coordinates. Given a previously
computed sequence of coordinates 𝑐2, … , 𝑐452,
the next set of coordinates is 𝑐4 =
𝐴 7𝑐48 , 9𝑐45:,…,452;< where 𝑐48 is the SRF set of
coordinates and 𝐴:ℝ: × ℝ:×: → ℝ: is a
function mapping the SRF coordinates to the
actual position using a rigid transformation
determined by the last three coordinates.
Specifically, letting 𝑚4 = 𝑐452 − 𝑐45C and 𝑛4 =
𝑚452 × 𝑚4D where 𝑚E is the unit-normalized
version of 𝑚 and ×	is the cross product, then

𝐴 7𝑐48 , 9𝑐45:,…,452;< = 𝑅9𝑐45:,…,452;	𝑐48 + 𝑐452 (2)

𝑅9𝑐45:,…,452; = [𝑚4,D 𝑛4D ×𝑚4D ,𝑛4D] (3)

where 𝑅:ℝ:×: → SO(3) is a function mapping
the previous three coordinates to a rotation
matrix.[1] By sequentially applying 𝐴 to the
sequence of SRF coordinates 𝑐28 ,… , 𝑐MN of a
length 𝐾 polymer, NeRF converts internal
coordinates into Cartesian coordinates. The
choice of the initial three coordinates used to
transform 𝑐28 is arbitrary, which we term the
initialization coordinates.

pNeRF

Because NeRF requires the coordinates of the
last three atoms to position the next atom, it
does not permit parallelization along the
polymer length. The basic idea behind pNeRF is
to fragment the polymer into 𝑀 equal-sized
fragments, independently convert each into
Cartesian space, and then reassemble the
fragments into the final polymer (Figure 1). A
naïve implementation of this idea would involve
four affine transformations and a matrix

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 6, 2018. ; https://doi.org/10.1101/385450doi: bioRxiv preprint

https://doi.org/10.1101/385450
http://creativecommons.org/licenses/by-nc-nd/4.0/

3

inversion for each of the 𝑀 fragments. We
derive a formulation that adds only one affine
transformation per fragment.

Algorithm

Let 𝑐28 ,… , 𝑐MN be the SRF coordinates of a polymer
of length 𝐾, and without loss of generality
assume that 𝑀 divides 𝐾. Partition the
coordinates into 𝑀 subsets 𝑐(2)P ,… , 𝑐(Q)R such
that 𝑐(2)P = S𝑐2,N … , 𝑐M/QUV, 𝑐(C)P =
S𝑐M/QW2,U …, 𝑐CM/QU V, …. Using these initialization
coordinates (columns are coordinates):

⎣
⎢
⎢
⎢
⎡−[1 2̂ −√2 0

[3 2̂ 0 0

0 0 0⎦
⎥
⎥
⎥
⎤

 (4)

apply NeRF independently to each subset. Once
complete, apply 𝐴 7	∙	, 9𝑐eM/Q5C,…,eM/Q;< to

every entry in 𝑐(e)R for 𝑚 = 1, … ,𝑀, then
concatenate the subsets. The resulting sequence
is equivalent (up to a rigid transformation) to a
sequential coordinate conversion using NeRF.

Proof of correctness

Proposition 1

Given initialization coordinates 𝒙 = (𝑥2, 𝑥C, 𝑥:),
applied sequentially to a sequence of SRF
coordinates 9𝛼i, 𝛽k, 𝛾i; (e.g. the beginning of a
new fragment), i.e.

 𝛼m = 𝐴9𝛼i, (𝑥2, 𝑥C, 𝑥:); = 𝐴𝒙(𝛼i)
 𝛽m = 𝐴 7𝛽k, (𝑥C, 𝑥:, 𝛼m)< (5)

 𝛾m = 𝐴9𝛾i, (𝑥:, 𝛼m, 𝛽m);

and a previously computed sequence of
coordinates 𝒄 = {… , 𝑐45C, 𝑐452, 𝑐4} used to
transform 9𝛼i, 𝛽k, 𝛾i; to their final location, i.e.

 𝛼 = 𝐴9𝛼i, (𝑐45C, 𝑐452, 𝑐4); = 𝐴𝒄(𝛼i)
 𝛽 = 𝐴7𝛽k, (𝑐452, 𝑐4, 𝛼)< (6)
 𝛾 = 𝐴9𝛾i, (𝑐4, 𝛼, 𝛽);

the following relationships hold true:

 𝛼 = 𝐴𝒄9𝐴𝒙52(𝛼m); (7)
 𝛽 = 𝐴𝒄9𝐴𝒙52(𝛽m); (8)
 𝛾 = 𝐴𝒄9𝐴𝒙52(𝛾m); (9)

Where 𝐴529𝛿, (𝛼, 𝛽, 𝛾); = 𝑅−1(𝛼, 𝛽, 𝛾)	(𝛿 − 𝛾)
and 𝑅52 is always defined as 𝑅 is a rotation
matrix. We abbreviate 𝐴9	∙	, (𝑥2, 𝑥C, 𝑥:); and 𝐴9	∙
	, (𝑐45C, 𝑐452, 𝑐4); using 𝐴𝒙 and 𝐴𝒄, respectively, and
similarly for 𝑅𝒙 and 𝑅𝒄.

Note that 𝐴𝒙52 is fixed and independent of the
coordinates, and hence can be pre-computed.
Note also that since 𝐴𝒄 ∘ 𝐴𝒙52 is a rigid affine
transformation that brings 9𝛼′, 𝛽′, 𝛾′; into
alignment with (𝛼, 𝛽, 𝛾), then for an arbitrary
new coordinate 𝛿m = 𝐴 7𝛿t, 9𝛼′, 𝛽′, 𝛾′;<, the
following must hold true:

NeRF

pNeRF

Figure 1: In the standard NeRF algorithm, internal
coordinates (angles and bond lengths, shown as dots
on a circle) are converted to Cartesian coordinates
(shown as sticks) sequentially, starting from one end
of the polymer and finishing at the opposite end. In
pNeRF, multiple fragments are reconstructed
independently and in parallel, and then the final
coordinates are obtained by reorienting entire
fragments, sequentially, in the opposite direction.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 6, 2018. ; https://doi.org/10.1101/385450doi: bioRxiv preprint

https://doi.org/10.1101/385450
http://creativecommons.org/licenses/by-nc-nd/4.0/

4

 𝛿 = 𝐴 7𝛿t, (𝛼, 𝛽, 𝛾)< = 𝐴𝒄9𝐴𝒙52(𝛿m); (10)

and by induction, all subsequent coordinates
must be similarly transformed. Thus if
proposition 1 is true, we can independently
compute 𝑀 fragments 𝑐(2), … , 𝑐(Q) and
sequentially transform them using 𝐴u(v) ∘
𝐴𝒙52, … , 𝐴u(wxv) ∘ 𝐴𝒙52 to their final correct
positions. We can further simplify the procedure
by choosing (𝑥2, 𝑥C, 𝑥:) such that 𝐴𝒙52 = 𝐼 (this
computation is provided after the proof).

Before we proceed with the proof, we first
introduce a lemma and some corollaries.

Lemma 1

Let 𝑅 be a function as defined in equation 3 and
𝑅m be any rotation matrix, then

 𝑅m𝑅(𝛼, 𝛽, 𝛾) = 𝑅(𝑅m𝛼, 𝑅m𝛽, 𝑅m𝛾) (11)

To prove this we will consider each column
vector of 𝑅(𝛼, 𝛽, 𝛾) separately, starting with the
first column:

𝑅(𝑅m𝛼, 𝑅m𝛽, 𝑅m𝛾)2z =
{|}5{|~
|{|}5{|~|

= 𝑅m }5~|}5~|
 (12)

where we used the fact that rotations do not
alter vector magnitude. For the third column:

𝑅(𝑅m𝛼, 𝑅m𝛽, 𝑅m𝛾):z =
{|(~5�)×{|(}5~)�

�{|(~5�)×{|(}5~)� �
= 𝑅m �(~5�)×(}5~)

� �
�(~5�)×(}5~)� �

 (13)

where we used the fact that rotations are
distributive over cross products. The same
arguments apply for the second column, and
thus we obtain the lemma.

Corollary 1

Let 𝐴 be a function as defined in equation 2, then

𝐴𝒙 �𝐴7𝛿t, (𝛼, 𝛽, 𝛾)<� = 𝐴7𝛿t, 9𝐴𝒙(𝛼),𝐴𝒙(𝛽),𝐴𝒙(𝛾);< (14)

To prove this corollary we work from the right-
hand side:

𝐴7𝛿t, 9𝐴𝒙(𝛼), 𝐴𝒙(𝛽), 𝐴𝒙(𝛾);<
= 𝑅9𝐴𝒙(𝛼), 𝐴𝒙(𝛽), 𝐴𝒙(𝛾);	𝛿t + 𝐴𝒙(𝛾)
= 𝑅(𝑅𝒙𝛼 + 𝑥:, 𝑅𝒙𝛽 + 𝑥:, 𝑅𝒙𝛾 + 𝑥:)	𝛿t + 𝐴𝒙(𝛾)
= 𝑅(𝑅𝒙𝛼, 𝑅𝒙𝛽, 𝑅𝒙𝛾)	𝛿t + 𝐴𝒙(𝛾) (15)

where the last step used the fact that by
construction, 𝑅 is invariant to a translation of its
arguments. Applying lemma 1, we obtain:

= 𝑅𝒙𝑅(𝛼, 𝛽, 𝛾)	𝛿t + 𝐴𝒙(𝛾)
= 𝑅𝒙𝑅(𝛼, 𝛽, 𝛾)	𝛿t + 𝑅𝒙𝛾 + 𝑥:
= 𝑅𝒙9𝑅(𝛼, 𝛽, 𝛾)	𝛿t + 𝛾; + 𝑥:
= 𝐴𝒙9𝑅(𝛼, 𝛽, 𝛾)	𝛿t + 𝛾;

= 𝐴𝒙 �𝐴 7𝛿t, (𝛼, 𝛽, 𝛾)<� (16)

Note that (14) holds for inverses as well, i.e.

𝐴𝒙52 �𝐴 7𝛿t, (𝛼, 𝛽, 𝛾)<� = 𝐴 7𝛿t, 9𝐴𝒙52(𝛼), 𝐴𝒙52(𝛽), 𝐴𝒙52(𝛾);< (17)

since 𝐴𝒙52(𝛿) = 𝑅𝒙52(𝛿 − 𝑥:) = 𝑅𝒙z(𝛿 − 𝑥:) as
𝑅𝒙52 is a rotation matrix and thus lemma 1 is
applicable to 𝑅𝒙52.

Corollary 2

𝑅𝒄 = 𝑅(𝑅𝒄𝑅𝒙52𝑥2, 𝑅𝒄𝑅𝒙52𝑥C, 𝑅𝒄𝑅𝒙52𝑥:) (18)

For any 𝒙, 𝒄 ∈ ℝ:×:. The result follows from
applying lemma 1 to 𝑅𝒄 = 𝑅𝒄𝑅𝒙52𝑅𝒙.

We are now ready to prove proposition 1.

Proof for 𝛼 (eq. 7)

Trivially follows from definitions (eqs. 5 and 6):

𝐴𝒄9𝐴𝒙52(𝛼m); = 𝐴𝒄 7𝐴𝒙529𝐴𝒙(𝛼i);< = 𝐴𝒄(𝛼i) = 𝛼 (19)

Proof for 𝛽 (eq. 8)

By definition (eq. 5):

𝐴𝒄9𝐴𝒙52(𝛽m); = 𝐴𝒄 �𝐴𝒙52 �𝐴7𝛽k, (𝑥C, 𝑥:, 𝛼m)<�� (20)

Applying corollary 1 to innermost 𝐴 in rhs we get:

𝐴�𝛽k, 7𝐴𝒄9𝐴𝒙52(𝑥C);,𝐴𝒄9𝐴𝒙52(𝑥:);,𝐴𝒄9𝐴𝒙52(𝛼m);<� (21)

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 6, 2018. ; https://doi.org/10.1101/385450doi: bioRxiv preprint

https://doi.org/10.1101/385450
http://creativecommons.org/licenses/by-nc-nd/4.0/

5

From before 𝐴𝒄9𝐴𝒙52(𝛼m); = 𝛼. We will work out
the other arguments to 𝐴:

𝐴𝒄9𝐴𝒙52(𝑥:);
= 𝐴𝒄9𝑅𝒙52(𝑥: − 𝑥:); = 𝐴𝒄(0)
= 𝑅𝒄0 + 𝑐4 = 𝑐4 (22)

Similarly we have (applying corollary 2 in the last
step since eq. 23 is an argument to 𝐴):

𝐴𝒄9𝐴𝒙52(𝑥C);
= 𝑅𝒄𝑅𝒙52(𝑥C − 𝑥:) + 𝑐4
= 𝑅𝒄𝑅𝒙52𝑥C − 𝑅𝒄𝑅𝒙52𝑥: + 𝑐4
= 𝑐452 − 𝑐4 + 𝑐4 = 𝑐452 (23)

This implies that eq. 21 is equal to
𝐴 7𝛽k, (𝑐452, 𝑐4, 𝛼)< = 𝛽 which proves eq. 8.

Proof for 𝛾 (eq. 9)

Starting with the definitions and applying
corollary 1 as we did for eq. 8 we obtain:

𝐴𝒄9𝐴𝒙52(𝛾m);

= 𝐴𝒄 �𝐴𝒙52 7𝐴9𝛾i, (𝑥:,𝛼m, 𝛽m);<�

= 𝐴 �𝛾i, 7𝐴𝒄9𝐴𝒙52(𝑥:);,𝐴𝒄9𝐴𝒙52(𝛼m);,𝐴𝒄9𝐴𝒙52(𝛽m);<� (24)

Applying eqs. 22, 19, and 20 to the first, second,
and third arguments of eq. 24, respectively, we
get 𝐴𝒄9𝐴𝒙52(𝛾m); = 𝐴9𝛾i, (𝑐4, 𝛼, 𝛽); = 𝛾. This
proves proposition 1.

Initialization coordinates

In eqs. 7-9 the initialization coordinates 𝒙 =
(𝑥2, 𝑥C, 𝑥:) can be arbitrarily chosen. A judicious
choice of 𝒙 can yield 𝐴𝒙52 = 𝐼, eliminating one
extraneous affine transformation per fragment.
We derive one such set of coordinates next.

First note that 𝐴𝒙52 = 𝐼 if and only if 𝛼 = 𝐴𝒄(𝛼m).
We start with eq. 6 and apply the above
condition followed by corollary 1:

𝐴9𝛼i, (𝑐45C, 𝑐452, 𝑐4); = 𝛼 = 𝐴𝒄(𝛼m)
= 𝐴𝒄 7𝐴9𝛼i, (𝑥2, 𝑥C, 𝑥:);<

= 𝐴7𝛼i, 9𝐴𝒄(𝑥2), 𝐴𝒄(𝑥C), 𝐴𝒄(𝑥:);< (25)

This yields the following set of equations:

 𝑐45C = 𝐴𝒄(𝑥2)
 𝑐452 = 𝐴𝒄(𝑥C) (26)
 𝑐4 = 𝐴𝒄(𝑥:)

which we solve to obtain the desired 𝒙. For 𝑥:
we obtain a unique solution:

𝑥: = 𝐴𝒄52(𝑐4) = 𝑅𝒄52(𝑐4 − 𝑐4) = 0 (27)

consistent with the fact that for an affine
transformation to be the identity its translation
component must be 0.

For 𝑥C, we left-multiply by an arbitrary 𝑅 of our
choosing, then apply corollary 2 to obtain:

𝑥C = 𝐴𝒄52(𝑐452) = 𝑅𝒄52(𝑐452 − 𝑐4)
𝑅(𝛼, 𝛽, 𝛾)𝑥C = 𝑅(𝛼, 𝛽, 𝛾)𝑅𝒄52(𝑐452 − 𝑐4)
𝑅(𝛼, 𝛽, 𝛾)𝑥C = 𝛽 − 𝛾
𝑥C = 𝑅52(𝛼, 𝛽, 𝛾)(𝛽 − 𝛾) (28)

The above provides an explicit solution for 𝑥C,
and similarly for 𝑥2:

𝑥2 = 𝑅52(𝛼, 𝛽, 𝛾)(𝛼 − 𝛽) (29)

Since the choice of 𝛼, 𝛽, 𝛾 is arbitrary, we
choose the standard basis, and obtain eq. 4 as
the solution.

Results and Discussion

pNeRF is up to 13x faster than NeRF

We implemented pNeRF using the TensorFlow[9]
automatic differentiation[10] framework. This
enables its use in both conventional applications
in which internal coordinates are simply
converted to Cartesian coordinates (“forward
pass”), and machine learning-based applications
in which the derivatives of such conversions are
backpropagated from a loss function to the
parameters of a learned model (“backward
pass”).[11] Using the TensorFlow implementation,
we assessed pNeRF’s performance on realistic

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 6, 2018. ; https://doi.org/10.1101/385450doi: bioRxiv preprint

https://doi.org/10.1101/385450
http://creativecommons.org/licenses/by-nc-nd/4.0/

6

Figure 2: Fold speed up in computation time (pink intensity) when using pNeRF instead of NeRF for different
combinations of batch sizes and sequence lengths. Computations were carried out on CPUs (Xeon E5-2643 v4) and
GPUs (Titan Xp) and represent the averages of 100 independent runs, preceded by 10 burn-in runs.

settings—in terms of sequence lengths and
batch sizes (number of simultaneous
conversions)—using modern CPUs (Xeon E5-
2643 v4) and GPUs (Titan Xp). We considered
batch sizes ranging in size from 1 to 512 in
doubling increments, and sequence lengths
ranging from 100 to 1,000 in increments of 100.
For each combination of batch size and sequence
length, we carried out the forward and backward
passes of pNeRF 110 times, and averaged the
timings of the last 100 passes (the first 10 are

used to burn-in the process and minimize
variability.) Experiments were done using 1, 5,
15, and 25 fragments (𝑀), and the fastest option
was chosen for each batch size / sequence length
combination.

Figure 2 shows the timings, where intensities
correspond to fold speed up resulting from using
pNeRF over NeRF. In general the same trends
can be observed for CPUs and GPUs, and the
forward and backward passes, with longer

1

2

4

8

16

32

64

128

256

512

0

2.5

5.0

7.5

10.0

12.5

100 200 300 400 500 600 700 800 900 1000

1

2

4

8

16

32

64

128

256

512

100 200 300 400 500 600 700 800 900 1000

CP
U

GP
U

Forward pass Backward pass
Sequence length

Ba
tc

h
siz

e

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 6, 2018. ; https://doi.org/10.1101/385450doi: bioRxiv preprint

https://doi.org/10.1101/385450
http://creativecommons.org/licenses/by-nc-nd/4.0/

7

Figure 3: Log ratio of pNeRF CPU over GPU compute time (>0 indicate GPUs are faster) for different combinations of
batch sizes (number of simultaneous conversions) and sequence lengths.

sequences and smaller batch sizes gaining more
from pNeRF than shorter sequences and larger
batch sizes. This is expected as longer sequences
enable greater parallelism, while larger batch
sizes saturate the computational throughput of
CPUs and GPUs. We observe speed ups of up to
13x in the configurations we considered,
although in principle the speed up is not
bounded, and future processors with greater
capacity for parallelism will yield even larger
benefits. We never observed slowdowns due to
excessive parallelization by pNeRF.

Optimal hardware choice is model-dependent

pNeRF relies heavily on trigonometric
operations, which do not necessarily exploit the
computing capabilities of GPUs, particularly if
the opportunities for parallelism are limited (e.g.
short sequences.) This suggests that the choice
of optimal hardware may depend on batch size
and sequence length. To assess this, we
computed the log ratio of processing times on
CPUs versus GPUs, shown in Figure 3. Values
above 0 correspond to configurations were GPUs
are faster, and values below 0 indicate CPUs are
faster. In general, we observe that GPUs

outperform CPUs for batch sizes of 64 and larger,
if the sequences are at least 200 – 300 steps long.
For smaller batch sizes, CPUs dominate
irrespective of sequence length. We also observe
that for very large batch sizes during the forward
pass, memory limitations on GPUs can result in
poor performance relative to CPUs.

Optimal number of fragments is model- and
hardware-dependent

pNeRF introduces a free parameter, 𝑀, which
controls the number of fragments converted in
parallel. To obtain maximum throughput, this
parameter must be optimized for the given
choice of batch size, sequence length, and
hardware. Figure 4 illustrates pNeRF’s behavior
for varying batch sizes and hardware platforms,
assuming a fixed sequence length of 700 steps,
as a function of 𝑀. Arrows indicate the best
performing choice of 𝑀 for each configuration.
Numbers were computed in the same way as in
Fig. Figure 2 and Figure 3. Not surprisingly,
smaller batch sizes permit higher numbers of
fragments, as the processor is not yet saturated.
Furthermore, the choice of optimal processor
(and associated 𝑀) changes depending on the

Forward pass Backward pass
Sequence length

Ba
tc

h
siz

e

100 200 300 400 500 600 700 800 900 1000

1

2

4

8

16

32

64

128

256

512

100 200 300 400 500 600 700 800 900 1000

- 1.0

- 0.5

0

0.5

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 6, 2018. ; https://doi.org/10.1101/385450doi: bioRxiv preprint

https://doi.org/10.1101/385450
http://creativecommons.org/licenses/by-nc-nd/4.0/

8

batch size, with CPUs performing best for
batches of size 1 and 8 and GPUs for batches of
size 64 and 512. In general we see agreement
between the forward and backward passes,
simplifying implementation.

pNeRF performance in machine learning-based
workflows

In practical applications the conversion between
internal and Cartesian coordinates is not done in
isolation but is instead part of a larger workflow.
We sought to assess the impact of switching
from NeRF to pNeRF in a real-world machine
learning model that utilizes the forward and
backward passes of pNeRF computations.
Recurrent geometric networks[12] (RGNs), which
differentiably learn a mapping from protein
sequence to structure, are one such model. They
integrate trainable computations, known as
Long Short-Term Memory[13] (LSTM), with
geometric operations including the conversion

from internal to Cartesian coordinates. We
assessed the batch processing time for different
variants of the RGN architecture, using both
NeRF and pNeRF.

Figure 5 shows the results for two choices of
architectures (top line on x-axis, denoting
number of LSTM layers x layer size) and
maximum sequence lengths (bottom line on x-
axis.) The LSTM contribution to compute time is
shown in blue, while the (p)NeRF contribution is
in pink. Left (pink) bars correspond to standard
NeRF, and right bars are to pNeRF. All timings
shown are for batch sizes of 32, which were
comprised of real data from the Protein Data
Bank.[14] We observe that while NeRF can
account for a major portion of total RGN
compute time, around 2/3 for the smaller LSTM
architecture, it is reduced to a negligible level
(~10%) when using pNeRF. This demonstrates
practical utility in an emerging application, and it
is likely that future workflows making more
extensive use of pNeRF will see greater gains.

Note that the lack of a major timing difference
between maximum sequence lengths is due to
the relatively short average sequence length of

Forward pass Backward pass

Number of fragments

5 10 15 20 25

0.5

1

5

10

50

100

1
8

64
512

0

Ba
tc

h
pr

oc
es

sin
g

tim
e

(s
ec

s)

5 10 15 20 25
0.05

0.10

0.50

1

5

10

0

CPU
GPU

Figure 4: pNeRF processing times for different batch
sizes (indicated by numbers in legend) and hardware
platforms as a function of the number of fragments
(𝑀) used by pNeRF in the forward and backward
passes. Arrows indicate the fastest choice of 𝑀 for
each configuration. All runs used a sequence length of
700. Timings represent the averages of 100
independent runs, preceded by 10 burn-in runs.

Figure 5: Contribution to RGN batch processing time
from LSTM and (p)NeRF components, computed
using different choices of architectures and maximum
sequence lengths. NeRF contributions are shown in
the left bars, and pNeRF contributions are shown in
the right bars. The first line of RGN configuration
corresponds to number of bidirectional LSTM layers x
layer size, while the second line indicates maximum
sequence length.

1 x 400
350

Ba
tc

h
pr

oc
es

sin
g
!m

e
(s

ec
s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 (p)NeRFLSTM

1 x 400
700

2 x 800
350

2 x 800
700

RGN configura!on

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 6, 2018. ; https://doi.org/10.1101/385450doi: bioRxiv preprint

https://doi.org/10.1101/385450
http://creativecommons.org/licenses/by-nc-nd/4.0/

9

proteins in the PDB (~300), which limits
computational cost as longer sequences are not
frequently encountered.

Conclusions

We derived pNeRF, a mathematically equivalent
algorithm to NeRF that enables virtually
unbounded parallelism subject to hardware
restrictions. We characterized its behavior under
different experimental conditions and showed
that it can lead to substantial speed gains on
real-world applications. While the use of
geometric transformations—including internal-
to-Cartesian coordinate conversion—in machine
learning applications is in its nascent stage, the
rapid growth of deep learning models in the
molecular sciences will likely lead to increased
use of such transformations. Consequently we
believe that pNeRF will find broad use in a variety
of applications, particularly in polymer science.
To facilitate further use and development of
pNeRF we have made public a high-performance
TensorFlow-based implementation, suitable for
machine learning applications, on GitHub at
https://github.com/aqlaboratory/pnerf.

Acknowledgments

We thank Peter Sorger for his mentorship and
support, and Uraib Aboudi for her feedback. We
gratefully acknowledge the support of NVIDIA
Corporation with the donation of the Titan Xp
GPUs used for this research. This work was
supported by NIGMS Grant P50GM107618.

Keywords: molecular mechanics, machine
learning, protein structure, molecular dynamics,
internal coordinates

References and Notes

[1] J. Parsons, J. B. Holmes, J. M. Rojas, J. Tsai,
C. E. M. Strauss, J. Comput. Chem., 2005,
DOI:10.1002/jcc.20237.

[2] N. Vaidehi, A. Jain, J. Phys. Chem. B, 2015,
DOI:10.1021/jp509136y.

[3] D. Marx, J. Hutter, in Ab initio molecular
dynamics: basic theory and advanced

methods; Cambridge University Press,
Cambridge, 2012.

[4] A. Leaver-Fay, M. Tyka, S. M. Lewis, O. F.
Lange, J. Thompson, R. Jacak, K. Kaufman,
P. D. Renfrew, C. A. Smith, W. Sheffler, I. W.
Davis, S. Cooper, A. Treuille, D. J. Mandell,
F. Richter, Y.-E. A. Ban, S. J. Fleishman, J. E.
Corn, D. E. Kim, S. Lyskov, M. Berrondo, S.
Mentzer, Z. Popović, J. J. Havranek, J.
Karanicolas, R. Das, J. Meiler, T. Kortemme,
J. J. Gray, B. Kuhlman, D. Baker, P. Bradley,
Meth. Enzymol., 2011, DOI:10.1016/B978-
0-12-381270-4.00019-6.

[5] J. S. Smith, O. Isayev, A. E. Roitberg, Chem.
Sci., 2017, DOI:10.1039/C6SC05720A.

[6] J. M. Jumper, K. F. Freed, T. R. Sosnick,
bioRxiv, 2017, DOI:10.1101/169326.

[7] M. Ragoza, L. Turner, D. R. Koes,
arXiv:1710.07400 [cs, q-bio, stat], 2017.

[8] D. Masters, C. Luschi, arXiv:1804.07612 [cs,
stat], 2018.

[9] Martín Abadi, A. Agarwal, P. Barham, E.
Brevdo, Z. Chen, C. Citro, G. S. Corrado, A.
Davis, J. Dean, M. Devin, S. Ghemawat, I.
Goodfellow, A. Harp, G. Irving, M. Isard, Y.
Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J.
Levenberg, D. Mané, R. Monga, S. Moore,
D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O.
Vinyals, P. Warden, M. Wattenberg, M.
Wicke, Y. Yu, X. Zheng, TensorFlow: Large-
Scale Machine Learning on Heterogeneous
Systems. 2015.

[10] A. G. Baydin, B. A. Pearlmutter, A. A. Radul,
J. M. Siskind, arXiv:1502.05767 [cs], 2015.

[11] I. Goodfellow, Y. Bengio, A. Courville, in
Deep Learning; The MIT Press, Cambridge,
Massachusetts, 2016.

[12] M. AlQuraishi, bioRxiv, 2018,
DOI:10.1101/265231.

[13] S. Hochreiter, J. Schmidhuber, Neural
Computation, 1997,
DOI:10.1162/neco.1997.9.8.1735.

[14] F. C. Bernstein, T. F. Koetzle, G. J. Williams,
E. F. Meyer, M. D. Brice, J. R. Rodgers, O.
Kennard, T. Shimanouchi, M. Tasumi, J.
Mol. Biol., 1977, 112, 535–542.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 6, 2018. ; https://doi.org/10.1101/385450doi: bioRxiv preprint

https://doi.org/10.1101/385450
http://creativecommons.org/licenses/by-nc-nd/4.0/

